Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = sustainable energy landscape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5349 KiB  
Review
A Comprehensive Survey of Artificial Intelligence and Robotics for Reducing Carbon Emissions in Supply Chain Management
by Mariem Mrad, Mohamed Amine Frikha and Younes Boujelbene
Logistics 2025, 9(3), 104; https://doi.org/10.3390/logistics9030104 - 4 Aug 2025
Viewed by 223
Abstract
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence [...] Read more.
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence on the applications, benefits, and challenges. Methods: A systematic scoping review was conducted on 23 peer-reviewed studies from the Scopus database, published between 2013 and 2024. Data were systematically extracted and analyzed for publication trends, application domains (e.g., transportation, warehousing), specific AI and robotic technologies, emissions reduction strategies, and implementation challenges. Results: The analysis reveals that AI-driven logistics optimization is the most frequently reported strategy for reducing transportation emissions. At the same time, robotic automation is commonly associated with improved energy efficiency in warehousing. Despite these benefits, the reviewed literature consistently identifies significant barriers, including the high energy demands of AI computation and complexities in data integration. Conclusions: This review confirms the transformative potential of AI and robotics for developing low-carbon supply chains. An evidence-based framework is proposed to guide practical implementation and identify critical gaps, such as the need for standardized validation benchmarks, to direct future research and accelerate the transition to sustainable SCM. Full article
Show Figures

Figure 1

18 pages, 1388 KiB  
Review
Simulation in the Built Environment: A Bibliometric Analysis
by Saman Jamshidi
Metrics 2025, 2(3), 13; https://doi.org/10.3390/metrics2030013 - 4 Aug 2025
Viewed by 103
Abstract
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes [...] Read more.
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes prior to construction. Applications span energy consumption, airflow, thermal comfort, lighting, structural behavior, and human interactions within buildings and urban contexts. This study maps the scientific landscape of simulation research in the built environment through a bibliometric analysis of 12,220 publications indexed in Scopus. Using VOSviewer 1.6.20, it conducted citation and keyword co-occurrence analyses to identify key research themes, leading countries and journals, and central publications in the field. The analysis revealed seven primary thematic clusters: (1) human-focused simulation, (2) building-scale energy performance simulation, (3) urban-scale energy performance simulation, (4) sustainable design and simulation, (5) indoor environmental quality simulation, (6) building aerodynamics simulation, and (7) computing in building simulation. By synthesizing these trends and domains, this study provides an overview of the field, facilitating greater accessibility to the simulation literature and informing future interdisciplinary research and practice in the built environment. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 299
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

48 pages, 8533 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 - 31 Jul 2025
Viewed by 201
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

26 pages, 632 KiB  
Article
When Do Innovation and Renewable Energy Transition Drive Environmental Sustainability?
by Anis Omri, Fadhila Hamza and Noura Alkahtani
Sustainability 2025, 17(15), 6910; https://doi.org/10.3390/su17156910 - 30 Jul 2025
Viewed by 279
Abstract
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) [...] Read more.
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) estimator and confirming robustness through the Dynamic Common Correlated Effects Mean Group (DCCE-MG) method, the study explores both direct and indirect effects of RET and EI on two key environmental indicators: the Environmental Performance Index and the Load Capacity Factor. The results reveal that both RET and EI have a significant impact on environmental performance. Moreover, green finance and environmental governance serve as crucial channels through which RET and EI exert their influence. These findings underscore the importance of developing effective financial instruments and robust regulatory frameworks to translate energy and innovation policies into tangible environmental benefits. By highlighting the interplay between technological advancement, financial capacity, and institutional quality, this study provides novel insights into the environmental policy landscape of advanced economies and offers guidance for designing integrated strategies to achieve long-term sustainability goals. Full article
Show Figures

Figure 1

18 pages, 4648 KiB  
Article
Wood- and Steel-Based Offsite Construction Solutions for Sustainable Building Renovation: Assessing the European and Italian Contexts
by Graziano Salvalai, Francesca Gadusso and Miriam Benedetti
Sustainability 2025, 17(15), 6799; https://doi.org/10.3390/su17156799 - 26 Jul 2025
Viewed by 481
Abstract
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with [...] Read more.
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with a focus on wood and light-steel technologies for sustainable building refurbishment. Combining a literature review, analysis of funded projects, and market data for 541 OSC products, the study develops tailored KPIs to assess these products’ technical maturity, prefabrication level, and environmental integration. The results reveal that wood-based OSC, although less widespread, is more mature and centered on the use of multi-layer panels, while steel-based systems, though more prevalent, remain largely tied to semi-offsite construction, indicating untapped development potential. Research efforts, especially concentrated in Mediterranean regions, focus on technological integration of renewable energy systems. A significant literature gap was identified in information concerning panel-to-wall connection, critical for renovation, limiting OSC’s adaptability to regeneration of existing buildings. The findings highlight the need for cross-sector collaboration, legislative clarity, and better alignment of public procurement standards with OSC characteristics. Addressing these issues is essential to bridge the gap between research prototypes and industrial adoption and accelerate the sustainable transformation of Europe’s construction sector to help meet climate neutrality targets. Full article
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 394
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 594
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

61 pages, 14033 KiB  
Review
The Brain Behind the Grid: A Comprehensive Review on Advanced Control Strategies for Smart Energy Management Systems
by Gowthamraj Rajendran, Reiko Raute and Cedric Caruana
Energies 2025, 18(15), 3963; https://doi.org/10.3390/en18153963 - 24 Jul 2025
Viewed by 325
Abstract
The integration of digital technologies is catalysing a fundamental transformation of modern energy systems, enhancing operational efficiency, adaptability, and sustainability. Despite significant progress, the existing literature often addresses digital innovations in isolation, with limited consideration of their synergistic potential within Advanced Energy Systems [...] Read more.
The integration of digital technologies is catalysing a fundamental transformation of modern energy systems, enhancing operational efficiency, adaptability, and sustainability. Despite significant progress, the existing literature often addresses digital innovations in isolation, with limited consideration of their synergistic potential within Advanced Energy Systems (AES). This paper presents a systematic review of key digital technologies—such as artificial intelligence, the Internet of Things, blockchain, and digital twins—employed in AES, providing a critical assessment of their individual functionalities, interdependencies, and collective contributions to the energy sector. The analysis highlights the capacity of integrated digital solutions to augment system intelligence, strengthen operational resilience, and increase flexibility across various layers of the energy infrastructure. In addressing persistent challenges—including demand-side variability, supply intermittency, and regulatory complexity—the coordinated implementation of these technologies enables real-time optimization, predictive maintenance, and data-informed decision-making. The findings demonstrate that the synergistic deployment of digital technologies not only enhances system performance but also contributes to measurable improvements in reliability, cost-effectiveness, and environmental sustainability. The review concludes that establishing a cohesive and interoperable digital ecosystem is essential for the development of future-ready energy systems that are robust, efficient, and responsive to the evolving dynamics of the global energy landscape. Full article
Show Figures

Figure 1

18 pages, 1453 KiB  
Article
Digital Twins for Climate-Responsive Urban Development: Integrating Zero-Energy Buildings into Smart City Strategies
by Osama Omar
Sustainability 2025, 17(15), 6670; https://doi.org/10.3390/su17156670 - 22 Jul 2025
Viewed by 713
Abstract
As climate change intensifies the frequency and severity of extreme weather events, the urgency for resilient and sustainable urban development becomes increasingly critical. This study investigates the role of digital twins in advancing climate-responsive urban strategies, with a focus on their integration into [...] Read more.
As climate change intensifies the frequency and severity of extreme weather events, the urgency for resilient and sustainable urban development becomes increasingly critical. This study investigates the role of digital twins in advancing climate-responsive urban strategies, with a focus on their integration into zero-energy buildings (ZEBs) and smart city frameworks. A systematic literature review was conducted following PRISMA guidelines, covering 1000 articles initially retrieved from Scopus and Web of Science between 2014 and 2024. After applying inclusion and exclusion criteria, 70 full-text articles were analyzed. Bibliometric analysis using VOSviewer revealed five key application areas of digital twins: energy efficiency optimization, renewable energy integration, design and retrofitting, real-time monitoring and control, and predictive maintenance. The findings suggest that digital twins can contribute to up to 30–40% improvement in building energy efficiency through enhanced performance monitoring and predictive modeling. This review synthesizes trends, identifies research gaps, and contextualizes the findings within the Middle Eastern urban landscape, where climate action and smart infrastructure development are strategic priorities. While offering strategic guidance for urban planners and policymakers, the study also acknowledges limitations, including the regional focus, lack of primary field data, and potential publication bias. Overall, this work contributes to advancing digital twin applications in climate-resilient, zero-energy urban development. Full article
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 439
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

21 pages, 693 KiB  
Review
Energy Policy Evolution in Pakistan: Balancing Security, Efficiency, and Sustainability
by Qaisar Shahzad and Kentaka Aruga
Energies 2025, 18(14), 3821; https://doi.org/10.3390/en18143821 - 18 Jul 2025
Viewed by 398
Abstract
This study analyzes the evolution of Pakistan’s energy policies from 1990 to 2024, documenting their transition from a singular focus on generation capacity to an integrated approach prioritizing renewable energy and efficiency. Through a systematic literature review of 110 initially screened studies, with [...] Read more.
This study analyzes the evolution of Pakistan’s energy policies from 1990 to 2024, documenting their transition from a singular focus on generation capacity to an integrated approach prioritizing renewable energy and efficiency. Through a systematic literature review of 110 initially screened studies, with 50 meeting the inclusion criteria and 22 selected for in-depth analysis, we evaluated policy effectiveness and identified implementation barriers. Our methodology employed predefined criteria focusing on energy efficiency, environmental sustainability, and climate impact, utilizing the Web of Science and Scopus databases. Early policies like the National Energy Conservation Policy (1992) and the Energy Policy (1994) emphasized energy security through generation capacity expansion while largely neglecting renewable sources and efficiency improvements. The policy landscape evolved in the 2000s with the introduction of renewable energy incentives and efficiency initiatives. However, persistent challenges include short-term planning, inconsistent implementation, and fossil fuels dependence. Recent framework like the Alternative and Renewable Energy Policy (2019) and the National Energy Efficiency and Conservation Plan (2020–2025) demonstrate progress toward sustainable energy practices. However, institutional, financial, and regulatory barriers continue to constrain effectiveness. We recommend that Pakistan’s energy strategy prioritize the following: (1) long-term planning horizon; (2) enhanced fiscal incentives; and (3) strengthened institutional support to meet global energy security and climate resilience standards. These measures would advance Pakistan’s sustainable energy transition while supporting both energy security and environmental objectives. Full article
Show Figures

Figure 1

22 pages, 791 KiB  
Article
Turkiye’s Carbon Emission Profile: A Global Analysis with the MEREC-PROMETHEE Hybrid Method
by İrem Pelit and İlker İbrahim Avşar
Sustainability 2025, 17(14), 6527; https://doi.org/10.3390/su17146527 - 16 Jul 2025
Viewed by 367
Abstract
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for [...] Read more.
This study conducts a comparative evaluation of Turkiye’s carbon emission profile from both sectoral and global perspectives. Utilizing 2022 data from 76 countries, it applies two widely recognized multi-criteria decision-making (MCDM) methods: MEREC, for determining objective weights of criteria, and PROMETHEE II, for ranking countries based on these criteria. All data used in the analysis were obtained from the World Bank, a globally recognized and credible statistical source. The study evaluates seven criteria, including carbon emissions from the energy, transport, industry, and residential sectors, along with GDP-related indicators. The results indicate that Turkiye’s carbon emissions, particularly from industry, transport, and energy, are substantially higher than the global average. Moreover, countries with higher levels of industrialization generally rank lower in environmental performance, highlighting a direct relationship between industrial activity and increased carbon emissions. According to PROMETHEE II rankings, Turkiye falls into the lower-middle tier among the assessed countries. In light of these findings, the study suggests that Turkiye should implement targeted, sector-specific policy measures to reduce emissions. The research aims to provide policymakers with a structured, data-driven framework that aligns with the country’s broader sustainable development goals. MEREC was selected for its ability to produce unbiased criterion weights, while PROMETHEE II was chosen for its capacity to deliver clear and meaningful comparative rankings, making both methods highly suitable for evaluating environmental performance. This study also offers a broader analysis of how selected countries compare in terms of their carbon emissions. As carbon emissions remain one of the most pressing environmental challenges in the context of global warming and climate change, ranking countries based on emission levels serves both to support scientific inquiry and to increase international awareness. By relying on recent 2022 data, the study offers a timely snapshot of the global carbon emission landscape. Alongside its contribution to public awareness, the findings are expected to support policymakers in developing effective environmental strategies. Ultimately, this research contributes to the academic literature and lays a foundation for more sustainable environmental policy development. Full article
Show Figures

Graphical abstract

21 pages, 1583 KiB  
Review
Valorization of Agricultural Ashes from Cold and Temperate Regions as Alternative Supplementary Cementitious Materials: A Review
by A. Sadoon, M. T. Bassuoni and A. Ghazy
Clean Technol. 2025, 7(3), 59; https://doi.org/10.3390/cleantechnol7030059 - 11 Jul 2025
Viewed by 263
Abstract
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative [...] Read more.
The pursuit of sustainable alternatives to portland cement has become a global imperative within the construction sector, driven by the need to reduce carbon dioxide emissions and energy consumption. Among the promising alternatives, agricultural ashes have garnered attention for their potential as alternative supplementary cementitious materials (ASCMs), owing to their inherent pozzolanic properties when appropriately processed. However, the availability and utilization of these ashes have predominantly been concentrated in tropical and subtropical regions, where such biomass is more abundant. This review offers a comprehensive bibliometric analysis to identify and assess agricultural ashes (specifically switchgrass, barley, sunflower, and oat husks) that are cultivated in temperate and cold climates and exhibit potential for SCM application. The analysis aims to bridge the knowledge gap by systematically mapping the existing research landscape and highlighting underexplored resources suitable for cold-region implementation. Key processing parameters, including incineration temperature, retention duration, and post-combustion grinding techniques, are critically examined for their influence on the resulting ash’s physicochemical characteristics and pozzolanic reactivity. In addition, the effect on fresh, hardened, and durability properties was evaluated. Findings reveal that several crops grown in colder regions may produce ashes rich in reactive silica, thereby qualifying them as viable ASCM candidates and bioenergy sources. Notably, the ashes derived from switchgrass, barley, oats, and sunflowers demonstrate significant reactive silica content, reinforcing their potential in sustainable construction practices. Hence, this study underscores the multifaceted benefits of contributing to the decarbonization of the cement industry and circular economy, while addressing environmental challenges associated with biomass waste disposal and uncontrolled open-air combustion. Full article
Show Figures

Figure 1

31 pages, 3620 KiB  
Review
Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design
by Han Xie, Diane Pearson, Sarah J. McLaren and David Horne
Land 2025, 14(7), 1447; https://doi.org/10.3390/land14071447 - 11 Jul 2025
Viewed by 389
Abstract
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental [...] Read more.
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental performance remains understudied. This is the case even though their proliferation is leading to an irreversible loss of highly productive soils and accelerating land fragmentation in peri-urban areas. Through undertaking a systematic literature review of relevant studies on LBs in New Zealand and comparable international contexts, this paper aims to quantify existing knowledge and suggest future research needs and management strategies. It focuses on the environmental implications of LB activities in relation to water consumption, food production, energy use, and biodiversity protection. The results indicate that variation in land use practices and environmental awareness among LB owners leads to differing environmental outcomes. LBs offer opportunities for biodiversity conservation and small-scale food production through sustainable practices, while also presenting environmental challenges related to resource consumption, greenhouse gas (GHG) emissions, and loss of productive land for commercial agriculture. Targeted landscape design could help mitigate the environmental pressures associated with these properties while enhancing their potential to deliver ecological and sustainability benefits. The review highlights the need for further evaluation of the environmental sustainability of LBs and emphasises the importance of property design and adaptable planning policies and strategies that balance environmental sustainability, land productivity, and lifestyle owners’ aspirations. It underscores the potential for LBs to contribute positively to environmental management while addressing associated challenges, providing valuable insights for ecological conservation and sustainable land use planning. Full article
Show Figures

Figure 1

Back to TopTop