Digital Economy, Green Finance, and Carbon Emissions: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Literature Review
2.1.1. Digital Economy
2.1.2. Green Finance
2.2. Mechanism of the Impact of Digital Economy on Carbon Emissions
2.2.1. Direct Effect of Carbon Emission Reduction in the Digital Economy
2.2.2. Indirect Effects of Carbon Emission Reduction in the Digital Economy
2.2.3. The Moderating Effect of Green Finance on Carbon Emission Reduction in Digital Economy
2.2.4. Threshold Effect of Carbon Emission Reduction in Digital Economy
2.3. Assumptions and Variables
3. Research Design
3.1. Sample and Data
3.2. Variable Definitions
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Intermediate Variable
3.2.4. Adjusting Variable
3.2.5. Control Variables
3.3. Methodology
3.3.1. Mediation Effect Model
3.3.2. Adjustment Effect Model
3.3.3. Threshold Effect Model
3.3.4. Conduction Mechanism Model
4. Empirical Results
4.1. Benchmark Regression
4.2. Robustness Testing
4.3. Endogeneity Test
4.4. Mediation Effect Test
4.4.1. Energy Consumption Structure
4.4.2. Green Technology Innovation
4.5. Analysis of Heterogeneity
4.5.1. Analysis of the Temporal Heterogeneity of the Whole Population
4.5.2. Heterogeneity of the Development Level of the Digital Economy
4.5.3. Heterogeneity of the Regional Distribution
4.6. Regulatory Effect
4.7. Regulation Mechanism Test
4.8. The Threshold Test
5. Conclusions and Discussion
5.1. Conclusions
5.2. Policy and Practical Implications
5.3. Limitations and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Zong, Y.; Liu, F. Carbon Emission Prediction of the Transportation Industry in Jiangsu Province Based on the WOA-SVM Model. Sustainability 2025, 17, 4612. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, Z.; Pan, Z.; Tang, D.; Zhao, M.; Zhang, H. Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions. Sustainability 2025, 17, 2746. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, P. The impact of green finance on the intensity and efficiency of carbon emissions: The moderating effect of the digital economy. Front. Environ. Sci. 2024, 12, 1362932. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Pietrzak, B.M. Digital economy in visegrad countries. Multiple-criteria decision analysis at regional level in the years 2012 and 2015. J. Compet. 2017, 9, 5–18. [Google Scholar] [CrossRef]
- Koch, T.; Windsperger, J. Seeing through the network: Competitive advantage in the digital economy. J. Organ. Dysfunct. 2017, 6, 6–30. [Google Scholar] [CrossRef]
- Chen, W.; Wu, X.; Xiao, Z. The Influencing Factors and Emission Reduction Pathways for Carbon Emissions from Private Cars: A Scenario Simulation Based on Fuzzy Cognitive Maps. Sustainability 2025, 17, 2268. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Liu, K. Exploring the Mechanism of the Impact of Green Finance and Digital Economy on China’s Green Total Factor Productivity. Int. J. Environ. Res. Public Health 2022, 19, 16303. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, F.; Liu, J. Digital Economy’s Impact on Carbon Emission Performance: Evidence from the Yangtze River Delta, China. Chin. Geogr. Sci. 2025, 35, 217–233. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, Z.; Wu, J.; Li, Z. A study on the carbon emission reduction pathways of China’s digital economy from multiple perspectives. Front. Environ. Sci. 2025, 13, 1518161. [Google Scholar] [CrossRef]
- Zhu, Z.; Wan, Y.; Tang, N. The impact of green digital economy on carbon emission efficiency of financial industry: Evidence from 284 cities in China. Env. Dev. Sustain. 2025, (prepublish). 1–42. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.Y.; Zhao, W.Z.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity--empirical evidence from China’s provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Wang, H.; Kang, C. Digital economy and the green transformation of manufacturing industry: Evidence from Chinese cities. Front. Environ. Sci. 2024, 12, 1324117. [Google Scholar] [CrossRef]
- Sun, T.; Di, K.; Shi, Q. Digital economy and carbon emission: The coupling effects of the economy in Qinghai region of China. Heliyon 2024, 10, e26451. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Xiao, H.; Li, J.; Chen, H.; Chen, W. Study on how the digital economy affects urban carbon emissions. Renew. Sustain. Energy Rev. 2025, 207, 114910. [Google Scholar] [CrossRef]
- Xiong, X.; He, W.H.; Chen, S.R.; Wu, Y.H. Green finance, green technology innovation, and carbon emission reduction. Environ. Res. Commun. 2025, 7, 045018. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, L.; Wei, T. The effect of green credit policy on carbon emissions based on China’s provincial panel data. Sci. Rep. 2025, 15, 73942. [Google Scholar] [CrossRef]
- Tu, W.; Ma, Q.; Zhao, X.; Liu, W. The Impact of Green Finance on Carbon Emissions Based on Fixed Effects Model. IEEE Access 2025, 13, 27783–27793. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F. Role of green finance in improving energy efficiency and renewable energy development. Energy Effic. 2022, 15, 14. [Google Scholar] [CrossRef]
- Jeucken, M. Sustainable Finance and Banking: The Financial Sector and the Future of the Planet, 1st ed.; Routledge: London, UK, 2001. [Google Scholar]
- Altaghlibi, M.; Tilburg, R.V.; Sanders, M. Quantifying the Impact of Green Monetary and Supervisory Policies on the Energy Transition. Sustainable Finance Lab. 2022. Available online: https://inspiregreenfinance.org/ (accessed on 10 April 2025).
- Pretis, F.; Roser, M. Carbon dioxide emission-intensity in climate projections comparing the observational record to socio-economic scenarios. Energy 2017, 135, 718–725. [Google Scholar] [CrossRef]
- Khan, S.; Peng, Z.; Li, Y. Energy consumption, environmental degradation, economic growth and financial development in globe: Dynamic simultaneous equations panel analysis. Energy Rep. 2019, 5, 1089–1102. [Google Scholar] [CrossRef]
- Liu, L. Digital Inclusive Finance and Carbon Emission Efficiency: Evidence from China’s Economic Zones. Sustainability 2025, 17, 409. [Google Scholar] [CrossRef]
- Lu, Y.; Xia, Z. Digital inclusive finance, green technological innovation, and carbon emissions from a spatial perspective. Sci. Rep. 2025, 14, 8454. [Google Scholar] [CrossRef] [PubMed]
- Moussa, A.S.; Elmarzouky, M. Sustainability Reporting and Market Uncertainty: The Moderating Effect of Carbon Disclosure. Sustainability 2024, 16, 5290. [Google Scholar] [CrossRef]
- Wang, D.; Yang, W.; Geng, X.; Li, Q. Information disclosure, multifaceted collaborative governance, and carbon total factor productivity—An evaluation of the effects of the ‘environmental information disclosure pilot’ policy based on double machine learning. J. Environ. Manag. 2024, 366, 19. [Google Scholar] [CrossRef]
- Jalil, M.F.; Marikan, D.A.B.A.; bin Jais, M.; bin Arip, M.A. Kickstart manufacturing SMEs’ go green journey: A green hydrogen acceptance framework to enhance low carbon emissions through green digital technologies. Int. J. Hydrogen Energy 2025, 105, 592–610. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, J. Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Comput. Commun. 2020, 149, 332–342. [Google Scholar] [CrossRef]
- Bruvoll, A.; Larsen, B.M. Greenhouse gas emissions in Norway: Do carbon taxes work? Energy Pol. 2004, 32, 493–505. [Google Scholar] [CrossRef]
- Burke, P.J.; Csereklyei, Z. Understanding the energy-GDP elasticity: A sectoral approach. Energy Econ. 2016, 58, 199–210. [Google Scholar] [CrossRef]
- Cadoret, I.; Padovano, F. The political drivers of renewable energies policies. Energy Econ. 2016, 56, 261–269. [Google Scholar] [CrossRef]
- Horner, N.C.; Shehabi, A.; Azevedo, I.L. Known unknowns: Indirect energy effects of information and communication technology. Environ. Res. Lett. 2016, 11, 103001. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and Energy: How Does Internet Development Affect China’s Energy Consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy 2021, 101, 105201. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, H.; Cui, X. Impact of Big Data on Carbon Emissions: Empirical Evidence from China’s National Big Data Comprehensive Pilot Zone. Sustainability 2024, 16, 8313. [Google Scholar] [CrossRef]
- Baloch, M.A.; Mahmood, N.; Zhang, J.W. Effect of Natural Resources, Renewable Energy and Economic Development on CO2 Emissions in BRICS Countries. Sci. Total Environ. 2019, 678, 632–638. [Google Scholar]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The Impact of Digital Economy on Energy Transition across the Globe: The Mediating Role of Government Governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Yang, B.; Liu, B.; Peng, J.; Liu, X. The Impact of the Embedded Global Value Chain Position on Energy-Biased Technology Progress: Evidence from China’s Manufacturing. Technol. Soc. 2022, 71, 102065. [Google Scholar] [CrossRef]
- Kohli, R.; Melville, N.P. Digital innovation: A review and synthesis. Inf. Syst. J. 2019, 29, 200–223. [Google Scholar] [CrossRef]
- Bhujabal, P.; Sethi, N.; Padhan, P.C. ICT, foreign direct investment and environmental pollution in major Asia Pacific countries. Environ. Sci. Pollut. Res. 2021, 28, 42649–42669. [Google Scholar] [CrossRef]
- Zhong, X.; Duan, Z.; Liu, C.; Chen, W. Research on the coupling mechanism and influencing factors of digital economy and green technology innovation in Chinese urban agglomerations. Sci. Rep. 2024, 14, 5150. [Google Scholar] [CrossRef]
- Yuan, S.; Pan, X.F. Inherent mechanism of digital technology application empowered corporate green innovation: Based on resource allocation perspective. J. Environ. Manag. 2023, 345, 118841. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y. Exploring the Relationship Between Enterprise Digital Transformation and Green Technological Innovation: From the Perspective of Innovation Elements Searching. IEEE Trans. Eng. Manag. 2024, 71, 15125–15140. [Google Scholar] [CrossRef]
- Shahbaz, M.; Li, J.; Dong, X.; Dong, K. How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China. Energy Econ. 2022, 107, 105847. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, C.Y.; Ding, C.H.; Ren, Y.J. Digital Economy, Green Finance and Green Technology Innovation—An Empirical Study Based on Mediating and Spatial Effects. Tech. Econ. Manag. Res. 2023, 6, 7–12. [Google Scholar]
- He, L.; Liu, R.; Zhong, Z. Can green financial development promote renewable energy investment efficiency? A consideration of bank credit. Renew. Energy 2019, 143, 974–984. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Zhao, S.; Ozturk, I.; Hafeez, M.; Ashraf, M.U. Financial structure and CO2 emissions in Asian high-polluted countries: Does digital infrastructure matter? Environ. Technol. Innov. 2023, 32, 103348. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kallal, H.D.; Scheinkman, J.A.; Shleifer, A. Growth in cities. J. Polit. Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- Yin, Q.; Huang, Y.; Ding, C.; Jing, X. Towards sustainable development: Can green digital finance become an accelerator for reducing pollution and carbon emissions in China? Sustain. Cities Soc. 2024, 114, 105722. [Google Scholar] [CrossRef]
- Nedopil, C.; Dordi, T.; Weber, O. The nature of global green finance standards—evolution, differences, and three models. Sustainability 2021, 13, 3723. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.L.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, H.; Liang, X.; Yang, M.; Ma, Y.; Lu, W. Exploring the Influence of Digital Economy Growth on Carbon Emission Intensity Through the Lens of Energy Consumption. Sustainability 2024, 16, 9369. [Google Scholar] [CrossRef]
- Dong, Z.; He, Y.; Wang, H.; Wang, L. Is there a ripple effect in environmental regulation in China?—Evidence from the local-neighborhood green technology innovation perspective. Ecol. Indic. 2020, 118, 106773. [Google Scholar] [CrossRef]
- Feng, T.W.; Sun, L.Y.; Zhang, Y. The relationship between energy consumption structure, economic structure and energy intensity in China. Energy Policy 2009, 37, 5475–5483. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, C.; Lei, L.J.; Zhang, Y.P. Impacts of green finance on green innovation: A spatial and nonlinear perspective. J. Clean. Prod. 2022, 365, 132548. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Heterogeneous Effect of Digital Economy on Carbon Emission Reduction. J. Clean. Prod. 2023, 429, 139560. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, Y.; Shi, X.; Zheng, L.; Fan, S.; Zuo, S. Green Innovation and Carbon Emission Performance: The Role of Digital Economy. Energy Policy 2024, 195, 114344. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Z.; Ma, W.; Yang, J.; Mao, T. The Spatial Spillover Effects and Equity of Carbon Emissions of Digital Economy in China. J. Clean. Prod. 2024, 434, 139885. [Google Scholar] [CrossRef]
- Stoenoiu, E.; Jäntschi, L. Connecting the Computer Skills with General Performance of Companies—An Eastern European Study. Sustainability 2024, 16, 10024. [Google Scholar] [CrossRef]
- An, Q.; Zheng, L.; Yang, M. Spatiotemporal Heterogeneities in the Impact of Chinese Digital Economy Development on Carbon Emissions. Sustainability 2024, 16, 2810. [Google Scholar] [CrossRef]
- Xia, H.; Tang, Y. Does digital economy affect the quantity and efficiency of carbon emissions: Evidence from dynamic spatial Durbin model analysis. Env. Dev Sustain 2024. [Google Scholar] [CrossRef]
- Huang, F.; Wu, C. Impact of Digital Economy on Carbon Emissions and Its Mechanism: Evidence from China. Sustainability 2024, 16, 8926. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Third-Level Indicators |
---|---|---|
The development level of the digital economy | Digital infrastructure | Number of domain names |
Number of IPv4 websites | ||
Number of internet broadband access ports | ||
Mobile phone penetration rate | ||
Cable length per unit area | ||
Digital industry development | Number of information enterprises | |
Number of websites per 100 enterprises | ||
The proportion of enterprises with e-commerce transactions | ||
E-commerce sales volume | ||
Software business revenue | ||
Digital financial inclusion | Digital degree index | |
The depth index is used | ||
Coverage breadth index |
Primary Indicators | Secondary Indicators | Third-Level Indicators |
---|---|---|
Development level of green finance | Green Credit | Total credit for environmental protection projects/Total credit of the entire province |
Green Investment | Investment in environmental pollution control/GDP | |
Green Insurance | Environmental pollution liability insurance income/Total premium income | |
Green Bond | Total issuance of green bonds/Total issuance of all bonds | |
Green Support | Fiscal environmental protection expenditure/Fiscal general budget expenditure | |
Green Fund | Total market value of green funds/Total market value of all funds | |
Green Benefits | The total amount of carbon trading, energy consumption rights trading, pollution discharge rights trading/Equity market trading |
Variable | (1) | (2) | (3) |
---|---|---|---|
Base Model | Model with Control Variables | Full Model with Fixed Effects | |
−2.937 *** | −3.270 *** | −1.798 *** | |
(−12.56) | (−11.31) | (−6.44) | |
8.367 *** (6.12) | 8.015 *** (4.38) | ||
1.484 *** (3.46) | 2.485 *** (4.34) | ||
−0.191 (−1.36) | −1.057 *** (−5.37) | ||
−25.452 *** (−4.29) | −23.076 *** (−3.93) | ||
1.129 *** (3.63) | 1.275 *** (3.44) | ||
7.956 *** (51.05) | 7.852 *** (35.77) | ||
Control Variable | N | Y | Y |
Fixed Year | N | N | Y |
Area Fixed | N | N | Y |
Sample Size | 390 | 390 | 390 |
0.300 | 0.404 | 0.440 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Replace Explanatory Variables | Excluding Outliers | Delete the Municipality | Add Control Variables | |
−0.932 *** | −0.613 *** | −0.625 *** | −1.915 *** | |
(−4.90) | (−4.74) | (−4.83) | (0.324) | |
−2.008 *** (−2.50) | −2.142 *** (−2.72) | −1.377 (−1.50) | 4.648 ** (1.847) | |
−2.391 *** (−8.33) | −2.397 *** (−8.24) | −3.012 *** (−7.36) | 2.695 *** (0.505) | |
0.152 *** (2.81) | 0.146 *** (2.67) | 0.072 (1.00) | −0.739 *** (0.214) | |
0.526 (0.18) | 0.793 (0.27) | 1.830 (0.55) | −12.43 * (6.751) | |
1.426 *** (8.51) | 1.434 *** (8.42) | 1.482 *** (8.02) | 2.094 *** (0.301) | |
1.781 *** (−4.35) | ||||
9.506 *** (77.21) | 9.493 *** (76.87) | 9.736 *** (55.54) | 6.161 *** (0.264) | |
Control Variable | Y | Y | Y | Y |
Fixed Year | Y | Y | Y | Y |
Area Fixed | Y | Y | Y | Y |
Sample Size | 390 | 390 | 338 | 390 |
0.993 | 0.993 | 0.993 | 0.993 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Explained Variables Lagged One Period | Explanatory Variables Lagged One Period | ||
−0.004 *** | −0.759 *** | −0.712 *** | |
(−6.61) | (−5.53) | (−5.02) | |
2.995 (1.39) | −2.525 *** (−2.98) | −1.888 ** (−2.47) | |
0.580 (1.16) | −2.313 *** (−7.24) | −2.327 *** (−7.60) | |
−21.450 *** (−2.77) | −2.508 (−0.87) | 2.014 (0.68) | |
1.229 *** (3.88) | 1.410 *** (8.50) | 1.414 *** (8.20) | |
8.191 *** (42.54) | 9.554 *** (68.99) | 9.363 *** (73.34) | |
Control Variable | Y | Y | Y |
Fixed Year | Y | Y | Y |
Area Fixed | Y | Y | Y |
Sample Size | 390 | 360 | 360 |
0.245 | 0.993 | 0.994 | |
0.889 *** | |||
89.300 |
Variable | (3) | (4) | (5) | (6) | ||
---|---|---|---|---|---|---|
−3.221 *** | −0.574 * | −2.873 *** | ||||
(−10.95) | (−1.86) | (−12.64) | ||||
0.606 *** | ||||||
(19.73) | ||||||
−3.221 *** | 2.099 *** | −2.949 *** | ||||
(−10.95) | (3.84) | (−10.20) | ||||
−0.130 *** | ||||||
(−3.31) | ||||||
5.232 *** (3.45) | 13.234 *** (6.81) | −2.782 * (−1.92) | 5.232 *** (3.45) | 5.054 * (1.80) | 5.887 *** (4.01) | |
1.396 *** (3.22) | 2.933 *** (5.85) | −0.380 (−1.12) | 1.396 *** (3.22) | 0.727 (1.45) | 1.490 *** (3.40) | |
−1.105 (−0.74) | −1.107 *** (−5.80) | 0.566 *** (5.08) | −1.105 (−0.74) | 0.692 *** (2.97) | −0.015 (−0.10) | |
−21.503 *** (−3.55) | −50.172 *** (−6.92) | 8.881 ** (2.02) | −21.503 *** (−3.55) | 20.277 *** (2.70) | −18.876 *** (−3.17) | |
0.168 *** (3.68) | −5.291 *** (−18.11) | 4.372 *** (15.77) | 0.168 *** (3.68) | 2.677 *** (9.00) | 1.514 *** (4.05) | |
7.953 *** (50.88) | 18.851 *** (103.28) | −3.462 *** (−5.85) | 7.953 *** (50.88) | −0.798 *** (−3.77) | 7.850 *** (47.36) | |
Control Variable | Y | Y | Y | Y | Y | Y |
Fixed Year | Y | Y | Y | Y | Y | Y |
Area Fixed | Y | Y | Y | Y | Y | Y |
Sample Size | 390 | 390 | 390 | 390 | 390 | 390 |
0.392 | 0.483 | 0.674 | 0.392 | 0.456 | 0.405 |
Variable | Time Heterogeneity | Digital Economy | Area Distribution | |||||
---|---|---|---|---|---|---|---|---|
Before 2015 | After 2015 | Low-Level Group | High-Level Group | East | Middle | West | Northeast | |
−0.354 ** | −1.757 *** | −14.288 *** | 0.163 | −1.389 *** | −0.807 ** | −0.900 | ||
(−0.44) | (−2.42) | (−8.16) | (−9.00) | (1.51) | (−6.93) | (−2.36) | (−0.45) | |
−1.925 *** | −1.997 *** | 3.738 | 8.921 *** | −4.211 *** | −1.110 | 0.140 | −46.022 ** | |
(−3.10) | (−5.05) | (1.65) | (4.52) | (−5.31) | (−0.88) | (0.14) | (−2.48) | |
−0.004 | −0.066 | 0.472 | 4.738 *** | −0.948 *** | −2.355 ** | −1.885 *** | 0.743 | |
(−0.03) | (−0.61) | (0.84) | (9.41) | (−2.99) | (−2.40) | (−4.19) | (0.56) | |
2.907 | 2.844 | 0.250 | −1.949 *** | 0.145 ** | 0.718 *** | 0.102 | −0.400 | |
(0.31) | (0.88) | (1.60) | (−8.32) | (2.44) | (2.85) | (0.98) | (−0.97) | |
0.934 ** | 0.901 *** | −11.962 | −11.135 | 11.909 *** | 22.714 *** | −18.619 *** | −4.422 | |
(2.28) | (3.92) | (−1.48) | (−1.25) | (3.02) | (3.74) | (−6.19) | (−0.52) | |
−0.680 | −1.032 | 1.783 *** | −0.416 | 0.905 *** | 3.396 *** | 1.082 *** | 0.644 ** | |
(−0.74) | (−1.17) | (2.68) | (−1.25) | (2.64) | (7.61) | (7.40) | (2.31) | |
9.302 *** | 9.160 *** | 7.691 *** | 7.526 *** | 8.552 *** | 8.720 *** | 9.787 *** | 9.455 *** | |
(25.81) | (41.71) | (29.73) | (44.09) | (38.28) | 24.99 | 50.52 | 17.02 | |
Control Variable | Y | Y | Y | Y | Y | Y | Y | Y |
Fixed Year | Y | Y | Y | Y | Y | Y | Y | Y |
Area Fixed | Y | Y | Y | Y | Y | Y | Y | Y |
Sample Size | 180 | 240 | 195 | 195 | 130 | 78 | 143 | 39 |
0.996 | 0.997 | 0.218 | 0.409 | 0.988 | 0.997 | 0.998 | 0.994 |
Variable | (1) | (2) |
---|---|---|
Low-Level Group | High-Level Group | |
−0.138 | −0.615 ** | |
(−0.76) | (−2.24) | |
0.038 *** (2.72) | 0.005 (0.35) | |
−8.375 *** (−4.09) | 6.396 (1.26) | |
11.457 ** (2.35) | 4.603 *** (2.70) | |
1.495 (1.10) | 2.631 * (1.81) | |
−0.313 * (−1.94) | 0.367 *** (1.61) | |
8.129 *** (50.75) | 7.852 *** (35.77) | |
Control Variable | Y | Y |
Fixed Year | Y | Y |
Area Fixed | Y | Y |
Sample Size | 390 | 390 |
0.404 | 0.440 |
Variable | (1) | (2) |
---|---|---|
GF | ||
−2.413 *** | −1.427 *** | |
(−11.20) | (−2.78) | |
−0.371 *** (−3.14) | −2.13 *** | |
−5.834 *** (−8.16) | −6.273 * | |
0.049 ** (2.50) | 0.051 ** (2.58) | |
1.285 (0.24) | 8.384 (1.53) | |
74.747 *** (6.78) | 72.081 *** (7.13) | |
5.110 (1.27) | 4.639 (1.05) | |
−0.292 (−0.82) | −1.021 ** (−2.50) | |
9.620 *** (67.70) | 8.824 *** | |
Control Variable | Y | Y |
Fixed Year | 390 | 390 |
0.454 | 0.454 |
Variable | (1) | (2) | (3) | |
---|---|---|---|---|
−1.217 *** | 1.241 ** (2.48) | −1.427 *** | ||
(−9.23) | (−2.68) | |||
−1.035 *** (−4.42) | 1.098 ** | −2.021 *** (−6.11) | ||
−1.086 ** (−2.53) | 1.151 *** | −1.063 * (−1.84) | ||
0.049 ** (2.50) | 8.921 *** (4.52) | 0.051 ** (2.58) | ||
1.285 (0.24) | 4.738 *** (9.41) | 8.384 (1.53) | ||
74.747 *** (6.78) | −1.949 *** (−8.32) | 72.081 *** (7.13) | ||
5.110 (1.27) | 6.157 (1.46) | 4.639 (1.05) | ||
−0.292 (−0.82) | −5.364 (1.48) | −1.021 ** (−2.50) | ||
9.620 *** (67.70) | 10.647 *** | 8.824 *** (30.67) | ||
Control variable | Y | Y | control variable | Y |
Sample size | 390 | 390 | sample size | 390 |
0.454 | 0.455 | 0.454 |
Variable | Type | F-Number | P-Number | Significance Level | Threshold Value | Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
33.55 | 0.050 | 26.209 | 33.504 | 49.831 | 0.025 | [0.024, 0.026] | ||
10.27 | 0.540 | 25.112 | 28.343 | 43.687 | 0.101 | [0.094, 0.102] | ||
23.48 | 0.063 | 20.369 | 24.238 | 35.380 | 0.660 | [0.659, 0.661] | ||
3.33 | 0.887 | 17.144 | 21.237 | 30.291 | 0.801 | [0.797, 0.801] |
Variable | (1) | (2) |
---|---|---|
The Development Level of the Digital Economy | Level of Green Finance Development | |
) | 0.025 | 0.800 |
) | 3.324 *** (4.39) | −1.320 *** (−9.54) |
) | −0.945 *** (−9.38) | −1.074 *** (−9.77) |
−1.695 * (−1.85) | −1.382 (−1.49) | |
−3.918 *** (−24.62) | −3.963 *** (−24.55) | |
0.337 *** (6.37) | 0.314 *** (5.77) | |
4.873 ** (2.20) | 2.897 (1.24) | |
1.051 *** (8.39) | 1.045 *** (8.21) | |
10.303 *** (151.58) | 10.412 *** (162.56) | |
Control Variable | Y | Y |
Sample Size | 390 | 390 |
0.947 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Wang, Y.; Yan, Y.; Zhou, H.; Xu, L.; Zhang, Y.; Xu, Y.; Zhang, Y. Digital Economy, Green Finance, and Carbon Emissions: Evidence from China. Sustainability 2025, 17, 5625. https://doi.org/10.3390/su17125625
Jin W, Wang Y, Yan Y, Zhou H, Xu L, Zhang Y, Xu Y, Zhang Y. Digital Economy, Green Finance, and Carbon Emissions: Evidence from China. Sustainability. 2025; 17(12):5625. https://doi.org/10.3390/su17125625
Chicago/Turabian StyleJin, Weibo, Yiming Wang, Yi Yan, Hongyan Zhou, Longyu Xu, Yi Zhang, Yao Xu, and Yuqi Zhang. 2025. "Digital Economy, Green Finance, and Carbon Emissions: Evidence from China" Sustainability 17, no. 12: 5625. https://doi.org/10.3390/su17125625
APA StyleJin, W., Wang, Y., Yan, Y., Zhou, H., Xu, L., Zhang, Y., Xu, Y., & Zhang, Y. (2025). Digital Economy, Green Finance, and Carbon Emissions: Evidence from China. Sustainability, 17(12), 5625. https://doi.org/10.3390/su17125625