Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = synchronous removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 161
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

25 pages, 5652 KiB  
Article
Modeling and Optimization of the Vacuum Degassing Process in Electric Steelmaking Route
by Bikram Konar, Noah Quintana and Mukesh Sharma
Processes 2025, 13(8), 2368; https://doi.org/10.3390/pr13082368 - 25 Jul 2025
Viewed by 234
Abstract
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at [...] Read more.
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at the bubble–steel interface (Z1). The model incorporates key process parameters such as argon flow rate, vacuum pressure, and initial nitrogen and sulfur concentrations. A robust empirical correlation was established between de-N efficiency and the mass of Z1, reducing prediction time from a day to under a minute. Additionally, the model was further improved by incorporating a dynamic surface exposure zone (Z_eye) to account for transient ladle eye effects on nitrogen removal under deep vacuum (<10 torr), validated using synchronized plant trials and Python-based video analysis. The integrated approach—combining thermodynamic-kinetic modeling, plant validation, and image-based diagnostics—provides a robust framework for optimizing VD control and enhancing nitrogen removal control in EAF-based steelmaking. Full article
Show Figures

Figure 1

24 pages, 2226 KiB  
Article
Melatonin Implantation Improves the Reproductive Performance of Estrus-Synchronized Ewes During Seasonal Anestrus and Enhances the Antioxidant and Steroidogenic Capacities of Granulosa and Luteal Cells
by Zengyi Duan, Menghao Liu, Junjin Li, Kexiong Liu, Qi Qi, Zhixuan Yu, Hadia Akber Samoo, Chunxin Wang and Jian Hou
Antioxidants 2025, 14(7), 895; https://doi.org/10.3390/antiox14070895 - 21 Jul 2025
Viewed by 331
Abstract
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. [...] Read more.
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. A total of 40 multiparous Mongolian sheep were selected and randomly divided into two groups. In the MT group (n = 20), the ewes received an MT implant for 5 days, and then, they were given a progesterone (P4)-containing vaginal sponge for 14 days with equine chorionic gonadotropin (eCG) administered (330 I.U. per ewe; I.M.) at sponge removal. Control (CON) ewes (n = 20) were similarly treated but did not receive MT implants. The results demonstrated that MT implantation significantly improved serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), increased post-ovulatory luteal diameter and serum P4 levels, and reduced ovarian apoptosis. Compared with the CON group, the MT group showed significantly higher pregnancy (68.23% vs. 50.59%) and lambing rates (63.53% vs. 47.06%; number of lambed ewes/number of total ewes) following cervical-timed artificial insemination. Ovarian transcriptome analysis revealed 522 differentially expressed genes (DEGs) in the MT group compared with the CON group, including 355 upregulated and 167 downregulated DEGs. In addition, MT significantly enhanced proliferation and inhibited apoptosis in cultured granulosa cells (GCs) and luteal cells (LCs) in vitro. Moreover, it enhanced the antioxidant capacity of GCs and LCs probably by activating the NRF2 signaling pathway as well as stimulating steroid hormone synthesis. In conclusion, MT implantation 5 days before applying the conventional P4-eCG protocol enhances ovine reproductive outcomes during seasonal anestrus. MT implantation has a beneficial role on the growth and function of ovarian cells. These findings offer novel evidence supporting the functional role of MT in mammalian reproduction, and would be informative for optimizing estrus synchronization in sheep. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

21 pages, 3623 KiB  
Article
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
by Zhongyu Huang, Leilei Kou, Peng Hu, Haiyang Gao, Yanqing Xie and Liguo Zhang
Atmosphere 2025, 16(7), 886; https://doi.org/10.3390/atmos16070886 - 19 Jul 2025
Viewed by 234
Abstract
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, [...] Read more.
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, and dissipating using ERA5 reanalysis and IMERG precipitation estimates, and examined vertical microphysical structures using Dual-frequency Precipitation Radar (DPR) data from the Global Precipitation Measurement (GPM) satellite during the Meiyu period from 2014 to 2023. The results showed that convective heavy rainfall during the mature stage exhibits peak radar reflectivity and surface rainfall rates, with the largest near-surface mass weighted diameter (Dm ≈ 1.8 mm) and the smallest droplet concentration (dBNw ≈ 38). Downdrafts in the dissipating stage preferentially remove large ice particles, whereas sustained moisture influx stabilizes droplet concentrations. Stratiform heavy rainfall, characterized by weak updrafts, displays narrower particle size distributions. During dissipation, particle breakups dominate, reducing Dm while increasing dBNw. The analysis of the relationship between microphysical parameters and rainfall rate revealed that convective heavy rainfall shows synchronized growth of Dm and dBNw during the developing stage, with Dm peaking at about 2.1 mm near 70 mm/h before stabilizing in the mature stage, followed by small-particle dominance in the dissipating stage. In contrast, stratiform rainfall exhibits a “small size, high concentration” regime, where the rainfall rate correlates primarily with increasing dBNw. Additionally, convective heavy rainfall demonstrates about 22% higher precipitation efficiency than stratiform systems, while stratiform rainfall shows a 25% efficiency surge during the dissipation stage compared to other stages. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 1289 KiB  
Article
Method for Extracting Arterial Pulse Waveforms from Interferometric Signals
by Marian Janek, Ivan Martincek and Gabriela Tarjanyiova
Sensors 2025, 25(14), 4389; https://doi.org/10.3390/s25144389 - 14 Jul 2025
Viewed by 319
Abstract
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made [...] Read more.
This paper presents a methodology for extracting and simulating arterial pulse waveform signals from Fabry–Perot interferometric measurements, emphasizing a practical approach for noninvasive cardiovascular assessment. A key novelty of this work is the presentation of a complete Python-based processing pipeline, which is made publicly available as open-source code on GitHub (git version 2.39.5). To the authors’ knowledge, no such repository for demodulating these specific interferometric signals to obtain a raw arterial pulse waveform previously existed. The proposed system utilizes accessible Python-based preprocessing steps, including outlier removal, Butterworth high-pass filtering, and min–max normalization, designed for robust signal quality even in settings with common physiological artifacts. Key features such as the rate of change, the Hilbert transform of the rate of change (envelope), and detected extrema guide the signal reconstruction, offering a computationally efficient pathway to reveal its periodic and phase-dependent dynamics. Visual analyses highlight amplitude variations and residual noise sources, primarily attributed to sensor bandwidth limitations and interpolation methods, considerations critical for real-world deployment. Despite these practical challenges, the reconstructed arterial pulse waveform signals provide valuable insights into arterial motion, with the methodology’s performance validated on measurements from three subjects against synchronized ECG recordings. This demonstrates the viability of Fabry–Perot sensors as a potentially cost-effective and readily implementable tool for noninvasive cardiovascular diagnostics. The results underscore the importance of precise yet practical signal processing techniques and pave the way for further improvements in interferometric sensing, bio-signal analysis, and their translation into clinical practice. Full article
(This article belongs to the Special Issue Advanced Sensors for Human Health Management)
Show Figures

Figure 1

21 pages, 1153 KiB  
Article
Transient Stability Analysis of Wind-Integrated Power Systems via a Kuramoto-like Model Incorporating Node Importance
by Min Cheng, Jiawei Yu, Mingkang Wu, Yayao Zhang, Yihua Zhu and Yuanfu Zhu
Energies 2025, 18(13), 3277; https://doi.org/10.3390/en18133277 - 23 Jun 2025
Viewed by 307
Abstract
As the global energy structure transitions towards cleaner sources, large-scale integration of wind power has become a trend for modern power systems. However, the impact of low-inertia power electronic converters and the fault propagation effects at critical nodes pose significant challenges to power [...] Read more.
As the global energy structure transitions towards cleaner sources, large-scale integration of wind power has become a trend for modern power systems. However, the impact of low-inertia power electronic converters and the fault propagation effects at critical nodes pose significant challenges to power system stability. To this end, a Kuramoto-like model analysis method, considering node importance, is proposed in this paper. First, virtual node technology is utilized to optimize the power grid topology model. Then an improved PageRank algorithm embedded by a critical node identification method is proposed, which simultaneously considers transmission efficiency, coupling transmission probability, and voltage influence among nodes. On this basis, the traditional uniform coupling assumption is eliminated, thereby reallocating the coupling strength between critical nodes. In addition, the Kron method is applied to simplify the power grid model, constructing a hybrid Kuramoto-like model that integrates second-order synchronous machine oscillators and first-order wind power oscillators. Based on this model, the transient stability of the wind power integrated power system is analyzed. Finally, through estimating the attraction region range of the stable equilibrium point, a transient stability criterion is proposed for fault limit removal time assessment. The simulation results of the improved IEEE 39-bus system show that coupling strength optimization based on node importance reduces the system’s average critical coupling strength by 17%, significantly improving synchronization robustness. Time-domain simulations validate the accuracy of the method, with the relative error of fault removal time estimation controlled within 10%. This research provides a new analytical tool for transient stability analysis of wind power integration. Full article
Show Figures

Figure 1

11 pages, 2178 KiB  
Article
Actuator-Driven, Purge-Free Formaldehyde Gas Sensor Based on Single-Walled Carbon Nanotubes
by Shinsuke Ishihara, Mandeep K. Chahal, Jan Labuta, Takeshi Tanaka, Hiromichi Kataura, Jonathan P. Hill and Takashi Nakanishi
Nanomaterials 2025, 15(13), 962; https://doi.org/10.3390/nano15130962 - 21 Jun 2025
Viewed by 378
Abstract
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of [...] Read more.
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of semiconducting nanomaterials (e.g., single-walled carbon nanotubes (SWCNTs)) makes them sensitive to chemical substances adsorbed on their surfaces, and a variety of portable and highly sensitive chemiresistive gas sensors, including those capable of detecting HCHO, have been developed. However, when monitoring low levels of vapors (<1 ppm) found in ambient air, most chemiresistive sensors face practical issues, including false responses to interfering effects (e.g., fluctuations in room temperature and humidity), baseline drift, and the need to apply a purge gas. Here, we report an actuator-driven, purge-free chemiresistive gas sensor that is capable of reliably detecting 0.05 ppm of HCHO in the air. This sensor is composed of an HCHO→HCl converter (powdery hydroxylamine salt, HA), an HCl detector (a SWCNT-based chemiresistor), and an HCl blocker (a thin plastic plate). Upon exposure to HCHO, the HA emits HCl vapor, which diffuses onto the adjacent SWCNTs, increasing their electrical conductivity through p-doping. Meanwhile, inserting a plastic plate between HA and SWCNTs makes the conductivity of SWCNTs insensitive to HCHO. Thus, via periodic actuation (insertion and removal) of the plastic plate, HCHO can be detected reliably over a wide concentration range (0.05–15 ppm) with excellent selectivity over other volatile organic compounds. This actuator-driven system is beneficial because it does not require a purge gas for sensor recovery or baseline correction. Moreover, since the response to HCHO is synchronized with the actuation timing of the plate, even small (~0.8%) responses to 0.05 ppm of HCHO can be clearly separated from larger noise responses (>1%) caused by interfering effects and baseline drift. We believe that this work provides substantial insights into the practical implementation of nanomaterial-based chemiresistive gas sensors. Full article
Show Figures

Figure 1

23 pages, 3459 KiB  
Article
Study on the Synchronous Removal of Nitrogen and Phosphorus by Autotrophic/Heterotrophic Denitrification in the Presence of Pyrite
by Minyi Zhu, Minhui Ma, Shuo Chen, Rongfang Yuan and Shaona Wang
Molecules 2025, 30(11), 2412; https://doi.org/10.3390/molecules30112412 - 30 May 2025
Viewed by 448
Abstract
Pollution caused by N and P is a significant contributor to water eutrophication. While traditional biological treatment processes can remove some N and P elements from water, the effluent quality often fails to meet the stringent requirements of sensitive areas. The autotrophic denitrification’s [...] Read more.
Pollution caused by N and P is a significant contributor to water eutrophication. While traditional biological treatment processes can remove some N and P elements from water, the effluent quality often fails to meet the stringent requirements of sensitive areas. The autotrophic denitrification’s simultaneous nitrogen and phosphorus removal pro-cess, known for its low operating cost and minimal sludge production, has garnered considerable attention from researchers. In this study, natural pyrite was used for the removal of nitrogen and phosphorus in a denitrification system, and the underlying mechanisms were elucidated. The results indicate that the N and P removal efficiency was influenced by empty bed contact time (EBCT) and the pH value. The highest NO3-N removal rate of 90.24% was achieved at an EBCT of 8 h, while the PO43−-P removal rate reached 81.58% at an EBCT of 12 h. The addition of a carbon source enhanced the synergistic autotrophic/heterotrophic denitrification, significantly improving phosphorus removal with an increasing C/N ratio. Microbial characteristics analysis revealed that, at the phylum level, Chlorobiota, Bacteroidota, and Chloroflexota played a crucial role in heterotrophic autotrophic denitrification. At the genus level, Thauera, Aridibacter, and Gemmatimonas were key players in heterotrophic denitrification, while Thiobacillus, Rhodoplanes, and Geobacter were associated with autotrophic denitrification. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

18 pages, 18559 KiB  
Article
Dynamic Restoration of Collapsed Anammox Biofilm Systems: Integrating Process Optimization, Microbial Community Succession, and Machine Learning-Based Prediction
by Li Wang, Yongxing Chen, Junfeng Yang, Jiayi Li, Yu Zhang and Xiaojun Wang
Processes 2025, 13(6), 1672; https://doi.org/10.3390/pr13061672 - 26 May 2025
Viewed by 453
Abstract
The majority of extant studies concentrate on the reactivation of dormant Anammox biomass or the recovery of activity under specific storage conditions. Research on rehabilitation strategies for anaerobic ammonium oxidation (Anammox) systems is limited, with the exception of research on inhibitory factors. The [...] Read more.
The majority of extant studies concentrate on the reactivation of dormant Anammox biomass or the recovery of activity under specific storage conditions. Research on rehabilitation strategies for anaerobic ammonium oxidation (Anammox) systems is limited, with the exception of research on inhibitory factors. The recovery characteristics of biofilm systems after collapse induced by varying degrees of ammonia-nitrogen and small-molecular organic compound composite shocks have not been thoroughly elucidated. This study addresses the collapse of Anammox biofilm systems caused by sodium acetate inhibition through multi-phase rehabilitation strategies, stoichiometric analysis, and microbial community succession dynamics. Two regression algorithms—Support Vector Regression (SVR) and eXtreme Gradient Boosting (XGBoost)—were employed to construct predictive models for Total Nitrogen Removal Efficiency (TNRE) and Total Nitrogen Removal Rate (TNRR) in the CANON system, with model performance evaluated via coefficient of determination (R2) and root mean square error (RMSE). Results demonstrated that after terminating moderate-to-high sodium acetate dosing (300 mg/L and 500 mg/L), reactors R300 and R500 achieved TNRE recovery to 57.98% and 58.86%, respectively, and TNRR of 0.281 and 0.275 kgN/m3·d within 60–100 days, indicating the reversibility of high-concentration sodium acetate inhibition but a positive correlation between recovery duration and inhibition intensity. Microbial community analysis revealed that Planctomycetota (including Candidatus_Kuenenia) rebounded to 46–49% relative abundance in R100, synchronized with TNRE improvement. In contrast, R300 and R500 exhibited ecological niche replacement of denitrifiers (Denitratisoma) and partial TNRE restoration despite enhanced performance. Model comparisons showed SVR outperformed XGBoost in TNRE prediction, whereas XGBoost demonstrated superior TNRR prediction accuracy with R2 approaching 1 and RMSE nearing 0, significantly surpassing SVR. This work provides critical insights into recovery mechanisms under organic inhibition stress and establishes a robust predictive framework for optimizing nitrogen removal performance in CANON systems. Full article
(This article belongs to the Special Issue Applications of Microorganisms in Wastewater Treatment Processes)
Show Figures

Figure 1

30 pages, 24334 KiB  
Article
Enhanced Heat Removal Using Buoyancy-Tracking Exhaust Vents for Moving Heat Sources in Industrial Environments: CFD and Experimental Study
by Zhongwu Xie, Wei Yin, Xiaoli Hao, Shaobo Zhang, Theofanis Psomas, Torbjörn Lindholm and Lars Ekberg
Buildings 2025, 15(10), 1719; https://doi.org/10.3390/buildings15101719 - 19 May 2025
Viewed by 475
Abstract
High-temperature and high-pollution mobile sources are frequently encountered in industrial environments. Fixed-position exhaust outlets often fail to promptly remove heat and contaminants when these sources are in motion, leading to local accumulation and reduced indoor air quality. This study proposes a novel mobile [...] Read more.
High-temperature and high-pollution mobile sources are frequently encountered in industrial environments. Fixed-position exhaust outlets often fail to promptly remove heat and contaminants when these sources are in motion, leading to local accumulation and reduced indoor air quality. This study proposes a novel mobile exhaust system capable of tracking and dynamically aligning with moving emission sources to improve heat removal and cooling efficiency. Three configurations were evaluated: (1) a fixed exhaust outlet, (2) an exhaust vent moving synchronously with the heat source, and (3) a buoyancy-driven tracking exhaust outlet. Small-scale experiments and CFD simulations using dynamic mesh techniques were conducted. The results showed that the synchronous system reduced ambient temperature by an average of 0.25 to 2.3 °C compared to the fixed outlet, while the buoyancy-tracking system achieved an additional 0.15 to 2.5 °C reduction. The study also introduces a correlation between thermal plume inclination and the Archimedes number, providing a predictive basis for exhaust positioning. Given the similar dispersion patterns of heat and airborne pollutants, the proposed system holds promise for both thermal management and contaminant control in dynamic industrial environments. Furthermore, the system may offer critical advantages in emergency ventilation scenarios involving intense heat or hazardous pollutant outbreaks. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

15 pages, 5139 KiB  
Article
Synchronous Removal of Organic Pollutants and Phosphorus from Emergency Wastewater in Chemical Industry Park by Plasma Catalysis System Based on Calcium Peroxide
by Aihua Li, Chengjiang Qian, Jinfeng Wen and Tiecheng Wang
Catalysts 2025, 15(5), 486; https://doi.org/10.3390/catal15050486 - 16 May 2025
Viewed by 570
Abstract
This study employs a plasma-coupled calcium peroxide (CaO2) system to degrade tetracycline (TC) and remove phosphorus from emergency wastewater in a chemical industry park. The plasma/CaO2 system achieves optimal performance when the CaO2 dosage reaches 0.13 g/L. Higher degradation [...] Read more.
This study employs a plasma-coupled calcium peroxide (CaO2) system to degrade tetracycline (TC) and remove phosphorus from emergency wastewater in a chemical industry park. The plasma/CaO2 system achieves optimal performance when the CaO2 dosage reaches 0.13 g/L. Higher degradation efficiencies of TC were observed at increased discharge voltages, frequencies, and under weakly acidic and weakly alkaline conditions. Variations in discharge voltage and frequency have no significant impact on the phosphorus removal efficiency, but weakly alkaline conditions favor phosphorus removal. The reactive species (·OH, 1O2, O2·) within the plasma/CaO2 system were identified, and their roles were elucidated using radical scavengers. Subsequently, the degradation process was characterized by measuring changes in total organic carbon (TOC), chemical oxygen demand (COD), and ammonia nitrogen during the reaction, along with three-dimensional fluorescence analysis and ultraviolet-visible spectroscopy (UV-Vis). Eight intermediate products were identified through LC-MS, and two degradation pathways were clarified based on density functional theory. The toxicity analysis of the intermediate products demonstrated that the plasma/CaO2 system is an efficient, feasible, and environmentally friendly method for the synchronous removal of organic pollutants and phosphorus from emergency wastewater in a chemical industry park. Full article
(This article belongs to the Special Issue Plasma Catalysis for Environment and Energy Applications)
Show Figures

Figure 1

20 pages, 5814 KiB  
Article
Interfacial Engineering of 0D/2D Cu2S/Ti3C2 for Efficient Photocatalytic Synchronous Removal of Tetracycline and Hexavalent Chromium
by Zengyu Wang, Zhiwei Lv, Bowen Zeng, Fafa Wang, Xiaoyu Yang and Ping Mao
Catalysts 2025, 15(5), 458; https://doi.org/10.3390/catal15050458 - 7 May 2025
Viewed by 501
Abstract
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants [...] Read more.
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants remains a formidable task. This study devised a photocatalytic sample (CSMX-X) comprised of Copper(I) sulfide (Cu2S) and Titanium carbide (Ti3C2) through a simple solvothermal method and applied it to remove TC-tetracycline and Cr(VI). The CSMX-X not only increases the specific surface area from 2.7 m2·g−1 for pure Cu2S to 30.65 m2·g−1, but also effectively addresses the problems of insufficient separation efficiency of photogenerated holes and electrons and low carrier density. The photocatalytic efficiency for an individual pollutant (10 mg·L−1 Cr(VI) or 20 mg·L−1 TC-tetracycline) can reach more than 90%, while the removal efficiency for mixed Cr(VI) and TC-tetracycline pollutants only decreases by 12%. Meanwhile, copper leaching levels under different pH conditions (0.032–0.676 mg·L−1) are considerably lower than the 2 mg·L−1 safety standard set by the World Health Organization. This study provides valuable perspectives for constructing Cu2S-based composite photocatalysts to remove multiple contaminants in real aquatic environments. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Figure 1

19 pages, 5449 KiB  
Article
Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater
by Yu Gao, Ying Liu, Xu Zhao, Xinchao Liu, Qina Sun and Tifeng Jiao
Molecules 2025, 30(8), 1743; https://doi.org/10.3390/molecules30081743 - 13 Apr 2025
Viewed by 590
Abstract
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel [...] Read more.
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel three-dimensional porous nanocomposite, Artemia cyst shell biochar-supported iron oxide nanoparticles (ACSC@ IONP), was synthesized via synchronous pyrolysis of Fe3+-impregnated Artemia cyst shells (ACSs) and in situ reduction of iron. The optimized composite C@Fe-3, prepared with 1 mol/L Fe3+ and pyrolyzed at 450 °C for 5 h, exhibited rapid removal equilibrium within 5–10 min for both Cr(VI) and total chromium (Cr(total)), attributed to synergistic reduction of Cr(VI) to Cr(III) and adsorption of Cr(VI) and Cr(III). The maximum Cr(total) adsorption capacity was 110.1 mg/g at pH 2, as determined by the Sips isothermal model for heterogeneous adsorption. Competitive experiments demonstrated robust selectivity for Cr(VI) removal even under a 64-fold excess of competing anions, with an interference order of SO42− > NO3 > Cl. Remarkably, C@Fe-3 retained 65% Cr(VI) removal efficiency after four adsorption–desorption cycles. This study provides a scalable and eco-friendly strategy for fabricating reusable adsorbents with dual functionality for chromium remediation. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

18 pages, 7448 KiB  
Article
Design and Implementation of a 3-DOF Modular High-Rise Façade-Cleaning Robot with an XYZ Motion Module
by Pingtan Fang, Chaofeng Liu, Shengcong Li, Yujun Li, Fujun Yang, Yang Liu, Longhui Shao, Zhiyuan Chen and Mingheng Yu
Machines 2025, 13(4), 294; https://doi.org/10.3390/machines13040294 - 1 Apr 2025
Cited by 1 | Viewed by 870
Abstract
In recent years, the increasing construction of high-rise buildings has led to the widespread use of glass curtain walls. Regular cleaning is essential to maintain their aesthetic appeal and functionality. However, manual cleaning methods pose significant safety risks, necessitating the development of façade-cleaning [...] Read more.
In recent years, the increasing construction of high-rise buildings has led to the widespread use of glass curtain walls. Regular cleaning is essential to maintain their aesthetic appeal and functionality. However, manual cleaning methods pose significant safety risks, necessitating the development of façade-cleaning robots. This paper presents a 3-Degree-of-Freedom Modular High-Rise Façade-Cleaning Robot (3-DOF-MHRFCR), consisting of a lifting module, an XYZ motion module, and a cleaning module. The robot employs a synchronous belt lifting mechanism for vertical movement, ensuring high positioning accuracy and safety. The XYZ motion module enables precise cleaning and obstacle traversal, while the cleaning module combines high-pressure water jets, rotating brushes, and squeegees for effective contaminant removal. Experimental results demonstrate a maximum glass transmittance enhancement of 72.4% and a 21.8% reduction in water consumption compared to manual cleaning, validating the robot’s efficiency and stability. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

25 pages, 13064 KiB  
Article
Study on the Underpinning Technology for Fixed Piers of Concrete Box Girder Bridges on Mountainous Expressways
by Honglin Ran, Lin Li, Yi Wei, Penglin Xiao and Hongyun Yang
Buildings 2025, 15(7), 1031; https://doi.org/10.3390/buildings15071031 - 24 Mar 2025
Viewed by 555
Abstract
To address the challenge of repairing the damage to concrete box girder bridge piers on mountainous highways caused by falling rocks, this paper proposes an active underpinning technique that integrates a “井”-shaped cap system, graded preloading of the foundation, and synchronized beam body [...] Read more.
To address the challenge of repairing the damage to concrete box girder bridge piers on mountainous highways caused by falling rocks, this paper proposes an active underpinning technique that integrates a “井”-shaped cap system, graded preloading of the foundation, and synchronized beam body correction. The technique utilizes lateral beam preloading (to eliminate the inelastic deformation of the new pile foundation) and longitudinal beam connections (to form overall stiffness). The method involves building temporary and permanent support systems in stages. Through the two-stage temporary support system transition, the removal and in situ reconstruction of the old piers, a smooth transition from the pier–beam consolidation system to the basin-type bearing system is achieved while simultaneously performing precise correction of beam torsion. The structural safety during the construction process was verified through finite element simulations and dynamic monitoring. Monitoring results show that the beam torsion recovery effect is significant (maximum lift of 5.2 mm/settlement of 7.9 mm), and the pier strain (−54.5~−51.3 με) remains within a controllable range. Before the bridge was opened to traffic, vehicle load and impact load tests were conducted. The actual measured strength and vertical stiffness of the main beam structure meet the design requirements, with relative residual deformation less than 20%, indicating that the structure is in good, elastic working condition. The vehicle running and braking dynamic coefficients (μ = 0.058~0.171 and 0.103~0.163) are both lower than the theoretical value of 0.305. The study shows that this technique enables the rapid and safe repair of bridge piers and provides important references for similar engineering projects. Full article
Show Figures

Figure 1

Back to TopTop