Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = swine enteric coronavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4558 KiB  
Article
PABPC4 Inhibits SADS-CoV Replication by Degrading the Nucleocapsid Protein Through Selective Autophagy
by Chenchen Zhao, Yan Qin, Haixin Huang, Wei Chen, Yanqing Hu, Xinyu Zhang, Yuying Li, Tian Lan and Wenchao Sun
Vet. Sci. 2025, 12(3), 257; https://doi.org/10.3390/vetsci12030257 - 10 Mar 2025
Viewed by 791
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel enteric coronavirus that causes severe clinical diarrhea and intestinal pathological injury in pigs. Selective autophagy is an important mechanism of host defense against virus invasion. However, the mechanism through which SADS-CoV-mediated selective autophagy mediates [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel enteric coronavirus that causes severe clinical diarrhea and intestinal pathological injury in pigs. Selective autophagy is an important mechanism of host defense against virus invasion. However, the mechanism through which SADS-CoV-mediated selective autophagy mediates the innate immune response remains unknown. Here, we report that the host protein PABPC4 can inhibit SADS-CoV replication through targeting and degrading its N protein. Furthermore, we demonstrate that PABPC4 recruits MARCHF8 (an E3 ubiquitin ligase), which ubiquitinates the N protein and is degraded via NDP52/CALCOCO2 (a selective autophagy cargo receptor). Taken together, these findings reveal a new mechanism by which PABPC4 inhibits virus replication, and reveal a new target for antiviral drug development. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Figure 1

14 pages, 2810 KiB  
Article
Epidemiological Study and Genetic Diversity Assessment of Porcine Epidemic Diarrhea Virus (PEDV) in Yunnan Province, China
by Pei Zhu, Hong Yuan, Xianghua Shu, Xue Li, Yaoxing Cui, Lin Gao, Rui Yan, Taoying Yu, Chunlian Song and Jun Yao
Viruses 2025, 17(2), 264; https://doi.org/10.3390/v17020264 - 14 Feb 2025
Viewed by 1020
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious pathogen responsible for devastating enteric disease and lethal watery diarrhea, leading to significant economic losses in the global swine industry. Understanding the epidemiology and genetic diversity of PEDV over the past decade is crucial [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a highly contagious pathogen responsible for devastating enteric disease and lethal watery diarrhea, leading to significant economic losses in the global swine industry. Understanding the epidemiology and genetic diversity of PEDV over the past decade is crucial for the effective prevention and treatment of porcine epidemic diarrhea. In this study, 1851 fecal samples were collected from pigs exhibiting diarrhea symptoms across 11 cities in Yunnan Province between 2013 and 2022. The prevalence of PEDV, along with other common swine diarrhea viruses, including porcine transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), porcine Sapporo virus (PoSaV), porcine stellate virus (PaStV), and porcine delta coronavirus (PDCoV) was assessed using a polymerase chain reaction (PCR) assay. The results revealed a total detection rate of 52.94% (980/1851) for the six viruses, with PEDV accounting for 25.93% (480/1851) of cases. Further analysis showed that weaned piglets were more susceptible to PEDV than fattening pigs, with the highest prevalence observed in spring (61.52%, 275/447) and the lowest in summer (12.68%, 97/765). Dual infections were also identified, with PEDV + PoSaV being the most common combination (2.81%, 52/1851), followed by PEDV + PoRV, with a detection rate of 1.67% (31/1851). Phylogenetic analysis of the PEDV S genes revealed that the 28 epidemic strains in Yunnan Province shared a nucleotide sequence homology from 91.4% to 98.4% and an amino acid sequence homology ranging from 85.6% to 99.3%. All strains were classified as GII variant strains. This study provides a comprehensive overview of the epidemiology of PEDV and its co-infection patterns with other common diarrhea-causing viruses in the swine herds of Yunnan Province over the past decade. These findings offer valuable insights for the development of effective prevention and control strategies to mitigate the impact of PEDV and other enteroviruses on the swine industry in Yunnan Province. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

17 pages, 23562 KiB  
Article
Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species
by Zhongyuan Li, Yunyan Chen, Liang Li, Mei Xue and Li Feng
Pathogens 2024, 13(2), 174; https://doi.org/10.3390/pathogens13020174 - 15 Feb 2024
Cited by 3 | Viewed by 2954
Abstract
Swine enteric coronaviruses (SECoVs), including porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), have caused high mortality in piglets and, therefore, pose serious threats to the pork industry. Coronaviruses exhibit a trend [...] Read more.
Swine enteric coronaviruses (SECoVs), including porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), have caused high mortality in piglets and, therefore, pose serious threats to the pork industry. Coronaviruses exhibit a trend of interspecies transmission, and understanding the host range of SECoVs is crucial for improving our ability to predict and control future epidemics. Here, the replication of PDCoV, TGEV, and PEDV in cells from different host species was compared by measuring viral genomic RNA transcription and protein synthesis. We demonstrated that PDCoV had a higher efficiency in infecting human lung adenocarcinoma cells (A549), Madin–Darby bovine kidney cells (MDBK), Madin–Darby canine kidney cells (MDCK), and chicken embryonic fibroblast cells (DF-1) than PEDV and TGEV. Moreover, trypsin can enhance the infectivity of PDCoV to MDCK cells that are nonsusceptible to TGEV. Additionally, structural analyses of the receptor ectodomain indicate that PDCoV S1 engages Aminopeptidase N (APN) via domain II, which is highly conserved among animal species of different vertebrates. Our findings provide a basis for understanding the interspecies transmission potential of these three porcine coronaviruses. Full article
Show Figures

Figure 1

24 pages, 1528 KiB  
Review
Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application
by Fanzhi Kong, Huilin Jia, Qi Xiao, Liurong Fang and Qiuhong Wang
Vaccines 2024, 12(1), 11; https://doi.org/10.3390/vaccines12010011 - 21 Dec 2023
Cited by 14 | Viewed by 3376
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and [...] Read more.
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries. Full article
(This article belongs to the Special Issue Novel Vaccines for Infectious Pathogens)
Show Figures

Figure 1

17 pages, 6792 KiB  
Article
HSP90AB1 Is a Host Factor Required for Transmissible Gastroenteritis Virus Infection
by Daili Song, Yujia Zhao, Ying Sun, Yixiao Liang, Rui Chen, Yiping Wen, Rui Wu, Qin Zhao, Senyan Du, Qigui Yan, Xinfeng Han, Sanjie Cao and Xiaobo Huang
Int. J. Mol. Sci. 2023, 24(21), 15971; https://doi.org/10.3390/ijms242115971 - 4 Nov 2023
Cited by 4 | Viewed by 2508
Abstract
Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a [...] Read more.
Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 1857 KiB  
Article
Multiplex Real-Time RT-PCR Assays for Detection and Differentiation of Porcine Enteric Coronaviruses
by Christina M. Lazov, Alice Papetti, Graham J. Belsham, Anette Bøtner, Thomas Bruun Rasmussen and Maria Beatrice Boniotti
Pathogens 2023, 12(8), 1040; https://doi.org/10.3390/pathogens12081040 - 14 Aug 2023
Cited by 8 | Viewed by 2048
Abstract
It is important to be able to detect and differentiate between distinct porcine enteric coronaviruses that can cause similar diseases. However, the existence of naturally occurring recombinant coronaviruses such as swine enteric coronavirus (SeCoV) can give misleading results with currently used diagnostic methods. [...] Read more.
It is important to be able to detect and differentiate between distinct porcine enteric coronaviruses that can cause similar diseases. However, the existence of naturally occurring recombinant coronaviruses such as swine enteric coronavirus (SeCoV) can give misleading results with currently used diagnostic methods. Therefore, we have developed and validated three duplex real-time quantitative RT-PCR assays for the simultaneous detection of, and differentiation between, porcine epidemic diarrhea virus (PEDV) and SeCoV. Transmissible gastroenteritis virus (TGEV) is also detected by two out of these three assays. In addition, a novel triplex assay was set up that was able to detect and differentiate between these alphacoronaviruses and the porcine deltacoronavirus (PDCoV). The validated assays have low limits of detection, close to 100% efficiency, and were able to correctly identify the presence of PEDV and SeCoV in 55 field samples, whereas 20 samples of other pathogens did not give a positive result. Implementing one or more of these multiplex assays into the routine diagnostic surveillance for PEDV will ensure that the presence of SeCoV, TGEV, and PDCoV will not go unnoticed. Full article
(This article belongs to the Special Issue Molecular Detection and Characterisation of Viral Pathogens)
Show Figures

Figure 1

15 pages, 2229 KiB  
Article
Establishment of Replication Deficient Vesicular Stomatitis Virus for Studies of PEDV Spike-Mediated Cell Entry and Its Inhibition
by Huaye Luo, Lilei Lv, Jingxuan Yi, Yanjun Zhou and Changlong Liu
Microorganisms 2023, 11(8), 2075; https://doi.org/10.3390/microorganisms11082075 - 12 Aug 2023
Cited by 6 | Viewed by 2667
Abstract
The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal [...] Read more.
The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes. Pseudotyped viral particles featuring the PEDV S protein are valuable tools for investigating virus entry, identifying neutralizing antibodies, and developing small molecules to impede virus replication. In this study, we used a codon-optimized PEDV S protein to generate recombinant pseudotyped vesicular stomatitis virus (VSV) particles (rVSV-ΔG-EGFP-S). The full-length S protein was efficiently incorporated into VSV particles. The S protein pseudotyped VSV exhibited infectivity towards permissive cell lines of PEDV. Moreover, we identified a new permissive cell line, JHH7, which showed robust support for PEDV replication. In contrast to the SARS-CoV-2 spike protein, the removal of amino acids from the cytoplasmic tail resulted in reduced efficiency of viral pseudotyping. Furthermore, we demonstrated that 25-hydroxycholesterol inhibited rVSV-ΔG-EGFP-S entry, while human APN facilitated rVSV-ΔG-EGFP-S entry through the use of ANPEP knockout Huh7 cells. Finally, by transducing swine intestinal organoids with the rVSV-ΔG-EGFP-S virus, we observed efficient infection of the swine intestinal organoids by the PEDV spike-pseudotyped VSV. Our work offers valuable tools for studying the cellular entry of PEDV and developing interventions to curb its transmission. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

14 pages, 4486 KiB  
Article
Development of a Multiplex Quantitative PCR for Detecting Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus Simultaneously in China
by Jianpeng Chen, Rongchao Liu, Huaicheng Liu, Jing Chen, Xiaohan Li, Jianfeng Zhang and Bin Zhou
Vet. Sci. 2023, 10(6), 402; https://doi.org/10.3390/vetsci10060402 - 18 Jun 2023
Cited by 10 | Viewed by 2838
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) belong to the category of swine enteric coronavirus that cause acute diarrhea in piglets, which has resulted in massive losses to the pig husbandry. Therefore, a sensitive and rapid detection [...] Read more.
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) belong to the category of swine enteric coronavirus that cause acute diarrhea in piglets, which has resulted in massive losses to the pig husbandry. Therefore, a sensitive and rapid detection method which can differentially detect these viruses that lead to mixed infections in clinical cases, is urgently needed. According to the conserved regions of the PEDV M gene, TGEV S gene, and PDCoV N gene, and the reference gene of porcine (β-Actin), we designed new specific primers and probes for the multiplex qPCR assay capable of simultaneously detecting three RNA viruses. This method, with a great specificity, did not cross-react with the common porcine virus. Moreover, the limit of detection of the method we developed could reach 10 copies/μL ,and the intra- and inter-group coefficients of variation of it below 3%. Applying this assay to detect 462 clinical samples which were collected in 2022–2023, indicated that the discrete positive rates of PEDV, TGEV, and PDCoV were 19.70%, 0.87%, and 10.17%, respectively. The mixed infection rates of PEDV/TGEV, PEDV/PDCoV, TGEV/PDCoV, and PEDV/TGEV/PDCoV were 3.25%, 23.16%, 0.22%, and 11.90%, respectively. All in all, the multiplex qPCR assay we developed as a tool for differential and rapid diagnosing can be put on the active prevention and control of PEDV, TGEV, and PDCoV, , which can create great value in the diagnosis of swine diarrhea diseases. Full article
(This article belongs to the Special Issue The Advanced Research in Porcine Viruses)
Show Figures

Figure 1

18 pages, 7761 KiB  
Article
Persistence Infection of TGEV Promotes Enterococcus faecalis Infection on IPEC-J2 Cells
by Zhenzhen Guo, Chenxin Zhang, Jiajun Dong, Yabin Wang, Hui Hu and Liying Chen
Int. J. Mol. Sci. 2023, 24(1), 450; https://doi.org/10.3390/ijms24010450 - 27 Dec 2022
Cited by 2 | Viewed by 2299
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is [...] Read more.
Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is a member of the enteric microorganisms and an opportunistic pathogen. There is no report of secondary E. faecalis infection to TGEV, even though they both target to the intestinal tracts. To investigate the interactions between TGEV and E. faecalis, we set up an in vitro infection model by the swine IPEC-J2 cells. Dynamic changes of cell traits, including EMT and cell motility, were evaluated through qPCR, Western blot, electronic microscopy, scratch test, Transwell migration test and invasion test, respectively. The adhesion and invasion tests of E. faecalis were taken to verify the impact of the preceding TGEV infection. The cell morphology and molecular marker evaluation results showed that the TGEV persistent infection induced EMT on IPEC-J2 cells; increased cellular motility and invasion potential were also observed. Spontaneously, the expression levels of fibronectin (FN) and the membrane protein integrin-α5, which are dominant bacterial receptors on IPEC-J2 cells, were upgraded. It indicated that the bacteria E. faecalis adhered to IPEC-J2 cells through the FN receptor, and then invaded the cells by binding with the integrin-α5, suggesting that both molecules were critical for the adhesion and invasion of E. faecalis to IPEC-J2 cells. Additionally, it appeared that E. faecalis alone might trigger certain EMT phenomena, implying a vicious circle might occur. Generally, bacterial and viral co-infections are frustrating yet common in both human and veterinary medicines, and our observations on enteric TGEV and E. faecalis interactions, especially the diversity of bacterial invasion strategies, might provide new insights into the mechanisms of E. faecalis pathogenicity. Full article
Show Figures

Figure 1

13 pages, 2183 KiB  
Article
Experimental Infection of Pigs with Recent European Porcine Epidemic Diarrhea Viruses
by Christina M. Lazov, Louise Lohse, Graham J. Belsham, Thomas Bruun Rasmussen and Anette Bøtner
Viruses 2022, 14(12), 2751; https://doi.org/10.3390/v14122751 - 9 Dec 2022
Cited by 4 | Viewed by 2103
Abstract
Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated [...] Read more.
Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated with PEDV from Germany (intestine/intestinal content collected from pigs in 2016) and four pigs with PEDV from Italy (intestine/intestinal material collected from pigs in 2016). The pigs were re-inoculated with the same virus on multiple occasions to create a more robust infection and enhance the antibody responses. The clinical signs and pathological changes observed were generally mild. Two distinct peaks of virus excretion were seen in the group of pigs inoculated with the PEDV from Germany, while only one strong peak was seen for the group of pigs that received the virus from Italy. Seroconversion was seen by days 18 and 10 post-inoculation with PEDV in all surviving pigs from the groups that received the inoculums from Germany and Italy, respectively. Attempts to infect pigs with a swine enteric coronavirus (SeCoV) from Slovakia were unsuccessful, and no signs of infection were observed in the inoculated animals. Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2022)
Show Figures

Figure 1

12 pages, 1853 KiB  
Article
A Quadruplex qRT-PCR for Differential Detection of Four Porcine Enteric Coronaviruses
by Hongjin Zhou, Kaichuang Shi, Feng Long, Kang Zhao, Shuping Feng, Yanwen Yin, Chenyong Xiong, Sujie Qu, Wenjun Lu and Zongqiang Li
Vet. Sci. 2022, 9(11), 634; https://doi.org/10.3390/vetsci9110634 - 16 Nov 2022
Cited by 16 | Viewed by 2798
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative [...] Read more.
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/μL (final reaction concentration of 12.1 copies/μL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Swine Viral Diseases)
Show Figures

Figure 1

13 pages, 283 KiB  
Review
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses
by Cong Duan, Yufeng Luo, Xianming Liang and Xia Wang
Viruses 2022, 14(10), 2217; https://doi.org/10.3390/v14102217 - 8 Oct 2022
Cited by 12 | Viewed by 2723
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), [...] Read more.
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 3.0)
16 pages, 3341 KiB  
Article
Historical Evolutionary Dynamics and Phylogeography Analysis of Transmissible Gastroenteritis Virus and Porcine Deltacoronavirus: Findings from 59 Suspected Swine Viral Samples from China
by Quanhui Yan, Keke Wu, Weijun Zeng, Shu Yu, Yuwan Li, Yawei Sun, Xiaodi Liu, Yang Ruan, Juncong Huang, Hongxing Ding, Lin Yi, Mingqiu Zhao, Jinding Chen and Shuangqi Fan
Int. J. Mol. Sci. 2022, 23(17), 9786; https://doi.org/10.3390/ijms23179786 - 29 Aug 2022
Cited by 4 | Viewed by 2633
Abstract
Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species [...] Read more.
Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3288 KiB  
Review
The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology
by Ya-Mei Chen and Eric Burrough
Pathogens 2022, 11(8), 940; https://doi.org/10.3390/pathogens11080940 - 19 Aug 2022
Cited by 14 | Viewed by 4221
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV [...] Read more.
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field. Full article
Show Figures

Figure 1

11 pages, 2509 KiB  
Article
Development of a Genetically Engineered Bivalent Vaccine against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus
by Wan Li, Mingkai Lei, Zhuofei Li, Huimin Li, Zheng Liu, Qigai He and Rui Luo
Viruses 2022, 14(8), 1746; https://doi.org/10.3390/v14081746 - 9 Aug 2022
Cited by 23 | Viewed by 5013
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in increased mortality among newborn piglets. In this paper, we developed a bivalent vaccine against PEDV and PoRV by constructing a recombinant PEDV encoding PoRV VP7 (rPEDV-PoRV-VP7). The recombinant virus was constructed by replacing the entire open reading frame 3 (ORF3) in the genome of an attenuated PEDV strain YN150 with the PoRV VP7 gene using reverse genetic systems. Similar plaque morphology and replication kinetics were observed in Vero cells with the recombinant PEDV compared to the wild-type PEDV. It is noteworthy that the VP7 protein could be expressed stably in rPEDV-PoRV-VP7-infected cells. To evaluate the immunogenicity and safety of rPEDV-PoRV-VP7, 10-day-old piglets were vaccinated with the recombinant virus. After inoculation, no piglet displayed clinical symptoms such as vomiting, diarrhea, or anorexia. The PoRV VP7- and PEDV spike-specific IgG in serum and IgA in saliva were detected in piglets after rPEDV-PoRV-VP7 vaccination. Moreover, both PoRV and PEDV neutralizing antibodies were produced simultaneously in the inoculated piglets. Collectively, we engineered a recombinant PEDV expressing PoRV VP7 that could be used as an effective bivalent vaccine against PEDV and PoRV. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

Back to TopTop