Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = sustainable preparation behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4980 KiB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 (registering DOI) - 1 Aug 2025
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 254
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

18 pages, 343 KiB  
Article
How Environment, Cognition, and Behavior Shape Doctoral Students’ Academic Career Intentions: Insights from a Comprehensive Study
by Wanhe Li and Xiaohan Jiang
Behav. Sci. 2025, 15(7), 990; https://doi.org/10.3390/bs15070990 - 21 Jul 2025
Viewed by 199
Abstract
Although career choice is a kind of individual behavior, as the gatekeeper of the discipline, doctoral students’ academic career intention reflects the attractiveness of the academic labor market and determines the sustainable development of academic careers. An analysis of data (N = 1322) [...] Read more.
Although career choice is a kind of individual behavior, as the gatekeeper of the discipline, doctoral students’ academic career intention reflects the attractiveness of the academic labor market and determines the sustainable development of academic careers. An analysis of data (N = 1322) from a survey among Chinese doctoral students reveals that (1) environmental factors, such as departmental atmosphere and advisor support, cognitive factors like academic interest and research self-efficacy, as well as behavioral factors including research engagement and publication rates, significantly promote doctoral students’ academic career intentions; (2) female doctoral students and those from prestigious institutions show stronger academic career aspirations; (3) the influence of interest factors on doctoral students’ commitment to an academic career is particularly pronounced, especially in the field of fundamental science; (4) a clear understanding of career paths positively moderates the effect of interest on academic career intentions. Within increasingly severe competition in the global academic labor market, it is necessary to provide more support for doctoral students who are willing to engage in academic careers by enhancing career planning guidance for doctoral students and supporting them in making rational career plans and adequate preparations. Full article
(This article belongs to the Section Educational Psychology)
Show Figures

Figure 1

28 pages, 5160 KiB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 257
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 222
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

17 pages, 469 KiB  
Article
Assessment of Food Safety and Practices in Nutrition Services: Case Study of Al-Ahsa Hospitals
by Randah Miqbil Alqurashi and Arwa Ibrahim Al-Humud
Healthcare 2025, 13(14), 1723; https://doi.org/10.3390/healthcare13141723 - 17 Jul 2025
Viewed by 290
Abstract
Background/Objectives: This study assessed Knowledge and Practices related to Food Safety (KPFS) among nutrition services employees in hospitals across the Al-Ahsa Governorate, Kingdom of Saudi Arabia. The objective was to evaluate the staff’s understanding of key food safety principles, including foodborne illness prevention, [...] Read more.
Background/Objectives: This study assessed Knowledge and Practices related to Food Safety (KPFS) among nutrition services employees in hospitals across the Al-Ahsa Governorate, Kingdom of Saudi Arabia. The objective was to evaluate the staff’s understanding of key food safety principles, including foodborne illness prevention, food handling, personal hygiene, and food storage and preparation practices. Methods: A descriptive survey method was used, and data were collected using an electronic questionnaire, which was either self-administered by the participants or completed with the assistance of the researcher in cases involving employees who did not speak Arabic or English. This study included 302 staff members involved in the preparation, service, and supervision of food provided to hospital patients. Results: The results indicated a high level of knowledge among nutrition services employees regarding food safety principles, critical temperature control, cross-contamination prevention, and proper hygiene practices. The employees also demonstrated a strong commitment to personal hygiene behaviors, such as handwashing, wearing appropriate clothing, and avoiding unsafe practices. Additionally, a high degree of knowledge and understanding was found regarding food storage procedures and contamination prevention. The study also highlighted a very high level of awareness concerning the cleaning and sterilization of equipment, tools, and food storage surfaces, as well as maintaining a clean and healthy environment. These findings emphasize the importance of continuous training in enhancing food safety knowledge among nutrition services employees. Conclusions: It is recommended that all employees, regardless of education level, experience, or role, participate regularly in food safety training programs to sustain and improve food safety practices within hospital environments. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Influence of Mg/Al Coating on the Ignition and Combustion Behavior of Boron Powder
by Yanjun Wang, Yueguang Yu, Xin Zhang and Siyuan Zhang
Coatings 2025, 15(7), 828; https://doi.org/10.3390/coatings15070828 - 16 Jul 2025
Viewed by 241
Abstract
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using [...] Read more.
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using the electrical explosion method. To investigate the effect of Mg/Al coating on the ignition and combustion behavior of boron powder, four samples with different Mg/Al coating contents (4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.%) were prepared. Compared with raw B95 boron powder, the coated powders showed a significant reduction in particle size (from 2.9 μm to 0.2–0.3 μm) and a marked increase in specific surface area (from 10.37 m2/g to over 20 m2/g). The Mg/Al coating formed a uniform layer on the boron surface, which reduced the ignition delay time from 143 ms to 40–50 ms and significantly improved the combustion rate, combustion pressure, and combustion calorific value. These results demonstrate that Mg/Al coating effectively promotes rapid ignition and sustained combustion of boron particles. Furthermore, with the increasing Mg/Al content, the ignition delay time decreased progressively, while the combustion rate, combustion pressure, and heat release increased accordingly, reaching optimal values at 8 wt.% Mg/Al. An analysis of the combustion residues revealed that both Mg and Al reacted with boron oxide to form new multicomponent compounds, which reduced the barrier effect of the oxide layer on oxygen diffusion into the boron core, thereby facilitating continuous combustion and high heat release. This work innovatively employs the electrical explosion method to prepare dual-metal-coated boron powders and, for the first time, reveals the synergistic promotion effect of Mg and Al coatings on the ignition and combustion performance of boron. The results provide both experimental data and theoretical support for the high-energy release and practical application of boron-based fuels. Full article
Show Figures

Graphical abstract

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 487
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

31 pages, 799 KiB  
Article
Exploring Determinants of Mediterranean Lifestyle Adherence: Findings from the Multinational MEDIET4ALL e-Survey Across Ten Mediterranean and Neighboring Countries
by Achraf Ammar, Mohamed Ali Boujelbane, Atef Salem, Khaled Trabelsi, Bassem Bouaziz, Mohamed Kerkeni, Liwa Masmoudi, Juliane Heydenreich, Christiana Schallhorn, Gabriel Müller, Ayse Merve Uyar, Hadeel Ali Ghazzawi, Adam Tawfiq Amawi, Bekir Erhan Orhan, Giuseppe Grosso, Osama Abdelkarim, Mohamed Aly, Tarak Driss, Kais El Abed, Wassim Moalla, Piotr Zmijewski, Frédéric Debeaufort, Nasreddine Benbettaieb, Clément Poulain, Laura Reyes, Amparo Gamero, Marta Cuenca-Ortolá, Antonio Cilla, Nicola Francesca, Concetta Maria Messina, Enrico Viola, Björn Lorenzen, Stefania Filice, Aadil Bajoub, El-Mehdi Ajal, El Amine Ajal, Majdouline Obtel, Sadjia Lahiani, Taha Khaldi, Nafaa Souissi, Omar Boukhris, Waqar Husain, Evelyn Frias-Toral, Walid Mahdi, Hamdi Chtourou, Haitham Jahrami and Wolfgang I. Schöllhornadd Show full author list remove Hide full author list
Nutrients 2025, 17(14), 2280; https://doi.org/10.3390/nu17142280 - 10 Jul 2025
Viewed by 509
Abstract
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and [...] Read more.
Background/Objectives: Despite its well-established health benefits, adherence to the Mediterranean lifestyle (MedLife) has declined globally, including in its region of origin, alongside a significant shift toward ultra-processed food consumption. Understanding the factors associated with MedLife adherence is essential for developing targeted interventions and tailored policy recommendations. As part of the MEDIET4ALL PRIMA project, this cross-sectional study aimed to comprehensively examine geo-demographic, socio-economic, psychological, behavioral, and barrier-related factors associated with and potentially contributing to MedLife adherence. Methods: Data were collected from 4010 participants aged 18 years and above across ten Mediterranean and neighboring countries using the multinational MEDIET4ALL e-survey, which included the validated MedLife index, along with various other questionnaires. Results: Results indicate that only 22% of respondents demonstrated high adherence to the Mediterranean lifestyle (MedLife), with significant variability observed across countries, age groups, education levels, and health statuses. Spain had the highest proportion of participants with high adherence (38%). Factors associated with significantly higher adherence rates include older age, living in the Mediterranean region, higher education levels, a greater awareness of MedLife principles, lower perceived barriers, normal BMI, better health status, and stable economic and marital conditions (p-values ranging from 0.04 to <0.001). Additionally, individuals with high MedLife adherence exhibited more socially and physically active lifestyles and experienced less psychological strain (p < 0.001). Regression analyses identified MedLife awareness as the strongest positive predictor of adherence (β = 0.206), followed by social participation (β = 0.194) and physical activity (β = 0.096). Additional positive contributors include life satisfaction, sleep quality, living in the Mediterranean region, age, and education (β ranging from 0.049 to 0.093). Conversely, factors that are negatively associated with adherence include sedentary behavior, living environment, and barriers such as low motivation, taste dislike, price unaffordability, limited availability, and the time-consuming nature of preparing Mediterranean food (MedFood; β ranging from −0.036 to −0.067). Conclusions: These findings indicate that fewer than one in four adults across Mediterranean and neighboring countries demonstrate high adherence to MedLife, supporting prior evidence of suboptimal adherence even within Mediterranean regions. This study identified a range of behavioral, socio-demographic, and environmental factors—both positive and negative predictors—that can help guide the design of targeted, culturally adapted interventions to promote MedLife behavior. Future research should incorporate objective measurements and longitudinal monitoring to better understand underlying mechanisms, establish causality, and develop sustainable strategies for enhancing MedLife adherence in diverse populations. Full article
Show Figures

Figure 1

17 pages, 722 KiB  
Article
The Role of Sustainability in Shaping Customer Perceptions at Farmers’ Markets: A Quantitative Analysis
by Fida Ragheb Hassanein, Sandip Solanki, Krishna Murthy Inumula, Amira Daouk, Nadine Abdel Rahman, Suha Tahan and Samah Ibnou-Laaroussi
Sustainability 2025, 17(13), 6095; https://doi.org/10.3390/su17136095 - 3 Jul 2025
Viewed by 435
Abstract
Purpose—This research paper examines the critical factors in customer satisfaction while purchasing fruits and vegetables at farmers’ markets. Design/methodology/approach—This study was conducted using a prepared questionnaire to collect data on a random sample of 235 customers of farmers’ markets in the state of [...] Read more.
Purpose—This research paper examines the critical factors in customer satisfaction while purchasing fruits and vegetables at farmers’ markets. Design/methodology/approach—This study was conducted using a prepared questionnaire to collect data on a random sample of 235 customers of farmers’ markets in the state of Maharashtra, India. The research was carried out in the year 2023. Seven hypotheses were tested concerning the relationships between the variables of interest. The variables of convenience, variety, quality, price, health and hygiene, and service conditions were used as independent constructs and were proxied by reflective indicators. Customer satisfaction and customer loyalty were treated as an exogenous variable and an endogenous variable, respectively. Structural equation modeling was used to investigate the model relationships and confirm the theoretical model. Findings—The findings validate all the reflective indicators used in the study. The latent variables of convenience, variety, quality, price, health and hygiene, and service conditions positively and significantly affect customer satisfaction, and customer satisfaction positively and significantly affects customer loyalty toward farmers’ markets. The structural equation explains approximately 55% of the variation in customer satisfaction related to convenience, variety, price, quality, health and hygiene, and service conditions. Significance—The study results provide insights into the factors that influence consumer behavior and attitudes toward farmers’ markets. By identifying these predictors, this study can help farmers’ markets and other stakeholders develop effective marketing strategies to attract and retain customers, ultimately promoting sustainable food production and consumption. Additionally, the results can inform policymakers on how to support and promote farmers’ markets as healthy and sustainable food sources. Practical implication—By implementing the practical suggestions derived from the implications of this research, farmers’ markets can optimize customer satisfaction, boost customer loyalty, and reinforce their position as valuable contributors to local communities’ well-being and sustainability. Originality/value—The acceptance of farmers’ markets in India as an alternative shopping destination for fruits and vegetables is gradually increasing. This exploratory study conducted on farmers’ markets examined several factors, including price, in assessing customer satisfaction and farmers’ markets’ effectiveness at positioning themselves as shopping destinations for consumers in India. Full article
Show Figures

Figure 1

24 pages, 6057 KiB  
Review
Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation
by Tengfei Qu, Xiaowen Wang and Fengchun Zhang
Polymers 2025, 17(13), 1850; https://doi.org/10.3390/polym17131850 - 2 Jul 2025
Viewed by 740
Abstract
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to [...] Read more.
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to explore the development of chitosan–cellulose composite materials with good antibacterial properties and promote the widespread application of chitosan and cellulose in food packaging materials. Combining various natural polysaccharide polymers, we discuss the application of chitosan cellulose in meat, dairy products, fruits and vegetables, and fishery products. Meanwhile, we explore their antibacterial and antioxidant behaviors during their use as food packaging materials. This provides a reference for effectively improving the performance of modified chitosan and cellulose food packaging materials in the future. Based on the above explanation, we analyzed the advantages and disadvantages of modified chitosan and cellulose and looked forward to the future development trends of chitosan and cellulose blend films in food preservation. Chitosan–cellulose blends not only have important prospects in food packaging and preservation applications, but can also be combined with intelligent manufacturing to enhance their food preservation performance. The aim of this review is to provide valuable references for basic research on the antimicrobial properties of these composites and their practical application in smart food packaging. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

21 pages, 3185 KiB  
Article
Sustainable Use of Gypsum Waste for Applications in Soil–Cement Bricks: Mechanical, Environmental, and Durability Performance
by Elvia Soraya Santos Nascimento, Herbet Alves de Oliveira, Cochiran Pereira dos Santos, Maria de Andrade Gomes, Mário Ernesto Giroldo Valerio and Zélia Soares Macedo
Ceramics 2025, 8(3), 83; https://doi.org/10.3390/ceramics8030083 - 1 Jul 2025
Viewed by 357
Abstract
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in [...] Read more.
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in proportions ranging from 5% to 40%. The raw materials were characterized in terms of chemical composition, crystalline phases, plasticity, and thermal behavior. Specimens, molded by uniaxial pressing into cylindrical bodies and cured for either 7 or 28 days, were evaluated for compressive strength, water absorption, durability, and microstructure. Water absorption remained below 20% in all samples, with an average value of 16.20%. Compressive strength after 7 days exhibited a slight reduction with increasing gypsum content, ranging from 16.36 MPa (standard formulation) to 13.74 MPa (40% gypsum), all meeting the quality standards. After 28 days of curing, the formulation containing 10% gypsum achieved the highest compressive strength (26.7 MPa), surpassing the reference sample (25.2 MPa). Mass loss during wetting–drying cycles remained within acceptable limits for formulations incorporating up to 20% gypsum. Notably, samples with 5% and 10% gypsum demonstrated superior mechanical performance, while the 20% formulation showed performance comparable to the standard formulation. These findings indicate that replacing up to 20% of cement with gypsum waste is a technically and environmentally viable approach, supporting sustainable development, circular economy, and reduction of construction-related environmental impacts. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

36 pages, 8596 KiB  
Article
Optimizing Burn Wound Healing: The Critical Role of pH and Rheological Behavior in Plant-Derived Topical Formulations
by Oana-Janina Roșca, Georgeta-Hermina Coneac, Roxana Racoviceanu, Alexandru Nistor, Ioana-Viorica Olariu, Ana-Maria Cotan, Roxana Negrea-Ghiulai, Cristina Adriana Dehelean, Lavinia Lia Vlaia and Codruța Marinela Șoica
Pharmaceutics 2025, 17(7), 853; https://doi.org/10.3390/pharmaceutics17070853 - 29 Jun 2025
Viewed by 341
Abstract
Background: In burn injuries, wound healing effectiveness is complex and influenced significantly by the local biochemical environment and the physicochemical properties of topical preparations. pH lesions modulation can influence protection barrier integrity, inflammatory responses, and microbial colonization. Their antioxidant, antimicrobial, and anti-inflammatory properties, [...] Read more.
Background: In burn injuries, wound healing effectiveness is complex and influenced significantly by the local biochemical environment and the physicochemical properties of topical preparations. pH lesions modulation can influence protection barrier integrity, inflammatory responses, and microbial colonization. Their antioxidant, antimicrobial, and anti-inflammatory properties, of the topical formulations enriched with plant extracts have demonstrated promising results. Objective: The aim of the study was to develop and characterize topical oleogel and hydrogel formulations containing ethanolic and hydroalcoholic extracts of medicinal plants (Boswellia serrata, Ocimum basilicum, Sambucus nigra, and Galium verum), and to evaluate the impact of their physicochemical properties, rheological behavior, in contrast with the wound pH modulation, and healing efficacy in an experimental burn model. Methods: Second-degree burns were induced uniformly on Wistar rats using the validated RAPID-3D device. All formulations were applied daily for 21 days, and wound healing was assessed through several measurements specific to the wound surface, skin temperature, pH, and, last but not least, histological analyses. Formulations’ physicochemical and rheological properties, including pH, viscosity, and spreadability, were also analyzed and systematically characterized. Results: Oleogel formulations demonstrated superior wound healing performance compared to hydrogels. Formulations containing Boswellia serrata and Ocimum basilicum extracts significantly reduced wound size, inflammation, and melanin production by days 9 and 21 (p < 0.05). The beneficial outcomes correlated strongly with formulation acidity (pH < 6), high viscosity, and enhanced thixotropic behavior, indicating improved adherence and sustained bioactive compound release. Histological evaluations confirmed enhanced epithelialization and reduced inflammation. Conclusions: Particularly Boswellia serrata and Ocimum basilicum in oleogel formulations in ethanolic solvent effectively modulated wound pH, enhanced topical adherence, and improved burn wound healing. These findings highlight their potential clinical application and justify further clinical investigations. Full article
Show Figures

Graphical abstract

Back to TopTop