Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,206)

Search Parameters:
Keywords = sustainable development proposals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3160 KiB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 (registering DOI) - 17 Jul 2025
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Figure 1

19 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Decision Optimization of Manufacturing Supply Chain Based on Resilience
by Feng Lyu, Jiajie Zhang, Fen Liu and Huili Chu
Sustainability 2025, 17(14), 6519; https://doi.org/10.3390/su17146519 - 16 Jul 2025
Abstract
Manufacturing serves as a vital indicator of a nation’s economic strength, technological advancement, and comprehensive competitiveness. In the context of the VUCA (Volatility, Uncertainty, Complexity, Ambiguity) business environment and globalization, uncertain market demand has intensified supply chain disruption risks, necessitating resilience strategies to [...] Read more.
Manufacturing serves as a vital indicator of a nation’s economic strength, technological advancement, and comprehensive competitiveness. In the context of the VUCA (Volatility, Uncertainty, Complexity, Ambiguity) business environment and globalization, uncertain market demand has intensified supply chain disruption risks, necessitating resilience strategies to enhance supply chain stability. This study proposes five resilience strategies—establishing an information sharing system, multi-sourcing, alternative suppliers, safety stock, and alternative transportation plans—while integrating sustainability requirements. A multi-objective mixed-integer optimization model was developed to balance cost efficiency, resilience, and environmental sustainability. Comparative analysis reveals that the resilience-embedded model outperforms traditional approaches in both cost control and risk mitigation capabilities. The impact of parameter variations on the model results was examined through sensitivity analysis. The findings demonstrate that the proposed optimization model effectively enhances supply chain resilience—mitigating cost fluctuations while maintaining robust demand fulfillment under uncertainties. Full article
(This article belongs to the Special Issue Decision-Making in Sustainable Management)
Show Figures

Figure 1

18 pages, 1503 KiB  
Article
Methodology to Determine the Associative Potential of Small-Scale Mining Communities
by Oscar Jaime Restrepo-Baena, Sara Pérez-Zapata, María Margarita Gamarra, Jorge Iván Tobón and Gustavo Viana
Mining 2025, 5(3), 46; https://doi.org/10.3390/mining5030046 - 16 Jul 2025
Abstract
This study presents a methodology developed in collaboration with the Colombian National Mining Agency, aimed at enhancing the economic and productive activity of small-scale miners in Colombia through the promotion of associativity. Despite persistent challenges in the formalization and sustainable development of the [...] Read more.
This study presents a methodology developed in collaboration with the Colombian National Mining Agency, aimed at enhancing the economic and productive activity of small-scale miners in Colombia through the promotion of associativity. Despite persistent challenges in the formalization and sustainable development of the artisanal mining sector, fostering associative models offers a pathway towards a more sustainable mining industry, aligned with current national policies. The proposed roadmap, designed to achieve this objective, is divided into three sequential phases. The first, the Baseline Survey, focuses on comprehensively understanding the initial socio-economic and operational conditions of mining communities. This is followed by Participatory Strategic Planning, which involves projecting the long-term role and development of mining associative figures. Finally, the Annual Operational Planning and Execution phase concentrates on the concrete implementation of activities designed to achieve sustainable organizational goals. During the design and initial implementation of this roadmap, we found that continuous support and tailored training programs are essential for mining communities. These programs are critical for fostering the development of collective skills and strengthening community ties within mining organizations. The findings highlight that by strengthening collective capabilities and community ties, mining organizations can enhance their self-management capacities and significantly contribute to the economic development of their regions. This approach addresses key challenges in the sector by promoting a more organized and resilient operational framework. The implementation of a participatory methodology, coupled with specific organizational strengthening programs, coordinated execution, and continuous monitoring, provides a viable route towards a more sustainable and formalized small-scale mining sector in Colombia. This roadmap offers a practical framework for fostering self-managed and economically contributing mining organizations. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining, 2nd Edition)
Show Figures

Figure 1

33 pages, 2339 KiB  
Article
Towards Inclusive and Resilient Living Environments for Older Adults: A Methodological Framework for Assessment of Social Sustainability in Nursing Homes
by Vanja Skalicky Klemenčič and Vesna Žegarac Leskovar
Buildings 2025, 15(14), 2501; https://doi.org/10.3390/buildings15142501 - 16 Jul 2025
Abstract
The quality of living environments for older adults represents a critical component of social sustainability in an ageing society. Among various housing options, nursing homes are the most institutionalised form of elderly care and demand special attention regarding architectural design. This paper explores [...] Read more.
The quality of living environments for older adults represents a critical component of social sustainability in an ageing society. Among various housing options, nursing homes are the most institutionalised form of elderly care and demand special attention regarding architectural design. This paper explores the impact of architectural and open space features on social sustainability in living environments for older adults. A comparative analysis of three Slovenian nursing homes is presented. The first two, built in the post-war period, were based on elevated architectural criteria inspired by Swedish human-centred housing design. The third was completed in 2021 in the post-COVID-19 era, which revealed the vulnerability of such housing typologies. An integrated methodological framework was developed by applying two complementary assessment tools: the Safe and Connected, developed by the authors to evaluate the spatial, health, and social resilience of nursing home environments, and the Well-being and Integration, addressing the role of open space with a particular emphasis on the identification of older adults with their environment and the facilitation of social resilience. Both tools evaluate indicators linked to the social dimension of quality of life for older adults. The results show a gradual improvement in architectural quality from the 1960s to the 1980s, followed by a partial decline in the contemporary case. The Swedish example scored highest across both tools. In contrast, the newest Slovenian facility scored surprisingly low in social integration, highlighting critical gaps in current nursing home design. This study demonstrates the value of applying interdisciplinary, tool-based evaluations in identifying design strategies that foster resilient and inclusive LTC environments, and the proposed framework may serve as a decision-making aid for architects, planners, and policymakers. This research highlights the importance of reintroducing human-oriented design principles to support socially sustainable nursing home environments. Full article
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
Cycle-Informed Triaxial Sensor for Smart and Sustainable Manufacturing
by Parisa Esmaili, Luca Martiri, Parvaneh Esmaili and Loredana Cristaldi
Sensors 2025, 25(14), 4431; https://doi.org/10.3390/s25144431 - 16 Jul 2025
Abstract
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the [...] Read more.
Advances in Industry 4.0 and the emergence of Industry 5.0 are driving the development of intelligent, sustainable manufacturing systems, where embedded sensing and real-time health diagnostics play a critical role. However, implementing robust predictive maintenance in production environments remains challenging due to the variability in machine operations and the lack of access to internal control data. This paper introduces a lightweight, embedded-compatible framework for health status signature extraction based on empirical mode decomposition (EMD), leveraging only data from a single triaxial accelerometer. The core of the proposed method is a cycle-synchronized segmentation strategy that uses accelerometer-derived velocity profiles and cross-correlation to align signals with machining cycles, eliminating the need for controller or encoder access. This ensures process-aware decomposition that preserves the operational context across diverse and dynamic machining conditions to address the inadequate segmentation of unstable process data that often fails to capture the full scope of the process, resulting in misinterpretation. The performance is evaluated on a challenging real-world manufacturing benchmark where the extracted intrinsic mode functions (IMFs) are analyzed in the frequency domain, including quantitative evaluation. As results show, the proposed method shows its effectiveness in detecting subtle degradations, following a low computational footprint, and its suitability for deployment in embedded predictive maintenance systems on brownfield or controller-limited machinery. Full article
Show Figures

Figure 1

30 pages, 3562 KiB  
Article
Techno-Economic Evaluation of Geothermal Energy Utilization of Co-Produced Water from Natural Gas Production
by Lianzhong Sun, Hongyu Xiao, Zheng Chu, Lin Qiao, Yingqiang Yang, Lei Wang, Wenzhong Tian, Yinhui Zuo, Ting Li, Haijun Tang, Liping Chen and Dong Xiao
Energies 2025, 18(14), 3766; https://doi.org/10.3390/en18143766 - 16 Jul 2025
Abstract
The utilization of thermal energy from co-produced water during natural gas production offers a promising pathway to enhance energy efficiency and reduce carbon emissions. This study proposes a techno-economic evaluation model to assess the feasibility and profitability of geothermal energy recovery from co-produced [...] Read more.
The utilization of thermal energy from co-produced water during natural gas production offers a promising pathway to enhance energy efficiency and reduce carbon emissions. This study proposes a techno-economic evaluation model to assess the feasibility and profitability of geothermal energy recovery from co-produced water in marginal gas wells. A wellbore fluid flow and heat transfer model is developed and validated against field data, with deviations in calculated wellhead temperature and pressure within 10%, demonstrating the model’s reliability. Sensitivity analyses are conducted to investigate the influence of key technical and economic parameters on project performance. The results show that electricity price, heat price, and especially government one-off subsidies have a significant impact on the net present value (NPV), whereas the effects of insulation length and annular fluid thermal conductivity are comparatively limited. Under optimal conditions—including 2048 m of insulated tubing, annular protection fluid with a thermal conductivity of 0.4 W/(m·°C), a 30% increase in heat and electricity prices, and a 30% government capital subsidy—the project breaks even in the 14th year, with the 50-year NPV reaching 0.896 M$. This study provides a practical framework for evaluating and optimizing geothermal energy recovery from co-produced water, offering guidance for future sustainable energy development. Full article
23 pages, 6122 KiB  
Article
Theoretical DFT Analysis of a Polyacrylamide/Amylose Copolymer for the Removal of Cd(II), Hg(II), and Pb(II) from Aqueous Solutions
by Joaquin Hernandez-Fernandez, Yuly Maldonado-Morales, Rafael Gonzalez-Cuello, Ángel Villabona-Ortíz and Rodrigo Ortega-Toro
Polymers 2025, 17(14), 1943; https://doi.org/10.3390/polym17141943 - 16 Jul 2025
Abstract
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low [...] Read more.
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low cost and biodegradability of starch, ultimately aiming to offer an economical, efficient, and sustainable alternative for wastewater treatment. To this end, a computational model based on density functional theory (DFT) was developed, utilizing the B3LYP functional with the 6-311++G(d,p) basis set, a widely recognized combination that strikes a balance between accuracy and computational cost. The interactions between an acrylamide-amylose (AM/Amy) polymer matrix, as well as the individual polymers (AM and Amy), and the metal ions Pb, Hg, and Cd in their hexahydrated form (M·6H2O) were analyzed. This modeling approach, where M represents any of these metals, simulates a realistic aqueous environment around the metal ion. Molecular geometries were optimized, and key parameters such as total energy, dipole moment, frontier molecular orbital (HOMO-LUMO) energy levels, and Density of States (DOS) graphs were calculated to characterize the stability and electronic reactivity of the molecules. The results indicate that this proposed copolymer, through its favorable electronic properties, exhibits a high adsorption capacity for metal ions such as Pb and Cd, positioning it as a promising material for environmental applications. Full article
(This article belongs to the Special Issue Functional Polymer Materials for Efficient Adsorption of Pollutants)
Show Figures

Figure 1

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

13 pages, 387 KiB  
Article
An Integrated Framework to Motivate Student Engagement in Science Education for Sustainable Development
by Neil MacIntosh and Anila Asghar
Educ. Sci. 2025, 15(7), 903; https://doi.org/10.3390/educsci15070903 - 15 Jul 2025
Viewed by 46
Abstract
Science teachers continue to face decreased motivation, lower achievement levels, and decreased enrollment in post-secondary science programs. Teachers ask themselves this question: How do I motivate my students to achieve? Student-centered pedagogies, such as an in-depth pedagogy informed by Self-Determination Theory, can improve [...] Read more.
Science teachers continue to face decreased motivation, lower achievement levels, and decreased enrollment in post-secondary science programs. Teachers ask themselves this question: How do I motivate my students to achieve? Student-centered pedagogies, such as an in-depth pedagogy informed by Self-Determination Theory, can improve students’ motivation by addressing students’ basic psychological needs for autonomy, competency, and relatedness. Problem-based learning presents students with relevant situations and actively engages them in developing plausible solutions to problems. Environmental sustainability encompasses issues concerning our ecological and social environments. Teachers can focus on these issues to develop authentic problem-based learning units that offer a student-relevant pathway to improve motivation and scientific literacy. We propose a pedagogical framework, drawing on Self-Determination Theory, to promote students’ motivation to engage keenly with environmental sustainability education through problem-based learning. This framework is designed for secondary science classrooms to inform science teachers’ pedagogical practice. Full article
(This article belongs to the Special Issue Critical Pedagogy and Climate Justice)
31 pages, 9042 KiB  
Article
Innovative Geoproduct Development for Sustainable Tourism: The Case of the Safi Geopark Project (Marrakesh–Safi Region, Morocco)
by Mustapha El Hamidy, Ezzoura Errami, Carlos Neto de Carvalho and Joana Rodrigues
Sustainability 2025, 17(14), 6478; https://doi.org/10.3390/su17146478 - 15 Jul 2025
Viewed by 119
Abstract
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local [...] Read more.
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local heritage and promote its conservation, utilizing the natural and cultural resources unique to each region in sustainable ways. Geoproducts, in particular, aim to enrich cultural identity and elevate the value of the landscape and geodiversity by integrating communities into innovative approaches and technologies, engaging them in commercialization, and ensuring sustainability alongside social inclusion. Within the framework of the Safi Geopark Project, this article delves into the concept of geoproducts, their definitions, and their potential to bolster local identity and social and economic development. Leveraging the abundant geological and cultural resources of Safi province, the study presents both tangible and intangible geoproducts that merge traditional craftsmanship with modern sustainability practices. Notable examples include ammonite-inspired ceramics, educational materials, and eco-friendly cosmetics, each carefully designed to reflect and celebrate the region’s geoheritage. This article underscores the crucial role of community involvement in the creation of geoproducts, highlighting their impact on conservation, education, and the promotion of sustainable tourism. By proposing actionable strategies, this study not only broadens the understanding of geoproducts within geoparks but also reinforces their importance as instruments for regional development, heritage conservation, and sustainable economic growth. Full article
Show Figures

Figure 1

22 pages, 3678 KiB  
Article
Technical and Economic Analysis of a Newly Designed PV System Powering a University Building
by Miroslaw Zukowski and Robert Adam Sobolewski
Energies 2025, 18(14), 3742; https://doi.org/10.3390/en18143742 - 15 Jul 2025
Viewed by 123
Abstract
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus [...] Read more.
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus of the Bialystok University of Technology. The first part of the article presents the results of 9 years of research on an experimental photovoltaic system that is part of a hybrid wind and PV small system. The article proposes five variants of the arrangement of photovoltaic panels on the pergola. A new method was used to determine the energy efficiency of individual options selected for analysis. This method combines energy simulations using DesignBuilder software and regression analysis. The basic economic indicators NPV and IRR were applied to select the most appropriate arrangement of PV panels. In the recommended solution, the panels are arranged in three rows, oriented vertically, and tilted at 37°. The photovoltaic system, consisting of 438 modules, has a peak power of 210 kWp and is able to produce 166,392 kWh of electricity annually. The NPV is 679,506 EUR, and the IRR is over 38% within 30 years of operation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 1806 KiB  
Article
Multidimensional Significance Analysis of Factors Influencing College Students’ Innovation and Entrepreneurship in the New Era
by Peng Liu and Xi Liu
Sustainability 2025, 17(14), 6467; https://doi.org/10.3390/su17146467 - 15 Jul 2025
Viewed by 88
Abstract
Against the backdrop of evolving innovation and entrepreneurship education, this study investigates the multifaceted factors influencing college students’ innovation and entrepreneurship in China. By analyzing 98 cases of student-led ventures and applying principal component analysis (PCA) via SPSS 19.0, the research identifies key [...] Read more.
Against the backdrop of evolving innovation and entrepreneurship education, this study investigates the multifaceted factors influencing college students’ innovation and entrepreneurship in China. By analyzing 98 cases of student-led ventures and applying principal component analysis (PCA) via SPSS 19.0, the research identifies key determinants across individual, institutional, and societal dimensions. The empirical results reveal strong correlations between entrepreneurial risk levels and practical experience (r = 0.82), pre-market research (r = 0.84), participation in entrepreneurship courses (r = 0.72), university innovation platform utilization (r = 0.75), social financing intensity (r = 0.68), and regional economic development (r = 0.53). Individual-level factors demonstrate the most profound influence, with institutional and societal resources providing complementary support. Based on these findings, the study proposes targeted recommendations to enhance student engagement in practical training, optimize university–platform integration, and improve policy-backed financing ecosystems, thereby fostering the sustainable development of college students’ innovation and entrepreneurship capabilities. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

29 pages, 14650 KiB  
Article
Development of High-Performance Composite Cementitious Materials for Offshore Engineering Applications
by Risheng Wang, Hongrui Wu, Zengwu Liu, Hanyu Wang and Yongzhuang Zhang
Materials 2025, 18(14), 3324; https://doi.org/10.3390/ma18143324 - 15 Jul 2025
Viewed by 66
Abstract
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and [...] Read more.
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and silica fume (SF) in various proportions, composite mortars were designed and evaluated. A series of laboratory tests were conducted to assess workability, mechanical properties, volume stability, and durability under simulated marine conditions. The results demonstrate that the optimized composite exhibits superior performance in terms of strength development, shrinkage control, and resistance to chloride penetration and freeze–thaw cycles. Microstructural analysis further reveals that the enhanced performance is attributed to the formation of additional calcium silicate hydrate (C–S–H) gel and a denser internal matrix resulting from secondary hydration. These findings suggest that the proposed material holds significant potential for enhancing the long-term durability and sustainability of marine infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 8203 KiB  
Article
Sustainable Development of Central and Northern Euboea (Evia) Through the Protection and Revealing of the Area’s Cultural and Environmental Reserve
by Kyriakos Lampropoulos, Anastasia Vythoulka, George Petrakos, Vasiliki (Betty) Charalampopoulou, Anastasia A. Kioussi and Antonia Moropoulou
Land 2025, 14(7), 1467; https://doi.org/10.3390/land14071467 - 15 Jul 2025
Viewed by 151
Abstract
This study explores a strategic framework for the sustainable development of Northern and Central Euboea (Evia), Greece, through the preservation and promotion of cultural and environmental assets. This research aims to redirect tourism flows from overdeveloped coastal zones to underutilized inland areas by [...] Read more.
This study explores a strategic framework for the sustainable development of Northern and Central Euboea (Evia), Greece, through the preservation and promotion of cultural and environmental assets. This research aims to redirect tourism flows from overdeveloped coastal zones to underutilized inland areas by leveraging local heritage and natural resources. The methodology was developed within the context of the AEI research project and combines bibliographic research, stakeholder consultation, GIS analysis, and socioeconomic assessment. Based on this framework, a series of thematic cultural routes and agritourism initiatives were designed to enhance regional attractiveness and resilience. The study proposes the utilization of ICT tools such as GIS-based mapping, a digital development platform, and an online tourism portal to document, manage, and promote key assets. The socioeconomic impact of the proposed interventions was evaluated using an input–output model, revealing that each EUR 1 million invested in the region is expected to generate EUR 650,000 in local GDP and create 14 new jobs. The results underscore the potential of alternative tourism to stimulate inclusive and sustainable growth, particularly in post-disaster rural regions. This integrated approach can serve as a model for other territories facing similar environmental, economic, and demographic challenges. Full article
Show Figures

Figure 1

Back to TopTop