Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = sustainable freight transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 318
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

26 pages, 1670 KiB  
Article
The Impact of the Mobility Package on the Development of Sustainability in Logistics Companies: The Case of Lithuania
by Kristina Čižiūnienė, Monika Viduto, Artūras Petraška and Aldona Jarašūnienė
Sustainability 2025, 17(15), 6947; https://doi.org/10.3390/su17156947 - 31 Jul 2025
Viewed by 219
Abstract
To ensure stability and transparency in the European logistics sector, in May 2017, the European Commission presented several proposals to change the regulation of the market—in particular, market access, driving and rest periods, and business trips. In the development of this package, several [...] Read more.
To ensure stability and transparency in the European logistics sector, in May 2017, the European Commission presented several proposals to change the regulation of the market—in particular, market access, driving and rest periods, and business trips. In the development of this package, several unfavourable decisions were made that go against Lithuanian transport companies, which will have a significant impact on the companies’ finances, as the frequent return of trucks will lead to additional fuel costs and is also in contradiction with the concept of green logistics. Thus, it is essential to study the Mobility Package’s pros and cons and compare researchers’ views. Accordingly, the subject of this article is the impact of the Mobility Package on Lithuanian logistics companies. This article employs various methods, including an analysis of the scientific literature and legislation, statistical data analysis, PEST analysis, and qualitative research based on expert interviews. The results allow us to identify that the content of the Mobility Package is driven by the goal of ensuring equivalent working conditions throughout the EU, which in this case is the most important object of the legal changes. Also, based on the results obtained, it can be stated that Lithuanian logistics companies that want to remain in the market have several solutions they can employ to achieve that goal, and to support their efforts, a competitiveness improvement model for Lithuanian logistics companies has been developed. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

19 pages, 264 KiB  
Article
From Road Transport to Intermodal Freight: The Formula 1 Races Logistics Case
by Martina Maria Petralia and Letizia Tebaldi
Sustainability 2025, 17(15), 6889; https://doi.org/10.3390/su17156889 - 29 Jul 2025
Viewed by 208
Abstract
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with [...] Read more.
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with reference to the European Grand Prix. Logistics accounts for approximately 49% of the sport’s total emissions and accordingly, to reduce its carbon footprint, addressing the logistics activity is vital. Two scenarios are compared in detail: AS-IS, involving only road transport of assets, and TO-BE, in which a combined rail–road approach (i.e., intermodal freight) is implemented. While the AS-IS scenario is more cost-effective, it has a significant environmental impact in terms of CO2 emissions; in contrast, though more complex and costly, TO-BE offers major advantages for environmental sustainability, including reduced emissions (approximately half compared to AS-IS) and improved efficiency through intermodal transport units. This study stresses that a combined transport system, facilitated by the European rail infrastructure, is a more sustainable option for Formula 1 logistics. However, achieving full carbon neutrality still represents a challenge that will require further innovations and collaboration among the stakeholders of this world. Full article
16 pages, 1107 KiB  
Article
Pricing Strategy for High-Speed Rail Freight Services: Considering Perspectives of High-Speed Rail and Logistics Companies
by Guoyong Yue, Mingxuan Zhao, Su Zhao, Liwei Xie and Jia Feng
Sustainability 2025, 17(14), 6555; https://doi.org/10.3390/su17146555 - 18 Jul 2025
Viewed by 312
Abstract
It is well known that there is a significant conflict of interest between high-speed rail (HSR) operators and logistics companies. This study proposes an HSR freight pricing strategy based on a multi-objective optimization framework and a freight mode splitting model based on the [...] Read more.
It is well known that there is a significant conflict of interest between high-speed rail (HSR) operators and logistics companies. This study proposes an HSR freight pricing strategy based on a multi-objective optimization framework and a freight mode splitting model based on the Logit model. A utility function was constructed to quantify the comprehensive utility of different modes of transportation by integrating five key influencing factors: economy, speed, convenience, stability, and environmental sustainability. A bi-objective optimization model was developed to balance the cost of the logistics with the benefits of high-speed rail operators to achieve a win–win situation. The model is solved by the TOPSIS method, and its effectiveness is verified by the freight case of the Zhengzhou–Chongqing high-speed railway in China. The results of this study showed that (1) HSR has advantages in medium-distance freight transportation; (2) increasing government subsidies can help improve the market competitiveness of high-speed rail in freight transportation. This research provides theoretical foundations and methodological support for optimizing HSR freight pricing mechanisms and improving multimodal transport efficiency. Full article
Show Figures

Figure 1

28 pages, 15254 KiB  
Article
Detailed Forecast for the Development of Electric Trucks and Tractor Units and Their Power Demand in Hamburg by 2050
by Edvard Avdevičius, Amra Jahic and Detlef Schulz
Energies 2025, 18(14), 3719; https://doi.org/10.3390/en18143719 - 14 Jul 2025
Viewed by 317
Abstract
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, [...] Read more.
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, emphasizing the shift from conventional to electric vehicles. Utilizing historical registration data and existing commercial and institutional reports from 2007 to 2024, the analysis estimates future distributions of electric heavy-duty vehicles across Hamburg’s 103 city quarters. Distinct approaches are evaluated to explore potential heavy-duty vehicle distribution in the city, employing Mixed-Integer Linear Programming to quantify and minimize distribution uncertainties. Power demand forecasts at this detailed geographical level enable effective infrastructure planning and strategy development. The findings serve as a foundation for Hamburg’s transition to electric heavy-duty vehicles, ensuring a sustainable, efficient, and reliable energy supply aligned with the city’s growing electrification requirements. Full article
Show Figures

Figure 1

14 pages, 6002 KiB  
Technical Note
Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway
by Are Solheim, Gustav Carlsen Gjestad, Christoffer Østmoen, Ørjan Lydersen, Stefan Andreas Edin Nilsen, Diego Maria Barbieri and Baowen Lou
Infrastructures 2025, 10(7), 180; https://doi.org/10.3390/infrastructures10070180 - 10 Jul 2025
Viewed by 432
Abstract
Compared to road trucks, the use of trains to move goods along railway lines is a more sustainable freight transport system. In Norway, where several main lines are single tracks, the insufficient length of many of the existing passing loops considerably restricts the [...] Read more.
Compared to road trucks, the use of trains to move goods along railway lines is a more sustainable freight transport system. In Norway, where several main lines are single tracks, the insufficient length of many of the existing passing loops considerably restricts the operational and economic benefits of long trains. This brief technical note revolves around the possible upgrade of the Røros line connecting Oslo and Trondheim to accommodate 650 m-long freight trains as an alternative to the heavily trafficked Dovre line. Pivoting on regulatory standards, this exploratory work identifies the minimum set of infrastructure modifications required to achieve the necessary increase in capacity by extending the existing passing loops and creating a branch line. The results indicate that 8 freight train routes can be efficiently implemented, in addition to the 12 existing passenger train routes. This brief technical note employs building information modeling software Trimble Novapoint edition 2024 to position the existing railway infrastructure on topographic data and visualize the suggested upgrade. Notwithstanding the limitations of this exploratory work, dwelling on capacity calculation and the design of infrastructure upgrades, the results demonstrate that modest and well-placed interventions can significantly enhance the strategic value of a single-track rail corridor. This brief technical note sheds light on the main areas to be addressed by future studies to achieve a comprehensive evaluation of the infrastructure upgrade, also covering technical construction and economic aspects. Full article
Show Figures

Figure 1

22 pages, 1402 KiB  
Article
Fleet Coalitions: A Collaborative Planning Model Balancing Economic and Environmental Costs for Sustainable Multimodal Transport
by Anna Laura Pala and Giuseppe Stecca
Logistics 2025, 9(3), 91; https://doi.org/10.3390/logistics9030091 - 10 Jul 2025
Viewed by 311
Abstract
Background: Sustainability is a critical concern in transportation, notably in light of governmental initiatives such as cap-and-trade systems and eco-label regulations aimed at reducing emissions. In this context, collaborative approaches among carriers, which involve the exchange of shipment requests, are increasingly recognized as [...] Read more.
Background: Sustainability is a critical concern in transportation, notably in light of governmental initiatives such as cap-and-trade systems and eco-label regulations aimed at reducing emissions. In this context, collaborative approaches among carriers, which involve the exchange of shipment requests, are increasingly recognized as effective strategies to enhance efficiency and reduce environmental impact. Methods: This research proposes a novel collaborative planning model for multimodal transport designed to minimize the total costs associated with freight movements, including both transportation and CO2 emissions costs. Transshipments of freight between vehicles are modeled in the proposed formulation, promoting carrier coalitions. This study incorporated eco-labels, representing different emission ranges, to capture shipper sustainability preferences and integrated authority-imposed low-emission zones as constraints. A bi-objective approach was adopted, combining transportation and emission costs through a weighted sum method. Results: A case study on the Naples Bypass network (Italy) is presented, highlighting the model’s applicability in a real-world setting and demonstrating the effectiveness of collaborative transport planning. In addition, the model quantified the benefits of collaboration under low-emission zone (LEZ) constraints, showing notable reductions in both total costs and emissions. Conclusions: Overall, the proposed approach offers a valuable decision support tool for both carriers and policymakers, enabling sustainable freight transportation planning. Full article
Show Figures

Figure 1

19 pages, 949 KiB  
Article
Modeling Sustainable Development of Transport Logistics Under Climate Change, Ecosystem Dynamics, and Digitalization
by Ilona Jacyna-Gołda, Nadiia Shmygol, Lyazzat Sembiyeva, Olena Cherniavska, Aruzhan Burtebayeva, Assiya Uskenbayeva and Mariusz Salwin
Appl. Sci. 2025, 15(13), 7593; https://doi.org/10.3390/app15137593 - 7 Jul 2025
Viewed by 276
Abstract
This article examines the modeling of sustainable development in transport logistics, focusing on the impact of climate factors, changing weather conditions, and digitalization processes. The study analyzes the complex influence of adverse weather phenomena, such as fog, rain, snow, extreme temperatures, and strong [...] Read more.
This article examines the modeling of sustainable development in transport logistics, focusing on the impact of climate factors, changing weather conditions, and digitalization processes. The study analyzes the complex influence of adverse weather phenomena, such as fog, rain, snow, extreme temperatures, and strong winds, whose frequency and intensity are increasing due to climate change, on the efficiency, safety, and reliability of transport systems across all modes except pipelines. Special attention is paid to the integration of weather-resilient sensor technologies, including LiDAR, thermal imaging, and advanced monitoring systems, to strengthen infrastructure resilience and ensure uninterrupted transport operations under environmental stress. The methodological framework combines comparative analytical methods with economic–mathematical modeling, particularly Leontief’s input–output model, to evaluate the mutual influence between the transport sector and sustainable economic growth within an interconnected ecosystem of economic and technological factors. The findings confirm that data-driven management strategies, the digital transformation of logistics, and the strengthening of centralized hubs contribute significantly to increasing the resilience and flexibility of transport systems, mitigating the negative economic impacts of climate risks, and promoting long-term sustainable development. Practical recommendations are proposed to optimize freight flows, adapt infrastructure to changing weather risks, and support the integration of innovative digital technologies as part of an evolving ecosystem. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

19 pages, 2669 KiB  
Article
Longer Truck to Reduce CO2 Emissions: Study and Proposal Accepted for Analysis in Spain
by Yesica Pino, Juan L. Elorduy and Angel Gento
Sustainability 2025, 17(13), 6026; https://doi.org/10.3390/su17136026 - 30 Jun 2025
Viewed by 453
Abstract
The transport industry in the European Union plays a key role in the economy. However, due to persistent political, social, and technological changes, examining optimization strategies in transportation has become a crucial task to minimize expenditure, promote sustainable solutions, and address environmental degradation [...] Read more.
The transport industry in the European Union plays a key role in the economy. However, due to persistent political, social, and technological changes, examining optimization strategies in transportation has become a crucial task to minimize expenditure, promote sustainable solutions, and address environmental degradation concerns. This study analyzes the effectiveness of a new truck trailer design, adapted from existing European models, which improves load capacity through an extended trailer length. The increased length (and, by extension, volume) is expected to reduce the number of vehicles for freight transportation, thereby improving road congestion and reducing environmental impacts, which include GHG emissions and overall carbon footprint. To achieve this objective, a comprehensive analysis of current European regulations on articulated vehicles and road trains was carried out, alongside a review of related case studies implemented or under development across the European Union member states. Additionally, a pilot study was conducted using the proposed 18 m semi-trailer across 14 real-life freight routes involving loads from several suppliers and manufacturers. This study therefore demonstrates the economic benefits and reduction in pollutant emissions related to the extended design and evaluates its impact on road infrastructure conditions, given the total length of 20.55 m. Full article
(This article belongs to the Special Issue Green Logistics and Sustainable Economy—2nd Edition)
Show Figures

Figure 1

34 pages, 1710 KiB  
Article
Logistics Sprawl and Urban Congestion Dynamics Toward Sustainability: A Logistic Regression and Random-Forest-Based Model
by Manal El Yadari, Fouad Jawab, Imane Moufad and Jabir Arif
Sustainability 2025, 17(13), 5929; https://doi.org/10.3390/su17135929 - 27 Jun 2025
Viewed by 476
Abstract
Increasing road congestion is the main constraint that may influence the economic development of cities and urban freight transport efficiency because it generates additional costs related to delay, influences social life, increases environmental emissions, and decreases service quality. This may result from several [...] Read more.
Increasing road congestion is the main constraint that may influence the economic development of cities and urban freight transport efficiency because it generates additional costs related to delay, influences social life, increases environmental emissions, and decreases service quality. This may result from several factors, including an increase in logistics activities in the urban core. Therefore, this paper aims to define the relationship between the logistics sprawl phenomenon and congestion level. In this sense, we explored the literature to summarize the phenomenon of logistics sprawl in different cities and defined the dependent and independent variables. Congestion level was defined as the dependent variable, while the increasing distance resulting from logistics sprawl, along with city and operational flow characteristics, was treated as independent variables. We compared the performance of several models, including decision tree, support vector machine, gradient boosting, k-nearest neighbor, logistic regression and random forest. Among all the models tested, we found that the random forest algorithm delivered the best performance in terms of prediction. We combined both logistic regression—for its interpretability—and random forest—for its predictive strength—to define, explain, and interpret the relationship between the studied variables. Subsequently, we collected data from the literature and various databases, including transit city sources. The resulting dataset, composed of secondary and open-source data, was then enhanced through standard augmentation techniques—SMOTE, mixup, Gaussian noise, and linear interpolation—to improve class balance and data quality and ensure the robustness of the analysis. Then, we developed a Python code and executed it in Colab. As a result, we deduced an equation that describes the relationship between the congestion level and the defined independent variables. Full article
(This article belongs to the Special Issue Sustainable Operations and Green Supply Chain)
Show Figures

Figure 1

23 pages, 7452 KiB  
Article
Lightweight Human Pose Estimation for Intelligent Anti-Cheating in Unattended Truck Weighing Systems
by Jianbing Zhang, Wenbo Huang and Yongji Wu
Sustainability 2025, 17(13), 5802; https://doi.org/10.3390/su17135802 - 24 Jun 2025
Viewed by 411
Abstract
Accurate human pose estimation is essential for anti-cheating detection in unattended truck scale systems, where human intervention must be reliably identified under challenging conditions such as poor lighting and small target pixel areas. This paper proposes a human joint detection system tailored for [...] Read more.
Accurate human pose estimation is essential for anti-cheating detection in unattended truck scale systems, where human intervention must be reliably identified under challenging conditions such as poor lighting and small target pixel areas. This paper proposes a human joint detection system tailored for truck scale scenarios. To enable efficient deployment, several lightweight structures are introduced, among which an innovative channel hourglass convolution module is designed. By employing a channel compression-recover strategy, the module effectively reduces computational overhead while preserving network depth, significantly outperforming traditional grouped convolution and residual compression structures. In addition, a hybrid attention mechanism based on depthwise separable convolution is constructed, integrating spatial and channel attention to guide the network in focusing on key features, thereby enhancing robustness against noise interference and complex backgrounds. Ablation studies validate the optimal insertion position of the attention mechanism. Experiments conducted on the MPII dataset show that the proposed system achieves improvements of 8.00% in percentage of correct keypoints (PCK) and 2.12% in mean absolute error (MAE), alongside a notable enhancement in inference frame rate. The proposed approach promotes computational efficiency, system autonomy, and operational sustainability, offering a viable solution for energy-efficient, intelligent transportation systems, and long-term automated supervision in logistics and freight environments. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

21 pages, 21979 KiB  
Article
Modal Transportation Shifting from Road to Coastal-Waterways in the UK: Finding Optimal Capacity for Sustainable Freight Transport Through Swarming of Zero-Emission Barge Fleets
by Amin Nazemian, Evangelos Boulougouris and Myo Zin Aung
J. Mar. Sci. Eng. 2025, 13(7), 1215; https://doi.org/10.3390/jmse13071215 - 23 Jun 2025
Viewed by 415
Abstract
This paper examines the feasibility of transitioning road cargo to waterborne transport in the UK, aiming to reduce emissions and alleviate road congestion. Key objectives include (1) developing a modal shift technology to establish freight highways across the UK, (2) designing a small, [...] Read more.
This paper examines the feasibility of transitioning road cargo to waterborne transport in the UK, aiming to reduce emissions and alleviate road congestion. Key objectives include (1) developing a modal shift technology to establish freight highways across the UK, (2) designing a small, decarbonized barge vessel concept that complements the logistics framework, and (3) assessing the economic and environmental viability of a multimodal logistics network. Using discrete event simulation (DES), four transportation scenarios were analyzed to evaluate the efficiency and sustainability of integrating coastal and inland waterways into the logistics framework. Results indicate that waterborne transport is more cost-effective and environmentally sustainable than road transport. A sweeping design study was conducted to optimize time, cost, and emissions. This model was applied to a case study, providing insights into optimal pathways for transitioning to waterborne freight by finding the optimized number of TEUs. Consequently, our study identified 96 TEUs as the optimal capacity to initiate barge design, balancing cost, time, and emissions, while 126 TEUs emerged as the best option for scalability. Findings offer critical guidance for supporting the UK’s climate goals and governmental policies by advancing sustainable transportation solutions. Full article
(This article belongs to the Special Issue Green Shipping Corridors and GHG Emissions)
Show Figures

Figure 1

10 pages, 363 KiB  
Article
Sustainable Strategies for Ports and Maritime Logistics: A Methodological Approach to Green Transition
by Elena Cocuzza, Matteo Ignaccolo, Cristiano Marinacci, Stefano Ricci, Elen Twrdy and Marina Zanne
Sustainability 2025, 17(13), 5739; https://doi.org/10.3390/su17135739 - 22 Jun 2025
Viewed by 589
Abstract
Ports represent the point of intersection between sea and land, as well as a crucial node for the integration of maritime and land transport in the global logistics chain. Consequently, it is crucial to consider an articulated system that includes dry ports, freight [...] Read more.
Ports represent the point of intersection between sea and land, as well as a crucial node for the integration of maritime and land transport in the global logistics chain. Consequently, it is crucial to consider an articulated system that includes dry ports, freight interchange and intermodal logistics platforms, since the relationships between the port and the city, as well as those between the different decision-makers involved, are multiple and complex. Maritime transport and port operations have a direct and indirect impact on the surrounding contexts, with significant effects, particularly from an environmental point of view. Therefore, the green transition in logistics, port, and maritime systems is essential for reducing these impacts. In this context, the aspects related to operational practices and terminal design are of great importance. This paper aims to explore sustainable strategies for ports and maritime logistics in order to provide a methodological approach to green transition. The proposed methodology was divided into phases. First, an analysis of international and European legislation was conducted in order to identify the main critical issues. Subsequently, a review of the existing literature and best practices was carried out to identify tested solutions. The third phase included a Stakeholder Engagement Process, centred on the use of a thematic focus group to foster a collaborative approach to the definition of priorities and operational strategies. Part of the proposed methodology was implemented as part of the DEMASTER—Design of Maritime Sustainable Terminals—project, and it can allow for the evaluation of the different options and the identification of more effective and innovative solutions for the green transition. Full article
Show Figures

Figure 1

22 pages, 1890 KiB  
Article
Multi-Objective Optimization for Intermodal Freight Transportation Planning: A Sustainable Service Network Design Approach
by Alexander Chupin, Abdelaal Ahmed Mostafa Ahmed Ragas, Marina Bolsunovskaya, Alexander Leksashov and Svetlana Shirokova
Sustainability 2025, 17(12), 5541; https://doi.org/10.3390/su17125541 - 16 Jun 2025
Viewed by 723
Abstract
Modern logistics requires effective solutions for the optimization of intermodal transportation, providing cost reduction and improvement of transport flows. This paper proposes a multi-objective optimization method for intermodal freight transportation planning within the framework of sustainable service network design. The approach aims to [...] Read more.
Modern logistics requires effective solutions for the optimization of intermodal transportation, providing cost reduction and improvement of transport flows. This paper proposes a multi-objective optimization method for intermodal freight transportation planning within the framework of sustainable service network design. The approach aims to balance economic efficiency and environmental sustainability by minimizing both transportation costs and delivery time. A bi-criteria mathematical model is developed and solved using the Non-dominated Sorting Genetic Algorithm III (NSGA-III), which is well-suited for handling complex, large-scale optimization problems under multiple constraints. The aim of the study is to develop and implement this technology that balances economic efficiency, environmental sustainability and manageability of operational processes. The research includes the development of a two-criteria model that takes into account both temporal and economic parameters of the routes. The optimization method employs the NSGA-III, a well-known metaheuristic that generates a diverse set of near-optimal Pareto-efficient solutions. This enables the selection of trade-off alternatives depending on the decision-maker’s preferences and specific operational constraints. Simulation results show that the implementation of the proposed technology can reduce the costs of intermodal operators by an average of 8% and the duration of transportation by up to 50% compared to traditional planning methods. In addition, the automation of the process contributes to a more rational use of resources, reducing carbon emissions and increasing the sustainability of transportation networks. This approach is in line with the principles of sustainable economic development, as it improves the efficiency of logistics operations, reduces pressure on infrastructure and minimizes the environmental impact of the transport sector. Route optimization and digitalization of transport processes can increase resource efficiency, improve freight flow management and contribute to the long-term stability of transport systems. The developed technology of automated planning of intermodal transportation is oriented to application in large-scale production systems, providing effective management of cargo flows within complex logistics chains. The proposed method supports the principles of sustainable development by providing a formal decision-making framework that balances transportation cost, delivery time and environmental objectives. Instead of optimizing for a single goal, the model enables the identification of efficient trade-offs between economic performance and ecological impact. Moreover, by generating multiple routing scenarios under varying operational constraints, the approach enhances the adaptability and robustness of freight transportation systems in dynamic and uncertain environments. Full article
(This article belongs to the Special Issue Large-Scale Production Systems: Sustainable Manufacturing and Service)
Show Figures

Figure 1

30 pages, 2673 KiB  
Article
Maritime Port Freight Flow Optimization with Underground Container Logistics Systems Under Demand Uncertainty
by Miaomiao Sun, Chengji Liang, Yu Wang and Salvatore Antonio Biancardo
J. Mar. Sci. Eng. 2025, 13(6), 1173; https://doi.org/10.3390/jmse13061173 - 15 Jun 2025
Viewed by 345
Abstract
As global trade and container transportation continue to grow, port collection and distribution systems face increasing challenges, including congestion, inefficiency, and environmental impact. Traditional ground-based transportation methods often exacerbate these issues, especially under uncertain demand conditions. This study aims to optimize freight flow [...] Read more.
As global trade and container transportation continue to grow, port collection and distribution systems face increasing challenges, including congestion, inefficiency, and environmental impact. Traditional ground-based transportation methods often exacerbate these issues, especially under uncertain demand conditions. This study aims to optimize freight flow allocation in port collection and distribution networks by integrating traditional and innovative transportation modes, including underground container logistics systems, under demand uncertainty. A stochastic optimization model is developed, incorporating transportation, environmental, carbon tax and subsidy, and congestion costs while satisfying various constraints, such as capacity limits, time constraints, and low-carbon transport requirements. The model is solved using a hybrid algorithm combining an improved Genetic Algorithm and Simulated Annealing (GA-SA) with Deep Q-Learning (DQN). Numerical experiments and case studies, particularly focusing on A Port, demonstrate that the proposed approach significantly reduces total operational costs, congestion, and environmental impacts while enhancing system robustness under uncertain demand conditions. The findings highlight the potential of underground logistics systems to improve port logistics efficiency, providing valuable insights for future port management strategies and the integration of sustainable transportation modes. Full article
Show Figures

Figure 1

Back to TopTop