Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = suspended road dust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7501 KiB  
Article
Theoretical Analysis of Suspended Road Dust in Relation to Concrete Pavement Texture Characteristics
by Hojun Yoo, Gyumin Yeon and Intai Kim
Atmosphere 2025, 16(7), 761; https://doi.org/10.3390/atmos16070761 - 21 Jun 2025
Viewed by 336
Abstract
Particulate matter (PM) originating from road dust is an increasing concern in urban air quality, particularly as non-exhaust emissions from tire–pavement interactions gain prominence. Existing models often focus on meteorological and traffic-related variables while oversimplifying pavement surface characteristics, limiting their applicability across diverse [...] Read more.
Particulate matter (PM) originating from road dust is an increasing concern in urban air quality, particularly as non-exhaust emissions from tire–pavement interactions gain prominence. Existing models often focus on meteorological and traffic-related variables while oversimplifying pavement surface characteristics, limiting their applicability across diverse spatial and traffic conditions. This study investigates the influence of concrete pavement macrotexture—specifically the Mean Texture Depth (MTD) and surface wavelength—on PM10 resuspension. Field data were collected using a vehicle-mounted DustTrak 8530 sensor following the TRAKER protocol, enabling real-time monitoring near the tire–pavement interface. A multivariable linear regression model was used to evaluate the effects of MTD, wavelength, and the interaction between silt loading (sL) and PM10 content, achieving a high adjusted R2 of 0.765. The surface wavelength and sL–PM10 interaction were statistically significant (p < 0.01). The PM10 concentrations increased with the MTD up to a threshold of approximately 1.4 mm, after which the trend plateaued. A short wavelength (<4 mm) resulted in 30–50% higher PM10 emissions compared to a longer wavelength (>30 mm), likely due to enhanced air-pumping effects caused by more frequent aggregate contact. Among pavement types, Transverse Tining (T.Tining) exhibited the highest emissions due to its high MTD and short wavelength, whereas Exposed Aggregate Concrete Pavement (EACP) and the Next-Generation Concrete Surface (NGCS) showed lower emissions with a moderate MTD (1.0–1.4 mm) and longer wavelength. Mechanistically, a low MTD means there is a lack of sufficient voids for dust retention but generates less turbulence, producing moderate emissions. In contrast, a high MTD combined with a very short wavelength intensifies tire contact and localized air pumping, increasing emissions. Therefore, an intermediate MTD and moderate wavelength configuration appears optimal, balancing dust retention with minimized turbulence. These findings offer a texture-informed framework for integrating pavement surface characteristics into PM emission models, supporting sustainable and emission-conscious pavement design. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

30 pages, 16943 KiB  
Article
Quantitative Assessment of Road Dust Suspension Based on Variations in Asphalt Pavement Surface Texture
by Ho-Jun Yoo, Sung-Jin Hong, Jeong-Yeon Cho and In-Tai Kim
Atmosphere 2025, 16(5), 552; https://doi.org/10.3390/atmos16050552 - 6 May 2025
Viewed by 489
Abstract
This study explores the correlation between road surface texture, including microtexture (texture depth) and macrotexture (wavelength) in asphalt pavement, and suspended dust generation on asphalt pavements. A detailed analysis of various pavement types, including Hot Mix Asphalt (HMA) and porous pavement, was conducted [...] Read more.
This study explores the correlation between road surface texture, including microtexture (texture depth) and macrotexture (wavelength) in asphalt pavement, and suspended dust generation on asphalt pavements. A detailed analysis of various pavement types, including Hot Mix Asphalt (HMA) and porous pavement, was conducted to assess their impact on dust load and concentration. For HMA pavements, deeper texture depths led to a higher dust load and concentration, attributed to the impermeable nature of the material, which causes dust to become easily suspended in the air. Conversely, porous pavements, which have air gaps in their surface layers, showed reduced dust suspension despite a higher dust load, due to the ability of these voids to trap dust and minimize air-pumping effects from tire–road contact. The study found that a macrotexture depth (MTD) exceeding 1.7 mm stabilized dust concentration, while higher surface wavelengths and silt load (sL) values above 0.1 g/m2 significantly contributed to dust suspension. These findings suggest that optimizing road surface texture and aggregate size, considering the voids and depth, can help reduce suspended dust, providing a balance between road safety and environmental management. This research offers valuable insights for designing pavements that mitigate air pollution while maintaining functional performance. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

26 pages, 15535 KiB  
Article
Analytical Approach to Enhancing Efficiency of Silt Loading Collection in EPA Vacuum Sweep Method Using K-Means Clustering
by Ho-jun Yoo and In-tai Kim
Atmosphere 2025, 16(5), 530; https://doi.org/10.3390/atmos16050530 - 30 Apr 2025
Viewed by 337
Abstract
This study explores the application of K-means clustering to optimize the selection of sampling locations for suspended silt loading (sL) on asphalt pavements, addressing the limitations of traditional random sampling methods in the EPA method. The objective was to identify reliable sampling points [...] Read more.
This study explores the application of K-means clustering to optimize the selection of sampling locations for suspended silt loading (sL) on asphalt pavements, addressing the limitations of traditional random sampling methods in the EPA method. The objective was to identify reliable sampling points for road dust concentration measurement, with a focus on improving the accuracy of data collection using the vacuum sweep method. The elbow method was used to determine the optimal number of clusters, revealing that three clusters were ideal for 25 m intervals and five for 100 m intervals. The clustering analysis identified specific sampling locations within the 25 m and 100 m road sections, such as 1.5–4.5 m and 12–18 m, and 15–18 m, 39–42 m, 57 m, 69 m, and 87 m, respectively, which adequately captured sL characteristics. The silhouette score of 0.6247 confirmed the effectiveness of the clustering method in distinguishing distinct groups with similar sL characteristics. The comparison of clustered versus non-clustered sections across 15 pavement segments showed an error rate of approximately 6%. Properly selecting sampling points ensures more accurate dust concentration data, which is crucial for effective road maintenance and environmental management. The findings highlight that optimizing the sampling process can significantly enhance the precision of dust monitoring, especially in areas with varying sL characteristics. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

14 pages, 5500 KiB  
Article
Laboratory Evaluation of Wear Particle Emissions and Suspended Dust in Tire–Asphalt Concrete Pavement Friction
by Jongsub Lee, Ohsun Kwon, Yujoong Hwang and Gyumin Yeon
Appl. Sci. 2024, 14(14), 6362; https://doi.org/10.3390/app14146362 - 22 Jul 2024
Cited by 2 | Viewed by 1283
Abstract
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of [...] Read more.
This study aims to evaluate the tire–road-wear particles (TRWPs) and suspended dust generated based on the nominal maximum aggregate size (NMAS) of the polymer-modified stone mastic asphalt (SMA) mixtures indoors. The SMA mixtures containing styrene butadiene styrene (SBS) polymer and the NMASs of 19, 13, 10, 8, and 6 mm were used. Dust was generated from the wear of the tires and the pavement inside the indoor chamber by using the laboratory tire–road-wear particle generation and evaluation tester (LTRWP tester) developed by Korea Expressway Corporation (KEC). In this method, a cylindrical asphalt-mixture specimen rotates in the center, and a load is applied using three tires on the sides of the test specimen. During the test, a digital sensor was used to measure the concentration for each particle size. After the test was completed, the dust was collected and weighed. According to the test results, the generated TRWP emissions were reduced by approximately 0.15 g as the NMAS of the SMA mixture decreased by 1 mm. TRWP emissions decreased by 20% when using the 6 mm SMA mixture compared to the 13 mm SMA mixture. For practical application, a predicted equation of TRWP emissions estimation was developed by using the concentration of suspended dust measured by the digital sensor in the LTRWP tester. LTRWP can be used as an indoor test method to evaluate pavement and tire materials to reduce the amount of dust generated from tire and pavement wear. Full article
(This article belongs to the Special Issue Advances in Renewable Asphalt Pavement Materials)
Show Figures

Figure 1

17 pages, 3415 KiB  
Article
Spatial Distribution Characteristics of Fugitive Road Dust Emissions from a Transportation Hub City (Jinan) in China and Their Impact on the Atmosphere in 2020
by Xiangyang Li, Nana Wang, Xinyue Qu and Baodong Jiang
Sustainability 2024, 16(11), 4771; https://doi.org/10.3390/su16114771 - 4 Jun 2024
Viewed by 1251
Abstract
Road silt loading (sL) directly affects the fugitive road dust (FRD) emission factor, which is an important parameter in the study of FRD emissions. In this study, an improved collection method combined with the AP−42 method was newly developed to estimate the sL [...] Read more.
Road silt loading (sL) directly affects the fugitive road dust (FRD) emission factor, which is an important parameter in the study of FRD emissions. In this study, an improved collection method combined with the AP−42 method was newly developed to estimate the sL of asphalt roads in Jinan, China. The characteristics of sL in Jinan followed the order National highway (NH) > Branch road (BR) > Provincial highway (PH) > Country highway (CH) > Minor arterial (MiA) > Major arterial (MaA) > Urban expressway (UE) with 3.9 ± 2.5, 3.9 ± 1.9, 3.8 ± 2.8, 3.8 ± 0.9, 2.1 ± 1.4, 1.7 ± 1.2, and 1.4 ± 1.2 g/m2, respectively. The size orders of PM2.5 and PM10 emission factors are consistent with total suspended particulate (TSP). The characteristics of the TSP emission factor of FRD followed the order NH > PH > CH > Expressway (EW) > MiA > BR > MaA > UE with 27.3, 23.4, 19.4, 13.7, 7.7, 7.4, 6.2, and 3.0 g/VKT (vehicle kilometers traveled), respectively. The annual emissions of TSP, PM10, and PM2.5 from FRD in Jinan in 2020 were about 985.2, 209.8, and 57.8 kt, respectively. Laiwu, Jiyang, and Licheng districts show the top three TSP emissions of FRD; the sum of their emissions accounts for 44.7% of the TSP emissions from FRD in Jinan. TSP emissions from municipal roads and administrative roads accounted for about 29.2% and 70.8% of the total emissions in Jinan, respectively, of which emissions from MiA accounted for the largest proportion of TSP emissions from municipal roads, contributing about 37.9%, while TSP emissions from NH made the largest contribution to TSP emissions from administrative roads, with a contribution of about 35.8%. Based on Monte Carlo simulation results using Crystal Ball, the uncertainty range of the emission inventory of FRD in Jinan ranged from −79.9 to 151.8%. In 2020, about 985,200 tons of road particulate matter in Jinan City entered the atmosphere, having an adverse effect on air quality and human health. Full article
Show Figures

Graphical abstract

21 pages, 7748 KiB  
Article
Characteristics of Suspended Road Dust According to Vehicle Driving Patterns in an Urban Area and PM10 Content in Silt
by Hojun Yoo, Jeongyeon Cho, Sungjin Hong and Intai Kim
Atmosphere 2024, 15(1), 5; https://doi.org/10.3390/atmos15010005 - 20 Dec 2023
Cited by 3 | Viewed by 2503
Abstract
Characterizing the influence factors of exhaust gas based on the suspended road dust on paved roads, according to the number of vehicles and their distance with regard to driving pattern, is important in order to provide a coefficient for driving patterns to find [...] Read more.
Characterizing the influence factors of exhaust gas based on the suspended road dust on paved roads, according to the number of vehicles and their distance with regard to driving pattern, is important in order to provide a coefficient for driving patterns to find a model equation. This has been a limitation of previous studies, in which this was difficult to carry out in a large area reflecting various driving patterns because some sections were selected according to empirical measurement results, and only one vehicle measurement was used to find the level of road dust. This study measured the concentration of suspended road dust that could occur, depending on the vehicle’s driving patterns, on an experimental road in Yongin, South Korea, from May to July 2023. The study was conducted to determine the degree of the effect of exhaust gas, according to the concentration of suspended road dust generated, by determining the separation distance based on real-time measurements. This study attempted to determine the changes in suspended road dust based on driving patterns in urban areas and factor in the concentration of suspended road dust with regard to emission characteristics in terms of exhaust gas and particulate matter with a diameter of 10 microns or less (PM10). This was in accordance with conditions evaluated using mobile laboratories, based on suspended-PM10-concentration-measuring equipment. This study mainly focused on the following main topics: (1) increasing the level of suspended particulate matter at less than 10 m intervals produced by exhaust gas; (2) decreasing the level of suspended road dust with an increase in the number of vehicles, with the area measured at a distance of three cars in front showing the lowest level of suspended road dust in the air and a low level for the rear vehicle; (3) demonstrating that PM10 is effective in measuring the generation of suspended road dust; and (4) evaluating suspended road dust levels by road section. Based on the results, this research is necessary to more appropriately set the focus of analyses that aim to characterize suspended road dust according to exhaust gas and PM10 content in silt. Full article
(This article belongs to the Special Issue Traffic Related Emission (2nd Edition))
Show Figures

Figure 1

17 pages, 2701 KiB  
Article
Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period
by Eleftheria Ioannidou, Stefanos Papagiannis, Manousos Ioannis Manousakas, Chrysoula Betsou, Konstantinos Eleftheriadis, Jussi Paatero, Lambrini Papadopoulou and Alexandra Ioannidou
Atmosphere 2023, 14(9), 1430; https://doi.org/10.3390/atmos14091430 - 13 Sep 2023
Cited by 3 | Viewed by 2000
Abstract
The atmospheric concentrations of seventeen elements were measured in air filters at the Finnish Meteorological Institute station in Helsinki, Finland, during a period of 44 years (1962–2005). The mean annual concentrations were calculated and are presented from the lowest values to the highest [...] Read more.
The atmospheric concentrations of seventeen elements were measured in air filters at the Finnish Meteorological Institute station in Helsinki, Finland, during a period of 44 years (1962–2005). The mean annual concentrations were calculated and are presented from the lowest values to the highest ones Cr < Ni < Ti < Br < V < Mn < Cu < Zn < Cl < Al < Fe < K < Ca < Na < Pb < Si < S. Most of the elements (Fe, Si, Ti, K, Ca, Zn, Br, Pb, V, Ni, S, Cr, Na, Al, and Cl) present higher values during spring and winter season, while in summer the elements (Ti, Ca, S, and Na) are found in higher concentrationsdue to the weather conditions across seasons and the sources and emissions of air pollutants. There is a strong correlation between the elements (V-Ni, Si-Pb, Fe-Ca, V-Cr, Si-K, K-Ca, Fe-Ti, K-Na, Si-Ca, and V-S), indicating their common source. The identification of the sources of trace elements was performed based on positive matrix factorization analysis, using SoFi software. Four Suspended Particulate Matter (PM) sources were identified: road dust (due to usage of leaded fuel), heavy oil combustion/secondary sulfates, traffic emissions, and natural dust (soil). For the total of 44 years studied, significant decreases in concentrations were observed for all elements, most of which were over 50%: Na (−74%), Al (−86%), Si (−88%), S (−82%), K (−82%), Ca (−89%), Ti (−80%), V (−89%), Cr (−82%), Mn (−77%), Fe (−77%), Ni (−61%), Zn (−72%), and Pb (−95%). In general, a significant decline has been observed in the majority of the elemental concentrations since the end of the 1970s, underlying the effectiveness of different environmental policies that have been applied during the last few decades. Full article
Show Figures

Figure 1

16 pages, 2762 KiB  
Article
Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate
by Brian Charles Barr, Hrund Ólöf Andradóttir, Throstur Thorsteinsson and Sigurður Erlingsson
Sustainability 2021, 13(17), 9607; https://doi.org/10.3390/su13179607 - 26 Aug 2021
Cited by 12 | Viewed by 3978
Abstract
Tire and road wear particles (TRWP) are a significant source of atmospheric particulate matter and microplastic loading to waterways. Road wear is exacerbated in cold climate by the widespread use of studded tires. The goal of this research was to assess the anthropogenic [...] Read more.
Tire and road wear particles (TRWP) are a significant source of atmospheric particulate matter and microplastic loading to waterways. Road wear is exacerbated in cold climate by the widespread use of studded tires. The goal of this research was to assess the anthropogenic levers for suspendable road dust generation and climatic conditions governing the environmental fate of non-exhaust particles in a wet maritime winter climate. Sensitivity analyses were performed using the NORTRIP model for the Capital region of Reykjavík, Iceland (64.1° N). Precipitation frequency (secondarily atmospheric relative humidity) governed the partitioning between atmospheric and waterborne PM10 particles (55% and 45%, respectively). Precipitation intensity, however, increased proportionally most the drainage to waterways via stormwater collection systems, albeit it only represented 5% of the total mass of dust generated in winter. A drastic reduction in the use of studded tires, from 46% to 15% during peak season, would be required to alleviate the number of ambient air quality exceedances. In order to achieve multifaceted goals of a climate resilient, resource efficient city, the most important mitigation action is to reduce overall traffic volume. Reducing traffic speed may help speed environmental outcomes. Full article
(This article belongs to the Special Issue Air Quality Characterisation and Modelling)
Show Figures

Figure 1

14 pages, 2472 KiB  
Article
Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China
by Huan Yang, Xuan Song, Liping Du, Qi Zhang, Jian Cui and Shasha Yin
Atmosphere 2021, 12(6), 660; https://doi.org/10.3390/atmos12060660 - 21 May 2021
Cited by 8 | Viewed by 2663
Abstract
With the rapid development of the social economy in China, numerous Chinese cities are facing high levels of particulate matter (PM) pollution problems. In this study, high-resolution ZY-3 images and GIS techniques were used to establish the emission inventory of total suspended particle [...] Read more.
With the rapid development of the social economy in China, numerous Chinese cities are facing high levels of particulate matter (PM) pollution problems. In this study, high-resolution ZY-3 images and GIS techniques were used to establish the emission inventory of total suspended particle (TSP), particulate matter 10 (PM10) and particulate matter 2.5 (PM2.5) from fugitive dust sources in May 2016, and a spatial grid of 3 km × 3 km resolution was established to demonstrate the spatial distribution of PM emission. Results showed that the total emissions of TSP, PM10 and PM2.5 in Zhengzhou city were 237.5 kt·a−1, 103.7 kt·a−1 and 22.4 kt·a−1, respectively. Construction dust source was the main fugitive dust emission source in Zhengzhou city—the TSP, PM10 and PM2.5 emission of which account for 76.42%, 89.68% and 88.39%, respectively, of the total emission, followed by road dust source and soil dust source. PM emission was higher in Zhongyuan, Huiji, Jinshui and Zhengdong New District, while Zhongmou, Xingyang, Dengfeng and other remote areas had low PM emissions. Compared to other Chinese cities or regions, the PM emission from the construction dust source was at a high level in Zhengzhou city, while the PM emissions from the soil dust source and road dust source were at moderate levels. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

14 pages, 2356 KiB  
Article
Use of Black Poplar Leaves for the Biomonitoring of Air Pollution in an Urban Agglomeration
by Levente Levei, Oana Cadar, Vanda Babalau-Fuss, Eniko Kovacs, Anamaria Iulia Torok, Erika Andrea Levei and Alexandru Ozunu
Plants 2021, 10(3), 548; https://doi.org/10.3390/plants10030548 - 14 Mar 2021
Cited by 17 | Viewed by 3484
Abstract
Trees are considered to be an effective tool for metal pollution biomonitoring. In the present study, the concentration of metals (Cu, Pb, Zn, Cd, Co, Ni, Fe, Mn, and Al) in black poplar leaves (Populus nigra L.), together with the concentration of [...] Read more.
Trees are considered to be an effective tool for metal pollution biomonitoring. In the present study, the concentration of metals (Cu, Pb, Zn, Cd, Co, Ni, Fe, Mn, and Al) in black poplar leaves (Populus nigra L.), together with the concentration of PM10, PM2.5, PM1, and total suspended particles (TSP), was used for the air pollution biomonitoring in 12 sites from various areas of Cluj-Napoca city, Romania. The concentration of PM10 in the air was high, but their metal content was low. However, Cu, Pb, and Zn were moderately enriched, while Cd was highly enriched in PM10 due to anthropogenic sources. The average metal concentration in leaves decreased in the order Zn>>Fe>Mn>Al>Pb>Ni>Cu>Co>Cd and increased with the increase of PM10 concentration, indicating that poplar leaves are sensitive to air pollution. The principal component analysis indicated that traffic, waste burning, road dust resuspension, and soil contamination are the main anthropogenic sources of metals in poplar leaves. The results indicated that black poplar leaves are a suitable biomonitoring tool for metal pollution, in urban environments. Full article
(This article belongs to the Special Issue Poplar Responses to Environmental Stresses)
Show Figures

Figure 1

31 pages, 7775 KiB  
Article
Dissolved and Suspended Forms of Metals and Metalloids in Snow Cover of Megacity: Partitioning and Deposition Rates in Western Moscow
by Dmitry Vlasov, Jessica Vasil’chuk, Natalia Kosheleva and Nikolay Kasimov
Atmosphere 2020, 11(9), 907; https://doi.org/10.3390/atmos11090907 - 26 Aug 2020
Cited by 46 | Viewed by 5204
Abstract
Concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs) in snow cover and their deposition rates from the atmosphere in the western part of Moscow were studied. Forms of MMs were separated using a filter with pore diameter of [...] Read more.
Concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs) in snow cover and their deposition rates from the atmosphere in the western part of Moscow were studied. Forms of MMs were separated using a filter with pore diameter of 0.45 μm; their concentrations were measured by ICP-MS and ICP-AES methods. Anthropogenic impact in Moscow caused a significant increase in dust load (2–7 times), concentration of solid particles in snow cover (2–5 times), and mineralization of snow meltwater (5–18 times) compared to the background level. Urban snow contains Sn, Ti, Bi, Al, W, Fe, Pb, V, Cr, Rb, Mo, Mn, As, Co, Cu, Ba, Sb, Mg mainly in suspended form, and Ca and Na in dissolved form. The role of suspended MMs in the city significantly increases compared to the background region due to high dust load, usage of de-icing salts, and the change of acidic background conditions to alkaline ones. Anthropogenic emissions are the main sources of suspended Ca, W, Co, V, Sr, Ti, Mg, Na, Mo, Zn, Fe, Sb, and Cu in the snow cover of traffic zone. These elements’ concentrations in roadside snow cover exceed the background values more than 25 times. The highest concentrations and deposition rates of MMs in the snow of Moscow are localized near the large and medium roads. Full article
(This article belongs to the Special Issue Interaction of Air Pollution with Snow and Seasonality Effects)
Show Figures

Graphical abstract

18 pages, 2369 KiB  
Review
Water Quality Improvement Performance of Geotextiles Within Permeable Pavement Systems: A Critical Review
by Miklas Scholz
Water 2013, 5(2), 462-479; https://doi.org/10.3390/w5020462 - 18 Apr 2013
Cited by 45 | Viewed by 11893
Abstract
Sustainable drainage systems (SuDS; or best management practices) are increasingly being used as ecological engineering techniques to prevent the contamination of receiving watercourses and groundwater. Permeable paving is a SuDS technique, which is commonplace in car parks, driveways and minor roads where one [...] Read more.
Sustainable drainage systems (SuDS; or best management practices) are increasingly being used as ecological engineering techniques to prevent the contamination of receiving watercourses and groundwater. Permeable paving is a SuDS technique, which is commonplace in car parks, driveways and minor roads where one of their functions is to improve the quality of urban runoff. However, little is known about the water quality benefits of incorporating an upper geotextile within the paving structure. The review focuses on five different categories of pollutants: organic matter, nutrients, heavy metals, motor oils, suspended solids originating from street dust, and chloride. The paper critically assesses results from previous international tests and draws conclusions on the scientific rigour and significance of the data. Findings indicate that only very few studies have been undertaken to address the role of geotextiles directly. All indications are that the presence of a geotextile leads only to minor water quality improvements. For example, suspended solids are being held back by the geotextile and these solids sometimes contain organic matter, nutrients and heavy metals. However, most studies were inconclusive and data were often unsuitable for further statistical analysis. Further long-term research on industry-relevant, and statistically and scientifically sound, experimental set-ups is recommended. Full article
Show Figures

Graphical abstract

Back to TopTop