Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = sustainable gypsum materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3272 KB  
Article
Research on the Mix Proportion, Admixtures Compatibility and Sustainability of Fluidized Solidification Soil Coordinated with Multi-Source Industrial Solid Wastes
by Hao Sun, Rong Shu, Jilin Liu, Xiaoqing Yu, Bolin Han, Xinzhuang Cui, Huaming Meng and Xiaoning Zhang
Buildings 2025, 15(24), 4440; https://doi.org/10.3390/buildings15244440 - 9 Dec 2025
Viewed by 383
Abstract
To promote the resource utilization of industrial solid waste, this study developed a multi-source industrial solid waste cementitious material (MSWC) for fluidized solidified soil (FSS), which consists of steel slag (SS), granulated blast furnace slag (GBFS), circulating fluidized bed fly ash (CFBFA), desulfurization [...] Read more.
To promote the resource utilization of industrial solid waste, this study developed a multi-source industrial solid waste cementitious material (MSWC) for fluidized solidified soil (FSS), which consists of steel slag (SS), granulated blast furnace slag (GBFS), circulating fluidized bed fly ash (CFBFA), desulfurization gypsum (DG) and ordinary Portland cement (OPC). Firstly, the influence of industrial solid waste contents on the unconfined compressive strength (UCS) of FSS solidified with MSWC (MSWC-FSS) was studied, and the optimal proportion for MSWC was determined as SS:GBFS:CFBFA:DG:OPC = 20:40:15:5:20. Then, the effects of water reducers (PCE and FDN) and early-strength agents (Na2SO4 and CaCl2) on the flow expansion, setting time and UCS of MSWC-FSS were studied. With the increase of PCE and FDN, the flow expansion, setting time and UCS of MSWC-FSS increased. With the increase of Na2SO4 and CaCl2, the flow expansion and setting time of MSWC-FSS decreased, and 3 d and 7 d UCS increased, and 28 d UCS first increased and then decreased. The best mixing scheme of water reducer and admixture is 0.5% PCE and 1% Na2SO4, respectively. Finally, the sustainability of MSWC-FSS was assessed. The heavy metal leaching of MSWC-FSS met the safety requirements. For FSS cementitious materials, the cost and carbon emissions of MSWC were only 43.9% and 22.4% of OPC, respectively. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

18 pages, 2194 KB  
Article
Sustainable Fire-Resistant Materials: Thermal, Physical, Mechanical, and Environmental Behavior of Walls with Waste from the Aquaculture Industry
by Begoña Peceño, Bernabé Alonso-Fariñas, Giovanna Vega, Daniel Carrizo and Carlos Leiva
Materials 2025, 18(22), 5086; https://doi.org/10.3390/ma18225086 - 9 Nov 2025
Cited by 1 | Viewed by 644
Abstract
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 [...] Read more.
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 × 2.2 × 0.1 m). The new composite exhibits high density (≈1500 kg/m3) and mechanical performance comparable to commercial gypsum. Thermal and fire tests confirmed its excellent insulation and stability: after 4 h of standard fire exposure, the non-exposed surface temperature remained below 80 °C, meeting European fire-resistance criteria. The incorporation of shell waste slightly reduced density and thermal conductivity (0.23 W/mK at 500 °C) without affecting strength or surface hardness. Environmental characterization revealed leaching and radionuclide levels well below regulatory limits, confirming its safety for building use. Overall, this work demonstrates, for the first time at a semi-industrial scale, the technical and environmental feasibility of reusing seashell waste as a gypsum substitute for fireproof materials. The proposed approach advances circular-economy strategies for aquaculture residues, providing an innovative pathway toward sustainable and low-impact construction products. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

20 pages, 3412 KB  
Article
Development of a Mineral Binder for Wood Wool Acoustic Panels with a Reduced Carbon Footprint
by Aleksandrs Korjakins, Genadijs Sahmenko, Ina Pundiene, Jolanta Pranckevicienė and Vjaceslavs Lapkovskis
Materials 2025, 18(21), 4999; https://doi.org/10.3390/ma18214999 - 1 Nov 2025
Viewed by 1002
Abstract
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, [...] Read more.
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, including calcium aluminate cement (CAC), magnesium oxychloride cement (MOC), and gypsum–cement–pozzolan (GCP) hybrids, were combined with additives such as metakaolin and liquid glass. Mechanical testing demonstrated that 20–30% metakaolin and liquid glass composites achieved flexural strengths of up to 2.65 MPa and densities above 490 kg/m3. The GCP system showed synergistic improvements in flexural and compressive strengths by nearly 50%, along with enhanced dimensional stability and water resistance. Life cycle assessment indicated substantial CO2 emission increases, particularly for the MOC and CAC formulations, compared to conventional Portland cement-based panels. The carbon footprint of the binder system consisting of GCP is approximately 5.644 kg of CO2 equivalent per functional unit compared to magnesium chloride binder systems, which reach up to 10.84 kg CO2 eq., and white Portland cement systems, which are around 6.19 kg CO2 eq. The three-component GCP binder system offers the best balance of mechanical performance and minimised environmental impact. Key raw material contributors to the ecological load are cement (various types), MgO, MgCl2, and metakaolin, highlighting the importance of optimising binder formulations to reduce carbon emissions. The GCP system, in particular, demonstrates unprecedented synergistic improvements in flexural and compressive strengths, dimensional stability, and water resistance while minimising CO2 emissions. Current work sets a new benchmark for sustainable building materials by offering an eco-innovative pathway towards low-carbon, high-performance wood wool acoustic panels, aligning with global decarbonisation goals. Full article
Show Figures

Figure 1

21 pages, 4482 KB  
Article
Mechanisms of Durability Degradation in Recycled Fine Aggregate Concrete of Varying Strengths Induced by Chloride and Sulfate Dry–Wet Cycles
by Chunhong Chen, Kamara Alimatu Adama, Ronggui Liu, Yunchun Chen, Xiaolin Zhang and Hui Liu
Materials 2025, 18(21), 4985; https://doi.org/10.3390/ma18214985 - 31 Oct 2025
Viewed by 723
Abstract
With the increasing demand for sustainable building materials, it is essential to investigate the durability of recycled fine aggregate concrete (RFAC) under corrosive environmental conditions. This study systematically assessed the performance of RFAC with three compressive strengths after dry–wet cycles in chloride and [...] Read more.
With the increasing demand for sustainable building materials, it is essential to investigate the durability of recycled fine aggregate concrete (RFAC) under corrosive environmental conditions. This study systematically assessed the performance of RFAC with three compressive strengths after dry–wet cycles in chloride and sulfate environments, respectively. The experimental program encompassed measurements of compressive strength, mass variation, porosity, ion penetration depth, and free ion content, complemented by comprehensive microstructural characterization. Results show that under sulfate exposure, 20 MPa and 40 MPa RFAC suffered significant strength losses of 60.1% and 18.0% after 70 cycles, while 60 MPa RFAC gained 2.5% strength. In chloride environments, 20 MPa and 40 MPa RFAC experienced strength reductions of 30.7% and 6.9%, whereas 60 MPa RFAC increased in strength by 6.6%. Compared to sulfate exposure, all groups exhibited slight mass increases or porosity reduction under chloride exposure, with high-strength RFAC showing the most noticeable densification. The chloride penetration depth in RFAC of 60 MPa was measured at 14.65 mm, representing a 41.0% reduction compared to RFAC of 20 MPa; sulfate penetration depth was 17.84 mm, which is 44.6% lower than that of the 20 MPa counterpart. Microstructural analysis revealed that sulfate-induced ettringite and gypsum formation triggered crack propagation, while chloride mainly affected pore structure through crystallization and filling, and the formation of C-S-H in high-strength RFAC inhibits pore expansion and mitigates deterioration. Full article
Show Figures

Figure 1

17 pages, 6375 KB  
Article
Utilization of Desulfurization Gypsum in Alkali-Activated Mortar: Performance Enhancement and Microstructural Evolution
by Xiaolong Zhou, Xinyan Wang, Wenjing Yu, Yuhui Zhao and Zhonghao Li
Buildings 2025, 15(19), 3628; https://doi.org/10.3390/buildings15193628 - 9 Oct 2025
Cited by 1 | Viewed by 657
Abstract
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and [...] Read more.
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and mechanical properties were systematically investigated. The test included fluidity, setting time, compressive strength, drying shrinkage, water erosion resistance, and sulfate erosion resistance and was combined with microscopic analysis to reveal its phase composition and micro-morphology. The results show that DG can significantly prolong the setting time and reduce the drying shrinkage. With a DG content of 10%, alkali-activated materials exhibited a setting time similar to that of OPC, and the 56-d drying shrinkage of the AAM was reduced by 20.2%. However, the fluidity, water erosion resistance, and sulfate resistance decreased with an increase in DG content. When the DG content was 10%, the fluidity of the AAM reached 126 mm, and its setting time was equivalent to that of OPC. The mechanical properties showed a trend of increasing first and then decreasing. The optimum was reached when the DG content was 6%. The 28-d compressive strength of AAM-6 was 63.25 MPa, and after 60 days of water erosion and sulfate corrosion its residual strength was still higher than that of OPC in the same environment. Microscopic analysis showed that DG promoted the formation of ettringite, which filled pores with age and formed a dense structure, thereby improving mechanical properties and inhibiting shrinkage. This study enhances the engineering applicability of AAM while enabling high-value utilization of industrial solid waste for sustainable construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 5766 KB  
Article
Physicomechanical Properties of Recycled Gypsum Composites with Polyvinyl Acetate Emulsion and Treated Short Green Coconut Fibers
by Sandra Cunha Gonçalves, Milton Ferreira da Silva Junior, Marcelo Tramontin Souza, Nilson Santana de Amorim Júnior and Daniel Véras Ribeiro
Buildings 2025, 15(19), 3490; https://doi.org/10.3390/buildings15193490 - 26 Sep 2025
Viewed by 885
Abstract
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, [...] Read more.
The reintegration of waste into the production chain represents a sustainable method of reducing environmental impact while promoting economic growth. This also aligns with social and environmental demands. In this study, composites were produced from commercial and recycled gypsum, polyvinyl acetate (PVA) emulsions, and chemically treated short green coconut fibers, and characterized by physical and mechanical analyses. The addition of PVA improved paste workability, extended setting time, and reduced porosity, while fiber pretreatment enhanced adhesion and tensile performance. XRD, FTIR, and TGA-DTA confirmed modifications in crystallinity, bonding, and thermal stability due to the combined action of PVA and fibers. Compared with the recycled gypsum reference (RG), the optimized composite (R50C50P5F10) exhibited a 69.1% reduction in sorptivity (from 5440 × 10−4 to 1680 × 10−4 kg/m2·s0.5), a 27.9% increase in flexural tensile strength (from 2.65 to 3.39 MPa), and a 15.1% increase in compressive strength (from 6.18 to 7.12 MPa). Surface hardness values remained statistically equivalent to RG but complied with normative requirements, maintaining all formulations within the moderate hardness category (55–80 Shore C). The results demonstrate the technical feasibility of incorporating recycled gypsum and agro-industrial fibers into gypsum composites, providing a sustainable route for developing more durable construction materials. Full article
Show Figures

Figure 1

31 pages, 3328 KB  
Article
Evaluating the Environmental Impacts and Social Risks of Limestone Calcined Clay Cement (LC3) Mortars
by Pamela Haverkamp, Marzia Traverso, Ameer Hamza Ahmed, Marco Liebscher and Viktor Mechtcherine
Sustainability 2025, 17(18), 8364; https://doi.org/10.3390/su17188364 - 18 Sep 2025
Cited by 2 | Viewed by 2892
Abstract
Cement production significantly contributes to global CO2 emissions. Limestone Calcined Clay Cement (LC3)—a mixture of limestone, calcined clay, cement clinker, and gypsum—offers a promising alternative by significantly reducing clinker contents without compromising mechanical performance. This study assesses the environmental and [...] Read more.
Cement production significantly contributes to global CO2 emissions. Limestone Calcined Clay Cement (LC3)—a mixture of limestone, calcined clay, cement clinker, and gypsum—offers a promising alternative by significantly reducing clinker contents without compromising mechanical performance. This study assesses the environmental and social hotspots of various LC3 mortars produced in Germany, a context not yet explored in previous research. While prior studies have mostly focused on LC3 in concrete applications and in low- to middle-income countries, this is the first to evaluate LC3-based mortar in a high-income, highly industrialized context using both Life Cycle Assessment (LCA) and Social Risk Assessment (SRA) to determine the main environmental and social drivers of this material. The LCA revealed that LC3 mixtures achieve substantial reductions in key impact categories compared to conventional Ordinary Portland Cement (OPC) mixes, including Climate Change (up to 42.6% reduction) and Particulate Matter (up to 15.8% reduction). The SRA highlights significant social risks related to corruption, fair competition, and workers’ rights, including fair wages, discrimination, and safe working conditions. This study underscores LC3 as a promising sustainable solution in cement applications while emphasizing the importance of region-specific assessments to address unique environmental and social considerations. Full article
Show Figures

Figure 1

21 pages, 6609 KB  
Article
Eco-Gypsum Panels with Recycled Fishing NET Fibers for Sustainable Construction: Development and Characterization
by Leonardo Lima, Alicia Zaragoza-Benzal, Daniel Ferrández and Paulo Santos
Materials 2025, 18(18), 4305; https://doi.org/10.3390/ma18184305 - 14 Sep 2025
Viewed by 1043
Abstract
Plastic waste is currently a major environmental issue but also plays a key role in the circular economy. Recycled plastics have become suitable for use in several applications, especially in construction, where they can improve the properties of conventional materials to enable sustainable [...] Read more.
Plastic waste is currently a major environmental issue but also plays a key role in the circular economy. Recycled plastics have become suitable for use in several applications, especially in construction, where they can improve the properties of conventional materials to enable sustainable development. This study designed new eco-gypsum composites containing recycled fishing net (FN) fibers and evaluated their mechanical, hygrothermal, fire and environmental performances. All the developed composites achieved the minimum standardized strengths. Regarding the impact hardness test, the composite with 40% recycled FN fibers (FN40%) reached a five times higher energy of rupture than the reference gypsum sample. Indeed, FN40% presented better properties in general, e.g., 33% less water absorption by capillarity, 17% lower thermal conductivity and 40% less environmental impacts. Moreover, the use of these FN40% gypsum composites was modeled in an LSF partition wall, and it was predicted that they increased the thermal resistance by 4.4%, taking traditional gypsum plasterboards (Ref.) with the same thickness as a reference. These promising results allow us to conclude that it is possible to obtain eco-friendly gypsum composite panels by incorporating recycled FN fibers, satisfying the mechanical resistance requirements (flexural and compressive) and even improving their impact hardness, as well as their functional performance regarding their hygrothermal behavior. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

15 pages, 2285 KB  
Article
Development and Characterization of Colored Lime–Gypsum Mortars for Heritage Building Restoration in Humid Environments
by Faris J. Thyab, Zaid Hazim Al-Saffar, Anas Ghaiath Ibrahim and Helen Faris
Constr. Mater. 2025, 5(3), 65; https://doi.org/10.3390/constrmater5030065 - 11 Sep 2025
Viewed by 1052
Abstract
Surface deterioration and paint peeling occur in historic buildings worldwide due to excessive moisture. Conventional coatings often fail to preserve these structures. In Mosul, Iraq, conventional paints often do not preserve historic structures. The article aims to use colored lime–gypsum mortar, which has [...] Read more.
Surface deterioration and paint peeling occur in historic buildings worldwide due to excessive moisture. Conventional coatings often fail to preserve these structures. In Mosul, Iraq, conventional paints often do not preserve historic structures. The article aims to use colored lime–gypsum mortar, which has significant potential to be used as a sustainable and appropriate candidate material for the restoration of historic structures. This is particularly relevant for the restoration of exterior elements or interior walls in humid environments. The flowability, strength (compressive, flexural, and tensile), and shrinkage cracking of several mortar mixtures with different lime–gypsum ratios and color additives were all part of the extensive testing. Every procedure closely followed the applicable international standards The mortar mixture identified as optimal (Mix A10), comprising a 1:1 lime-to-gypsum ratio with carefully calibrated pigment additives (0.5 g chromium oxide, 0.2 mL liquid oxide, and 0.5 g powder oxide), demonstrated superior mechanical properties and minimal shrinkage cracking. This composition was ideal due to its superior mechanical strength and reduced shrinkage cracking compared to pure gypsum mixtures. The colored lime–gypsum mortar is a sustainable material well-suited to the restoration of historic structures, and applicable to both interior and exterior elements in humid environments. Its low shrinkage cracking enhances durability and effectively prevents moisture ingress in moisture-sensitive cultural settings. Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Figure 1

22 pages, 6074 KB  
Article
Gypsum-Based Composites with Recycled PP/HDPE Pellets for Circular Material Development: A Comprehensive Characterisation
by Daniel Ferrández, Alicia Zaragoza-Benzal, Pedro Carballosa, José Luis García Calvo and Paulo Santos
Materials 2025, 18(17), 4037; https://doi.org/10.3390/ma18174037 - 28 Aug 2025
Viewed by 880
Abstract
Managing plastic waste is a great challenge for today’s society, and it is increasingly necessary to find solutions to the large amount of plastic waste dumped annually in the oceans. The main objective of this research is to perform a comprehensive characterisation of [...] Read more.
Managing plastic waste is a great challenge for today’s society, and it is increasingly necessary to find solutions to the large amount of plastic waste dumped annually in the oceans. The main objective of this research is to perform a comprehensive characterisation of different gypsum-based materials incorporating recycled PP/HDPE pellets from the recycling of discarded fishing nets in the Mediterranean Sea. For this purpose, composites were developed with a partial substitution of the original material by these pellets, up to 30% by volume, while maintaining a water/gypsum ratio of 0.65 by mass. The results showed that even in the most unfavourable case, with a 30% replacement in volume by these recycled pellets, flexural (2.72 MPa) and compressive (7.15 MPa) strengths higher than those required by the standards were obtained, with good integration of the residue in the matrix. Also, there was a decrease in total water absorption of up to 20.5% compared to traditional gypsum. The thermal behaviour study showed that a minimum conductivity value of 292.3 mW/m K was obtained, implying a decrease of 14.9% from the control series. In addition, a life cycle analysis was conducted, obtaining a reduction in environmental impact of up to 13.1% in terms of CO2 equivalent emissions. Overall, the composites obtained represent a sustainable alternative to producing prefabricated plates and panels for building construction. Full article
(This article belongs to the Special Issue Sustainable Advanced Composite Materials for the Built Environment)
Show Figures

Figure 1

23 pages, 11077 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 866
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Q-Switched Nd:YAG Laser Treatment of Nocardia sp. Black Biofilm: Complete Biodeterioration Reversal in Limestone Heritage Conservation
by Shimaa Ibrahim, Rageh K. Hussein, Hesham Abdulla, Ghada Omar, Sharif Abu Alrub, Paola Grenni and Dina M. Atwa
Int. J. Mol. Sci. 2025, 26(16), 8064; https://doi.org/10.3390/ijms26168064 - 20 Aug 2025
Viewed by 1917
Abstract
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from [...] Read more.
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from deteriorated limestone from the Bastet tomb in Tell Basta, Zagazig City, Egypt, using a Q-switched 1064 nm Nd:YAG laser. Experimental limestone specimens were systematically inoculated with Nocardia sp. under controlled laboratory conditions to simulate biodeterioration processes. Comprehensive testing revealed that a laser fluence of 0.03 J/cm2 with a 5 ns pulse duration, applied under wet conditions with 500 pulses, achieved the complete elimination of the biological black film without damaging the underlying stone substrate. The cleaning efficacy was evaluated through an integrated analytical framework combining stereomicroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and laser-induced plasma spectroscopy (LIPS). These analyses demonstrated a remarkable transformation from a compromised mineralogical composition dominated by gypsum (62%) and anhydrite (13%) to a restored state of 98% calcite, confirming the laser treatment’s effectiveness in reversing biodeterioration processes. SEM micrographs revealed the complete elimination of mycelial networks that had penetrated to depths between 984 μm and 1.66 mm, while LIPS analysis confirmed the restoration of elemental signatures to near-control levels. The successful application of LIPS for real-time monitoring during cleaning provides a valuable tool for preventing overcleaning, addressing a significant concern in laser conservation interventions. This research establishes evidence-based protocols for the non-invasive removal of Nocardia-induced black biofilms from limestone artifacts, offering conservation professionals a precise, effective, and environmentally sustainable alternative to traditional chemical treatments for preserving irreplaceable cultural heritage. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 3303 KB  
Article
Waste Brick as Partial Replacement of Gypsum in Mortars: Mechanical Performance and Environmental Benefits for Sustainable Construction
by Said Beldjilali, Antonella Sarcinella, Mohamed Amine Ouared, Abdelkader Bougara, Khalil Naciri and Rodica-Mariana Ion
Sustainability 2025, 17(16), 7452; https://doi.org/10.3390/su17167452 - 18 Aug 2025
Cited by 2 | Viewed by 1749
Abstract
Replacing virgin raw materials with recycled waste in construction products is a key strategy for advancing sustainable development. This study explores the partial substitution of commercial gypsum with powdered waste brick (WB) in gypsum mortars, assessing its impact on mechanical performance, water absorption, [...] Read more.
Replacing virgin raw materials with recycled waste in construction products is a key strategy for advancing sustainable development. This study explores the partial substitution of commercial gypsum with powdered waste brick (WB) in gypsum mortars, assessing its impact on mechanical performance, water absorption, and environmental footprint. Mortars were prepared with 0%, 5%, 10%, 20%, and 30% WB by weight. Results indicate that a 20% replacement level enhances flexural strength by 56% and compressive strength by 33% at 28 days, compared to the reference mix. SEM and XRD analyses revealed no formation of new crystalline phases, suggesting that the performance improvement is primarily due to physical interactions and microstructural effects. However, at 30% WB, a significant reduction in adhesion strength was observed, falling below the typical threshold for gypsum-based coatings, which may constrain practical application at higher replacement levels. Environmental assessment showed that both CO2 emissions and energy consumption decreased by up to 20% with a 30% substitution. A 20% WB content is therefore proposed as the optimal compromise between mechanical performance and environmental benefit. This approach supports circular economy principles by promoting the reuse of ceramic construction waste in the development of new sustainable materials. Full article
Show Figures

Figure 1

19 pages, 3709 KB  
Article
Analysis of the Physical and Thermal Characteristics of Gypsum Panels with Hemp Hurds for Building Insulation
by Chatpon Chaimongkol, Sukunya Ross, Dachaphon Kealkaew and Atthakorn Thongtha
Sustainability 2025, 17(15), 6801; https://doi.org/10.3390/su17156801 - 26 Jul 2025
Viewed by 3116
Abstract
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in [...] Read more.
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in gypsum composite density and improved thermal insulating properties with the introduction of hemp hurds. Water absorption, a significant drawback of gypsum boards, is mitigated with hemp hurds, indicating potential benefits for insulation efficiency. For mechanical tests, the gypsum ceiling board at approximately 5% by weight exhibits a flexural strength value exceeding the minimum average threshold of 1 MPa and the highest average compressive strength at 2.94 MPa. Thermal testing reveals lower temperatures and longer time lags in gypsum boards with 5% hemp hurds, suggesting enhanced heat resistance and reduced energy consumption for cooling. The study contributes valuable insights into the potential use of hemp hurds in gypsum-based building materials, presenting a sustainable and energy-efficient alternative for the construction industry. Full article
Show Figures

Figure 1

15 pages, 2630 KB  
Article
Mechanistic Insights into Full Solid-Waste Activators for Enhancing the Performance of Blast Furnace Slag–Fly Ash Cementitious Composites
by Huiying Zhang, Yongchun Li, Dingbang Wei, Xu Wu and Yapeng Wang
Materials 2025, 18(14), 3275; https://doi.org/10.3390/ma18143275 - 11 Jul 2025
Cited by 2 | Viewed by 844
Abstract
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS [...] Read more.
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)–fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH)2 in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes. Full article
Show Figures

Figure 1

Back to TopTop