Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,857)

Search Parameters:
Keywords = surface transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7131 KB  
Article
Evaluation of Machining Parameters in Turning Al7075-T6 Aluminum Alloy Using Dry, Flooded, and Cryogenic Cutting Fluid Conditions
by Santiago Medina, Marcela Acuña-Rivera, Santiago Castellanos and Kleber Castro
J. Manuf. Mater. Process. 2025, 9(10), 328; https://doi.org/10.3390/jmmp9100328 (registering DOI) - 7 Oct 2025
Abstract
Production industries create high-quality products through effective machining precision, lead times, productivity, cost benefits, and implementing sustainable manufacturing practices. This study compares the effect of cryogenic CO2 as a cutting fluid with a flooded conventional system and dry turning on the surface [...] Read more.
Production industries create high-quality products through effective machining precision, lead times, productivity, cost benefits, and implementing sustainable manufacturing practices. This study compares the effect of cryogenic CO2 as a cutting fluid with a flooded conventional system and dry turning on the surface roughness, early-stage tool phenomena (including adhesion, material transfer, and built-up edge (BUE) formation), and the chip morphology of aluminum 7075-T6. Taguchi’s L9 orthogonal array is applied to identify the optimal cutting parameters that minimize surface roughness (Ra). Cutting speed (Vc), feed rate (f), depth of cut (ap), and the type of cutting fluid condition were defined at three levels. The surface roughness (Ra) was determined, and the built-up edge (BUE) and chip morphology were evaluated. Moreover, SEM and energy-dispersive X-ray spectroscopy (EDX) were employed to characterize the machined surface and the cutting tools. The optimal values for the cryogenic cooling and cutting parameters are as follows: 220 m/min (Vc), 0.05 mm/rev (f), and 0.5 mm (ap). These conditions yield a surface roughness mean (Ra) of 0.736 µm, improving the surface roughness by 10.57% compared with the lowest Ra value from all of the tests. In addition, ANOVA showed the feed rate to be the most significant cutting parameter over surface roughness under the given conditions. Regarding chip morphology, snarled chip shapes are associated with low surface roughness values. The results indicate that cryogenic cutting fluid enhances the machined surface quality and reduces the built-up edge compared with dry and flooded conditions. Full article
Show Figures

Graphical abstract

20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

9 pages, 2139 KB  
Article
Thermal Performance of Silicone and Non-Silicone Thermal Pads as Thermal Interface Materials
by Chandan Roy, Landon Yarbrough, Hammad Quddus and Megan Batchelor
J. Exp. Theor. Anal. 2025, 3(4), 30; https://doi.org/10.3390/jeta3040030 - 5 Oct 2025
Abstract
The research presents the thermal performance comparison of silicone and non-silicone thermal pads using a steady-state thermal interface material (TIM) testing apparatus. The TIM tester follows standard guidelines for testing thermal properties. TIMs are applied between two solid surfaces to improve heat transfer [...] Read more.
The research presents the thermal performance comparison of silicone and non-silicone thermal pads using a steady-state thermal interface material (TIM) testing apparatus. The TIM tester follows standard guidelines for testing thermal properties. TIMs are applied between two solid surfaces to improve heat transfer by eliminating air gaps that naturally occur due to surface roughness and non-flatness. Since TIMs possess significantly higher thermal conductivity than air, they effectively reduce contact resistance at the interface, thereby minimizing the risk of overheating in electronic systems. In this work, the thermal resistances of silicone and non-silicone thermal pads were compared over a pressure range of 10–50 psi. Results indicate that non-silicone pads consistently exhibit lower thermal resistance than their silicone counterparts under identical testing conditions. Full article
Show Figures

Figure 1

18 pages, 4685 KB  
Article
Hydrothermal Versus Physical Mixing: Superior Photocatalytic Activity of TiO2/WO3 Nanocomposites for Water Treatment Applications
by Mabrouka Ghiloufi, Tobias Schnabel, Christian Springer, Simon Mehling, Axel Wolfram, Fathi Touati and Salah Kouass
Environments 2025, 12(10), 359; https://doi.org/10.3390/environments12100359 - 5 Oct 2025
Abstract
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through [...] Read more.
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through the degradation of the pharmaceutical pollutant venlafaxine. Contaminants are rarely addressed in photocatalytic studies. Unlike a simple physical mixture of commercial TiO2 and WO3 powders, the hydrothermally synthesized TiO2/WO3 photocatalyst exhibited superior efficiency, attributable to its nanoscale dimensions achieved via the hydrothermal route, which promoted improved charge carrier separation, enhanced surface homogeneity, and the formation of an effective heterojunction interface. An optimization study varying the WO3 content (5, 10, 20, and 30 wt.%) within the TiO2 revealed that the 10 wt.% WO3 composition achieved the highest performance, with ~52% venlafaxine degradation within 60 min. SEM, TEM, FTIR, Raman spectroscopy, XRD, and UV-Vis DRS revealed the successful incorporation of WO3 into the TiO2 matrix, confirming phase purity and composition-dependent structural evolution of the nanocomposite, and evidencing extended light absorption and superior charge-transfer properties. Importantly, the optimized photocatalyst thin film retained excellent stability and reusability, maintaining high degradation efficiency over three consecutive cycles with negligible activity loss, which avoids slurry separation. These findings establish hydrothermally synthesized TiO2/10%WO3 thin film heterostructures as effective and sustainable photocatalytic platforms for the removal of pharmaceutical pollutants in wastewater under UV-LED irradiation. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

30 pages, 1606 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media Over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
22 pages, 6518 KB  
Article
Impacts of Cooling Reduction Due to Spray Nozzle Clogging on Shell Formation in Continuous Casting of Steel
by Dianzhi Meng, Sai Bhuvanesh Nandipati, Armin K. Silaen, Yufeng Wang, Sunday Abraham, Dallas Brown and Chenn Zhou
Metals 2025, 15(10), 1107; https://doi.org/10.3390/met15101107 - 4 Oct 2025
Abstract
In steel continuous casting, the secondary cooling zone is usually equipped with air-mist nozzles. Spray nozzle clogging is a common problem that reduces cooling efficiency and affects product quality. This study uses a 3D CFD model to investigate its impact on heat transfer. [...] Read more.
In steel continuous casting, the secondary cooling zone is usually equipped with air-mist nozzles. Spray nozzle clogging is a common problem that reduces cooling efficiency and affects product quality. This study uses a 3D CFD model to investigate its impact on heat transfer. The model includes the full-size caster geometry and actual nozzle layout to analyze the effect of clogging on the cooling process. The solidification process is modeled using the enthalpy-porosity method. Spray cooling is defined through empirical HTC correlations on the slab surface. The study focuses on how nozzle clogging changes the surface temperature, cooling rate, and metallurgical length (ML). Simulation results show that clogging raises the local surface temperature by about 100 K and increases the ML. More clogged nozzles lead to a longer ML. Clogging near the meniscus has a stronger impact, showing that early-stage cooling plays an important role in solidification. Even a single clogged nozzle can increase the ML by 3.2%, highlighting the significant effect of nozzle clogging on the casting process. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

14 pages, 7499 KB  
Article
Design and Color Prediction of Anthracene-Based Dyes Based on Quantum Chemical Calculations
by Yanyi Li, Jiahao Zhang, Mei Bai, Hao Li, Zengbo Ke and Chunsheng Zhou
Molecules 2025, 30(19), 3975; https://doi.org/10.3390/molecules30193975 - 3 Oct 2025
Abstract
We systematically investigated the parent anthracene (abbreviated as en-1, C14H10) and three N,N′-disubstituted derivatives: the 1,5-diethylanthracene (en-2, C18H18), the 1,5-divinylanthracene (en-3, C18H14), and the 1,5-diphenylanthracene (en-4, C26 [...] Read more.
We systematically investigated the parent anthracene (abbreviated as en-1, C14H10) and three N,N′-disubstituted derivatives: the 1,5-diethylanthracene (en-2, C18H18), the 1,5-divinylanthracene (en-3, C18H14), and the 1,5-diphenylanthracene (en-4, C26H18), using a rigorous density functional theory (DFT)/time-dependent density functional theory (TD-DFT) approach. Following full geometric optimization and frequency validation (no imaginary frequencies), frontier molecular orbital analysis revealed an inverse correlation between conjugation extent and the HOMO-LUMO energy gap. Electrostatic potential (ESP) analysis further indicated a progressive increase in surface potential variance upon substitution, reflecting charge redistribution. TD-DFT calculations yielded vertical excitation wavelengths of 438 nm, 441 nm, 464 nm, and 496 nm for en-1, en-2, en-3, and en-4, respectively. Complementary color theory predicts visual colors of yellow, yellow, red, and orange for these compounds based on their absorption characteristics. This work establishes a closed-loop “computation-spectra-color” model for anthracene-based dyes, providing a transferable design paradigm for novel functional pigments with high molar extinction coefficients. Full article
(This article belongs to the Section Physical Chemistry)
26 pages, 20743 KB  
Article
Assessing Rural Landscape Change Within the Planning and Management Framework: The Case of Topaktaş Village (Van, Turkiye)
by Feran Aşur, Kübra Karaman, Okan Yeler and Simay Kaskan
Land 2025, 14(10), 1991; https://doi.org/10.3390/land14101991 - 3 Oct 2025
Abstract
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. [...] Read more.
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. Using ArcGIS 10.8 and the Analytic Hierarchy Process (AHP), we integrate DEM, slope, aspect, CORINE land cover Plus, surface-water presence/seasonality, and proximity to hazards (active and surface-rupture faults) and infrastructure (Karasu Stream, highways, village roads). A risk overlay is treated as a hard constraint. We produce suitability maps for settlement, agriculture, recreation, and industry; derive a composite optimum land-use surface; and translate outputs into decision rules (e.g., a 0–100 m fault no-build setback, riparian buffers, and slope thresholds) with an outline for implementation and monitoring. Key findings show legacy footprints at lower elevations, while new footprints cluster near the upper elevation band (DEM range 1642–1735 m). Most of the area exhibits 0–3% slopes, supporting low-impact access where hazards are manageable; however, several newly designated settlement tracts conflict with risk and water-service conditions. Although limited to a single case and available data resolutions, the workflow is transferable: it moves beyond mapping to actionable planning instruments—zoning overlays, buffers, thresholds, and phased management—supporting sustainable, culturally informed post-earthquake reconstruction. Full article
Show Figures

Figure 1

24 pages, 4192 KB  
Article
Investigation on Dynamic Thermal Transfer Characteristics of Electromagnetic Rail Spray Cooling in Transient Processes
by Shuo Ma and Hongting Ma
Energies 2025, 18(19), 5254; https://doi.org/10.3390/en18195254 - 3 Oct 2025
Abstract
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging [...] Read more.
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging its high heat transfer coefficient, exceptional critical heat flux (CHF) carrying capacity, and strong transient cooling characteristics, it is particularly suitable for the unsteady thermal control during the initial launch phase. An experimental platform was established, and a three-dimensional numerical model was developed to systematically analyze the dynamic influence mechanisms of nozzle inlet pressure, flow rate, spray angle, and spray distance on cooling performance. Experimental results indicate that the system achieves maximum critical heat flux (CHF) and rail temperature drop at an inlet pressure of 0.5 MPa and a spray angle of 0°. Numerical simulations further reveal that a 45° spray cone angle simultaneously achieves the maximum temperature drop and optimal wall temperature uniformity. Key parameter sensitivity analysis demonstrates that while increasing spray distance leads to larger droplet diameters, the minimal droplet velocity decay combined with a significant increase in overall momentum markedly enhances convective heat transfer efficiency. Concurrently, increasing spray distance effectively improves rail surface temperature uniformity by optimizing the spatial distribution of droplet size and velocity. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

14 pages, 1641 KB  
Article
The Effect of Electrochemical Surface Properties on Molybdenite Flotation in Seawater
by Yang Chen, Na Zhang and Haoran Cui
Minerals 2025, 15(10), 1049; https://doi.org/10.3390/min15101049 - 3 Oct 2025
Abstract
Seawater has been widely used in copper–molybdenum flotation plants due to the shortage of fresh water and the high cost of seawater desalination, especially in arid regions. There have been many studies concerning the molybdenite flotation in seawater. Due to the complication of [...] Read more.
Seawater has been widely used in copper–molybdenum flotation plants due to the shortage of fresh water and the high cost of seawater desalination, especially in arid regions. There have been many studies concerning the molybdenite flotation in seawater. Due to the complication of seawater flotation, it is difficult to identify the key factors affecting molybdenite recoveries. It is known that the unique structure of molybdenite plays an important role in molybdenite flotation. The anisotropic property of molybdenite leads to the different surface properties of basal and edge plane surfaces. Electrochemical properties of sulfides have a significant effect on the surface properties which affect the flotation performance. Therefore, it is important to understand the surface electrochemical properties such as surface chemistry, redox processes, and reaction kinetics of molybdenite’s two different surfaces in seawater, and to determine what affects the molybdenite flotation behaviors in seawater. In this study, the surface properties of molybdenite basal and edge plane surfaces in both fresh water and seawater were investigated through various electrochemical techniques. Open circuit potential (OCP) measurement indicated that edge plane surfaces were easier to be oxidized than basal plane surfaces. Cyclic voltammetry (CV) studies showed that the basal plane surfaces were stable with a low electrochemical reactivity, while the edge plane surfaces had relatively high electrochemical reactivity. In addition, the redox property of the molybdenite surface was enhanced in seawater, which is a key to the improvement of fine molybdenite flotation in seawater. Electrochemical impedance spectroscopy (EIS) measurements further confirmed the stability of basal plane surfaces and indicated a greater charge transfer ability of edge plane surfaces in seawater. Different molybdenite particle sizes with different basal and edge ratios were applied in the flotation in both fresh water and seawater; the results illustrated that molybdenite flotation was enhanced in seawater especially to fine particles. The flotation and electrochemical studies reveal that the electrochemical reactivity of edge plane surface plays an important role in molybdenite seawater flotation. Full article
(This article belongs to the Special Issue Advances in Fine Particles and Bubbles Flotation, 2nd Edition)
Show Figures

Graphical abstract

28 pages, 11737 KB  
Article
Comparative Evaluation of SNO and Double Difference Calibration Methods for FY-3D MERSI TIR Bands Using MODIS/Aqua as Reference
by Shufeng An, Fuzhong Weng, Xiuzhen Han and Chengzhi Ye
Remote Sens. 2025, 17(19), 3353; https://doi.org/10.3390/rs17193353 - 2 Oct 2025
Abstract
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous [...] Read more.
Radiometric consistency across satellite platforms is fundamental to producing high-quality Climate Data Records (CDRs). Because different cross-calibration methods have distinct advantages and limitations, comparative evaluation is necessary to ensure record accuracy. This study presents a comparative assessment of two widely applied calibration approaches—Simultaneous Nadir Overpass (SNO) and Double Difference (DD)—for the thermal infrared (TIR) bands of FY-3D MERSI. MODIS/Aqua serves as the reference sensor, while radiative transfer simulations driven by ERA5 inputs are generated with the Advanced Radiative Transfer Modeling System (ARMS) to support the analysis. The results show that SNO performs effectively when matchup samples are sufficiently large and globally representative but is less applicable under sparse temporal sampling or orbital drift. In contrast, the DD method consistently achieves higher calibration accuracy for MERSI Bands 24 and 25 under clear-sky conditions. It reduces mean biases from ~−0.5 K to within ±0.1 K and lowers RMSE from ~0.6 K to 0.3–0.4 K during 2021–2022. Under cloudy conditions, DD tends to overcorrect because coefficients derived from clear-sky simulations are not directly transferable to cloud-covered scenes, whereas SNO remains more stable though less precise. Overall, the results suggest that the two methods exhibit complementary strengths, with DD being preferable for high-accuracy calibration in clear-sky scenarios and SNO offering greater stability across variable atmospheric conditions. Future work will validate both methods under varied surface and atmospheric conditions and extend their use to additional sensors and spectral bands. Full article
Show Figures

Figure 1

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
22 pages, 402 KB  
Review
Influence of Culture Conditions on Bioactive Compounds in Cordyceps militaris: A Comprehensive Review
by Hye-Jin Park
Foods 2025, 14(19), 3408; https://doi.org/10.3390/foods14193408 - 1 Oct 2025
Abstract
Cordyceps militaris (C. militaris) is a medicinal fungus renowned for its diverse therapeutic properties, largely attributed to bioactive compounds such as cordycepin, polysaccharides, adenosine, D-mannitol, carotenoids, and ergosterol. However, the production and composition of these metabolites are highly influenced by cultivation [...] Read more.
Cordyceps militaris (C. militaris) is a medicinal fungus renowned for its diverse therapeutic properties, largely attributed to bioactive compounds such as cordycepin, polysaccharides, adenosine, D-mannitol, carotenoids, and ergosterol. However, the production and composition of these metabolites are highly influenced by cultivation conditions, highlighting the need for systematic optimization strategies. This review synthesizes current findings on how nutritional factors—including carbon and nitrogen sources, their ratios, and trace elements—and environmental parameters such as oxygen availability, pH, temperature, and light regulate C. militaris metabolite biosynthesis. The impacts of solid-state fermentation (using grains, insects, and agro-industrial residues) and liquid state fermentation (submerged and surface cultures) are compared, with attention to their roles in mycelial growth, fruiting body formation, and secondary metabolite production. Special emphasis is placed on mixed grain–insect substrates and light regulation, which have emerged as promising methods to enhance cordycepin accumulation. Beyond summarizing advances, this review also identifies key knowledge gaps that must be addressed: (i) the incomplete understanding of metabolite regulatory networks, (ii) the absence of standardized cultivation protocols, and (iii) unresolved challenges in scale-up, including oxygen transfer, foam control, and downstream processing. We propose that future research should integrate multi-omics approaches with bioprocess engineering to overcome these limitations. Collectively, this review highlights both current progress and remaining challenges, providing a roadmap for advancing the sustainable, scalable, and application-driven production of bioactive compounds from C. militaris. Full article
(This article belongs to the Special Issue Mushrooms and Edible Fungi as Future Foods)
Show Figures

Figure 1

Back to TopTop