Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = surface photovoltage effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7661 KiB  
Article
Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2
by Jenny Hui Foong Chau, Chin Wei Lai, Bey Fen Leo, Joon Ching Juan, Kian Mun Lee, Irfan Anjum Badruddin, Amit Kumar and Gaurav Sharma
Catalysts 2025, 15(6), 601; https://doi.org/10.3390/catal15060601 - 18 Jun 2025
Viewed by 419
Abstract
Photodegradation is a sustainable green technology that has been studied worldwide, especially for wastewater treatment. The calcination temperature has an important impact on the physicochemical properties of the prepared photocatalysts. In this study, a ternary photocatalyst of Cu2O/WO3/TiO2 [...] Read more.
Photodegradation is a sustainable green technology that has been studied worldwide, especially for wastewater treatment. The calcination temperature has an important impact on the physicochemical properties of the prepared photocatalysts. In this study, a ternary photocatalyst of Cu2O/WO3/TiO2 (CWT) was successfully synthesized using an ultrasonic-assisted hydrothermal technique, and the calcination temperature was varied from 500 to 800 °C. The characterization outcomes proved that the anatase phase titanium dioxide (TiO2) in the CWT composite transformed to rutile phase TiO2 when the calcination temperature reached 700 °C and 800 °C. The surface area of the CWT composite decreased from 35.77 to 8.09 m2.g−1 and the particle size of the CWT composite increased from 39.11 to 180.25 nm with an increasing calcination temperature from 500 to 800 °C. Photoelectrochemical (PEC) studies showed the charge-transfer resistance of 208.10 Ω, electron lifetime of 32.48 ms, current density of 1.40 mA.cm−2, transient photovoltage of 0.53 V, and p-n heterojunction properties for CWT-500. Reactive Black 5 (RB5) was used as the model pollutant to examine the photodegradation performance. The photodegradation rate of CWT-500 was the highest (0.70 × 10−2 min−1) due to its large surface area, effective separation of photoexcited electron-hole pairs, and low photoexcited charge carrier recombination rate. Full article
Show Figures

Figure 1

10 pages, 1606 KiB  
Article
Interfacial Charge Transfer Enhances Transient Surface Photovoltage in Hybrid Heterojunctions
by Cristian Soncini, Roberto Costantini, Martina Dell’Angela, Alberto Morgante and Maddalena Pedio
Nanomaterials 2025, 15(3), 154; https://doi.org/10.3390/nano15030154 - 21 Jan 2025
Viewed by 832
Abstract
The interfacial energy level alignment in the copper phthalocyanine/SiO2/p-Si(100) heterojunction has been studied in dark conditions and under illumination. The element-sensitivity of the time-resolved X-ray photoemission provides a real-time picture of the photoexcited carrier dynamics at the interface and within the [...] Read more.
The interfacial energy level alignment in the copper phthalocyanine/SiO2/p-Si(100) heterojunction has been studied in dark conditions and under illumination. The element-sensitivity of the time-resolved X-ray photoemission provides a real-time picture of the photoexcited carrier dynamics at the interface and within the film, enabling one to distinguish between substrate and molecular contributions. We observe a molecule-to-substrate charge transfer under photoexcitation, which is directly related to the transient modification of the band bending in the substrate due to the surface photovoltage effect. Our results show that charge generation in the heterojunction is driven by the molecular layer in contact with the substrate. The different molecular orientation at the interface creates a new channel for charge injection in the substrate under photoexcitation. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 6069 KiB  
Article
High-Efficiency Photoresponse of Flexible Copper Oxide-Loaded Carbon Nanotube Buckypaper Under Direct and Gradient Visible Light Illumination
by Lakshmanan Saravanan, Wei-Cheng Tu, Hsin-Yuan Miao and Jih-Hsin Liu
Processes 2025, 13(1), 188; https://doi.org/10.3390/pr13010188 - 10 Jan 2025
Viewed by 1019
Abstract
This study used a direct dispersion and filtration technique to produce hybrid buckypaper (BP) composites of copper oxide nanoparticles (NPs) and entangled multiwalled carbon nanotubes (CNTs). The photocurrent generation of the BP sheets under two different (direct and gradient) illumination conditions was investigated [...] Read more.
This study used a direct dispersion and filtration technique to produce hybrid buckypaper (BP) composites of copper oxide nanoparticles (NPs) and entangled multiwalled carbon nanotubes (CNTs). The photocurrent generation of the BP sheets under two different (direct and gradient) illumination conditions was investigated by varying copper oxide loadings (10–50 wt%). The structure and morphology of the composites examined through X-ray diffraction and scanning electron microscopy (SEM) confirmed the presence of monoclinic cupric oxide nanoparticles in the CNT network. The difference in electrical resistivity between bulk-filled and surface-filled CuO-BP composites was assessed using the four-probe Hall measurement. The studies disclosed that the surface-loaded CuO on the CNT network demonstrated a superior ON and OFF response under the gradient illumination conditions with peak values of 17.69 μA and 350.04 μV for photocurrent and photovoltage, respectively. The significant photocurrent observed at zero applied voltage revealed the existence of a photovoltaic effect in the BP composites. An intense photoresponse was detected in the surface-filled sample CuO-BP composite in both illumination conditions. Additionally, at an illumination level of 150 W/m2, wavelength-dependent photovoltaic effects on pure BP were observed using red, green, and blue filters. Full article
Show Figures

Graphical abstract

12 pages, 6973 KiB  
Article
Enhancing the Photoelectric Properties of Flexible Carbon Nanotube Paper by Plasma Gradient Modification and Gradient Illumination
by Chen-Chen Yang, Pi-Yu Shen, Hsin-Yuan Miao, Chia-Yi Huang, Shih-Hung Lin, Jun-Hong Weng, Lakshmanan Saravanan and Jih-Hsin Liu
Processes 2024, 12(7), 1449; https://doi.org/10.3390/pr12071449 - 11 Jul 2024
Cited by 4 | Viewed by 914
Abstract
This study investigates the impact of plasma gradient modification and gradient illumination on the optoelectronic properties of buckypaper (BP), a flexible and large-scale material composed of multi-walled carbon nanotubes (MWCNTs). The BP samples were subjected to argon ion plasma treatment at varying power [...] Read more.
This study investigates the impact of plasma gradient modification and gradient illumination on the optoelectronic properties of buckypaper (BP), a flexible and large-scale material composed of multi-walled carbon nanotubes (MWCNTs). The BP samples were subjected to argon ion plasma treatment at varying power levels and durations, thereby creating different carrier concentration gradients on the surface. The photovoltage and photocurrent responses of the samples were then measured under uniform full illumination and gradient illumination conditions. The findings revealed that both plasma gradient modification and gradient illumination significantly enhanced the optoelectronic performance of BP. Notably, the combined application of these two methods yielded superior results compared to the application of either method alone. Specifically, the optimal plasma power for improving BP was found to be 20 W. Under conditions of plasma gradient modification and gradient illumination, a photovoltage of 267.76 μV was generated, which represents a 21.44 times increase, and a photocurrent of 15.69 μA, reflecting a 32.69 times enhancement. The mechanism underlying this optoelectronic effect can be attributed to the presence of π-bonds in the carbon atoms. These π-bonds are excited by photons, resulting in the generation of small voltages and currents. This study underscores the potential of BP as an optoelectronic material and introduces a novel approach to enhance its optoelectronic properties through plasma gradient modification and gradient illumination. Full article
Show Figures

Figure 1

13 pages, 3285 KiB  
Article
Surface Photovoltage Response of ZnO to Phosphate-Buffered Saline Solution with and without Presence of Staphylococcus aureus
by Dustin A. Johnson, John M. Reeks, Alexander J. Caron, Shauna M. McGillivray, Rafal J. Wiglusz and Yuri M. Strzhemechny
Nanomaterials 2023, 13(10), 1652; https://doi.org/10.3390/nano13101652 - 16 May 2023
Cited by 1 | Viewed by 1579
Abstract
Nano- and microscale zinc oxide (ZnO) exhibits significant potential as a novel antibacterial agent in biomedical applications. However, the uncertainty regarding the underlying mechanisms of the observed antimicrobial action inhibits the realization of this potential. Particularly, the nature of interactions at the free [...] Read more.
Nano- and microscale zinc oxide (ZnO) exhibits significant potential as a novel antibacterial agent in biomedical applications. However, the uncertainty regarding the underlying mechanisms of the observed antimicrobial action inhibits the realization of this potential. Particularly, the nature of interactions at the free crystalline surface and the influence of the local bacterial environment remains unclear. In this investigation, we utilize ZnO particles synthesized via tunable hydrothermal growth method as a platform to elucidate the effects of interactions with phosphate-rich environments and differentiate them from those with bacteria. This is achieved using the time- and energy-dependent surface photovoltage (SPV) to monitor modifications of the surface electronic structure and surface charge dynamics of the ZnO particles due to these interactions. It is found that there exists a dramatic change in the SPV transients after exposure to phosphate-rich environments. It also presents differences in the sub-bandgap surface electronic structure after these exposures. It can be suggested that these phenomena are a consequence of phosphate adsorption at surface traps corresponding to zinc deficiency defects. This effect is shown to be suppressed in the presence of Staphylococcus aureus bacteria. Our results support the previously proposed model of the competitive nature of interactions between S. aureus and aqueous phosphates with the free surface of ZnO and bring greater clarity to the effects of phosphate-rich environments on bacterial growth inhibition of ZnO. Full article
(This article belongs to the Special Issue Advanced Materials for Bio-Related Applications)
Show Figures

Figure 1

14 pages, 3822 KiB  
Article
Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells
by Elmoiz Merghni Mkawi, Yas Al-Hadeethi, Bassim Arkook and Elena Bekyarova
Materials 2023, 16(6), 2218; https://doi.org/10.3390/ma16062218 - 10 Mar 2023
Cited by 4 | Viewed by 2884
Abstract
Metal additive processing in polymer: fullerene bulk heterojunction systems is recognized as a viable way for improving polymer photovoltage performance. In this study, the effect of niobium (Nb) metal nanoparticles at concentrations of 2, 4, 6, and 8 mg/mL on poly(3-hexylthiophene-2,5-diyl) (P3HT)-6,6]-phenyl C61-butyric [...] Read more.
Metal additive processing in polymer: fullerene bulk heterojunction systems is recognized as a viable way for improving polymer photovoltage performance. In this study, the effect of niobium (Nb) metal nanoparticles at concentrations of 2, 4, 6, and 8 mg/mL on poly(3-hexylthiophene-2,5-diyl) (P3HT)-6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends was analyzed. The effect of Nb volume concentration on polymer crystallinity, optical properties, and surface structure of P3HT and PCBM, as well as the enhancement of the performance of P3HT:PC61BM solar cells, are investigated. Absorption of the P3HT:PC61BM mix is seen to have a high intensity and a red shift at 500 nm. The reduction in PL intensity with increasing Nb doping concentrations indicates an increase in PL quenching, suggesting that the domain size of P3HT or conjugation length increases. With a high Nb concentration, crystallinity, material composition, surface roughness, and phase separation are enhanced. Nb enhances PCBM’s solubility in P3HT and decreases the size of amorphous P3HT domains. Based on the J–V characteristics and the optoelectronic study of the thin films, the improvement results from a decreased recombination current, changes in morphology and crystallinity, and an increase in the effective exciton lifespan. At high doping concentrations of Nb nanoparticles, the development of the short-circuit current (JSC) is associated with alterations in the crystalline structure of P3HT. The highest-performing glass/ITO/PEDOT:PSS/P3HT:PCBM:Nb/MoO3/Au structures have short-circuit current densities (JSC) of 16.86 mA/cm2, open-circuit voltages (VOC) of 466 mV, fill factors (FF) of 65.73%, and power conversion efficiency (µ) of 5.16%. Full article
Show Figures

Figure 1

9 pages, 1494 KiB  
Article
Surface Photovoltage Study of GaAsSbN and GaAsSb Layers Grown by LPE for Solar Cells Applications
by Vesselin Donchev, Malina Milanova and Stefan Georgiev
Energies 2022, 15(18), 6563; https://doi.org/10.3390/en15186563 - 8 Sep 2022
Viewed by 2198
Abstract
The properties of GaAsSbN and GaAsSb layers grown by liquid-phase epitaxy on n-GaAs substrates were investigated in a comparative plan with a view of their possible application in multi-junction solar cells. To avoid non-uniformity effects in the composition of these compounds with two [...] Read more.
The properties of GaAsSbN and GaAsSb layers grown by liquid-phase epitaxy on n-GaAs substrates were investigated in a comparative plan with a view of their possible application in multi-junction solar cells. To avoid non-uniformity effects in the composition of these compounds with two or three different group-V volatile elements, the crystallization was carried out from finite melt with a thickness of 0.5 mm at low (<560 °C) temperatures. X-ray microanalysis and X-ray diffraction were used to determine the composition, lattice mismatch, and crystalline quality of the epitaxial layers. The morphology and surface roughness were examined by atomic force microscopy. Surface photovoltage (SPV) spectroscopy at room temperature was applied to study the optical absorption properties and the photocarrier transport in the samples. The long-wavelength photosensitivity of the GaAsSbN and GaAsSb layers, determined from their SPV spectra, is extended down to 1.2 eV. Although GaAsSb has a slightly larger lattice mismatch with the GaAs substrate compared to GaAsSbN, it presents a higher photoresponse, since, in GaAsSbN, the incorporation of N induces additional recombination centres. Therefore, GaAsSb could be an alternative to GaAsSbN for solar cell applications. Full article
(This article belongs to the Special Issue Advanced Materials and Structures for Photovoltaic Applications)
Show Figures

Figure 1

12 pages, 4488 KiB  
Article
Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation
by Yong Wang, Chengxin Zeng, Yichen Liu, Dingyi Yang, Yu Zhang, Zewei Ren, Qikun Li, Jian Hao, Wen Hu, Yizhang Wu and Rusen Yang
Materials 2022, 15(15), 5390; https://doi.org/10.3390/ma15155390 - 5 Aug 2022
Cited by 7 | Viewed by 2097
Abstract
Although graphitic carbon nitride nanosheets (CNs) with atomic thickness are considered as promising materials for hydrogen production, the wide band gap (3.06 eV) and rapid recombination of the photogenerated electron–hole pairs impede their applications. To address the above challenges, we synergized atomically thin [...] Read more.
Although graphitic carbon nitride nanosheets (CNs) with atomic thickness are considered as promising materials for hydrogen production, the wide band gap (3.06 eV) and rapid recombination of the photogenerated electron–hole pairs impede their applications. To address the above challenges, we synergized atomically thin CNs and graphene quantum dots (GQDs), which were fabricated as 2D/0D Van der Waals heterojunctions, for H2 generation in this study. The experimental characterizations indicated that the addition of GQDs to the π-conjugated system of CNs can expand the visible light absorption band. Additionally, the surface photovoltage spectroscopy (SPV) confirmed that introducing GQDs into CNs can facilitate the transport of photoinduced carriers in the melon chain, thus suppressing the recombination of charge carriers in body. As a result, the H2 production activity of the Van der Waals heterojunctions was 9.62 times higher than CNs. This study provides an effective strategy for designing metal-free Van der Waals hetero-structured photocatalysts with high photocatalytic activity. Full article
(This article belongs to the Special Issue Flexible Materials and Sensing Devices)
Show Figures

Figure 1

17 pages, 2851 KiB  
Article
Incident Angle Dependence of the Waveform of the Polarization-Sensitive Photoresponse in CuSe/Se Thin Film
by Arseniy E. Fateev, Tatyana N. Mogileva, Vladimir Ya. Kogai, Konstantin G. Mikheev and Gennady M. Mikheev
Appl. Sci. 2022, 12(14), 6869; https://doi.org/10.3390/app12146869 - 7 Jul 2022
Cited by 7 | Viewed by 2539
Abstract
The results of studying the waveforms of longitudinal and transverse photocurrent pulses generated in thin, semitransparent CuSe/Se films as a function of the angle of incidence (α) of a femtosecond laser beam at linear and circular polarizations are presented. It has been established [...] Read more.
The results of studying the waveforms of longitudinal and transverse photocurrent pulses generated in thin, semitransparent CuSe/Se films as a function of the angle of incidence (α) of a femtosecond laser beam at linear and circular polarizations are presented. It has been established that the durations of unipolar longitudinal photocurrent pulses at linear and circular polarizations of laser pumping do not depend on the angle α. It is shown that the evolution of the temporal profile of the helicity-sensitive transverse photocurrent with a change in α strongly depends on polarization. At linear polarization, the shape of the unipolar pulses remains virtually constant; however, at circular polarization, the generation of unipolar and bipolar pulses is possible, with the waveforms strongly depending on the angle α. The influence of the incidence angle on the waveforms of transverse photocurrent pulses is explained by the transformation of linear and circular polarization into an elliptical upon the refraction of light at the air/semitransparent film interface and by the interplay of photocurrents arising due to linear and circular surface photogalvanic effects in the film. The presented findings can be utilized to develop polarization and incidence angle-sensitive photovoltaic devices. Full article
(This article belongs to the Special Issue New Trends on Nonlinear Optics in Nanostructures and Plasmonics)
Show Figures

Figure 1

12 pages, 2228 KiB  
Article
N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation
by Mingzhuo Wei, Zhijun Li, Peijiao Chen, Lei Sun, Shilin Kang, Tianwei Dou, Yang Qu and Liqiang Jing
Nanomaterials 2022, 12(9), 1564; https://doi.org/10.3390/nano12091564 - 5 May 2022
Cited by 11 | Viewed by 2367
Abstract
Nitrogen (N) doping is an effective strategy for improving the solar-driven photocatalytic performance of anatase TiO2, but controllable methods for nitrogen-rich doping and associated defect engineering are highly desired. In this work, N-rich doped anatase TiO2 nanoparticles (4.2 at%) were [...] Read more.
Nitrogen (N) doping is an effective strategy for improving the solar-driven photocatalytic performance of anatase TiO2, but controllable methods for nitrogen-rich doping and associated defect engineering are highly desired. In this work, N-rich doped anatase TiO2 nanoparticles (4.2 at%) were successfully prepared via high-temperature nitridation based on thermally stable H3PO4-modified TiO2. Subsequently, the associated deep-energy-level defects such as oxygen vacancies and Ti3+ were successfully healed by smart photo-Fenton oxidation treatment. Under visible-light irradiation, the healed N-doped TiO2 exhibited a ~2-times higher activity of gas-phase acetaldehyde degradation than the non-treated one and even better than standard P25 TiO2 under UV-visible-light irradiation. The exceptional performance is attributed to the extended spectral response range from N-rich doping, the enhanced charge separation from hole capturing by N-doped species, and the healed defect levels with the proper thermodynamic ability for facilitating O2 reduction, depending on the results of ∙O2 radicals and defect measurement by electron spin resonance, X-ray photoelectron spectroscopy, atmosphere-controlled surface photovoltage spectra, etc. This work provides an easy and efficient strategy for the preparation of high-performance solar-driven TiO2 photocatalysts. Full article
(This article belongs to the Special Issue Hybrid Nanomaterials Applied to Photocatalysis)
Show Figures

Graphical abstract

14 pages, 28597 KiB  
Article
Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires
by Pericle Varasteanu, Antonio Radoi, Oana Tutunaru, Anton Ficai, Razvan Pascu, Mihaela Kusko and Iuliana Mihalache
Nanomaterials 2021, 11(9), 2460; https://doi.org/10.3390/nano11092460 - 21 Sep 2021
Cited by 12 | Viewed by 3622
Abstract
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is [...] Read more.
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10−4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10−12 WHz−1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects. Full article
(This article belongs to the Special Issue Nanomaterials for Photonics: Advances and Applications)
Show Figures

Figure 1

16 pages, 3992 KiB  
Article
Frequency-Dependent Sonochemical Processing of Silicon Surfaces in Tetrahydrofuran Studied by Surface Photovoltage Transients
by Artem Podolian, Andriy Nadtochiy, Oleg Korotchenkov and Viktor Schlosser
Molecules 2021, 26(12), 3756; https://doi.org/10.3390/molecules26123756 - 20 Jun 2021
Viewed by 2533
Abstract
The field of chemical and physical transformations induced by ultrasonic waves has shown steady progress during the past decades. There is a solid core of established results and some topics that are not thoroughly developed. The effect of varying ultrasonic frequency is among [...] Read more.
The field of chemical and physical transformations induced by ultrasonic waves has shown steady progress during the past decades. There is a solid core of established results and some topics that are not thoroughly developed. The effect of varying ultrasonic frequency is among the most beneficial issues that require advances. In this work, the effect of sonication of Si wafers in tetrahydrofuran on the photovoltage performance was studied, with the specific goal of studying the influence of the varying frequency. The applied ultrasonic transducer design approach enables the construction of the transducer operating at about 400 kHz with a sufficient sonochemical efficiency. The measurements of the surface photovoltage (SPV) transients were performed on p-type Cz-Si(111) wafers. Sonication was done in tetrahydrofuran, methanol, and in their 3:1 mixture. When using tetrahydrofuran, the enhanced SPV signal (up to ≈80%) was observed due to increasing sonication frequency to 400 kHz. In turn, the signal was decreased down to ≈75% of the initial value when the frequency is lowered to 28 kHz. The addition of methanol suppressed this significant difference. It was implied that different decay processes with hydrogen decomposed from tetrahydrofuran could be attempted to explain the mechanism behind the observed frequency-dependent behavior. Full article
Show Figures

Graphical abstract

10 pages, 3196 KiB  
Article
Synthesis and Photochemical Properties of Monolithic TiO2 Nanowires Diode
by Massimo Zimbone, Maria Cantarella, Giuliana Impellizzeri, Sergio Battiato and Lucia Calcagno
Molecules 2021, 26(12), 3636; https://doi.org/10.3390/molecules26123636 - 15 Jun 2021
Cited by 7 | Viewed by 2557
Abstract
In this paper, the structural and photochemical properties of a monolithic photochemical diode are discussed. The present structure is composed, from the top to the bottom, of a TiO2 nanowire layer, a TiO2 film, a Ti foil, and a porous layer [...] Read more.
In this paper, the structural and photochemical properties of a monolithic photochemical diode are discussed. The present structure is composed, from the top to the bottom, of a TiO2 nanowire layer, a TiO2 film, a Ti foil, and a porous layer made of Pt nanoparticles. The synthesis of the nanowires was simply carried out by Au-catalysed-assisted process; the effects of the annealing temperature and time were deeply investigated. Morphological and structural characterizations were performed by scanning electron microscopy and Raman spectroscopy. The analyses showed the rutile structure of the TiO2 nanowires. The photocatalytic properties were studied through the degradation of methylene blue (MB) dye under UV light irradiation. The nanowires induced an enhancement of the photo-degradation rate, compared to TiO2 in a bulk form, due to an increase in the surface area. Moreover, the presence of a nano-porous Pt layer deposited on the rear side of the samples provided a further increase in the MB degradation rate, related to the scavenging effect of Pt nanoparticles. The overall increment of the photo-activity, due to the nano-structuration of the TiO2 and to the presence of the Pt layer, resulted a factor 7, compared to the bulk reference. In addition, photovoltage measurements allowed to assess the effects of TiO2 nano-structuration and Pt nanoparticles on the electron accumulation. Full article
(This article belongs to the Special Issue Nanostructures: Synthesis, Characterization and Applications)
Show Figures

Figure 1

14 pages, 11793 KiB  
Article
Function of Porous Carbon Electrode during the Fabrication of Multiporous-Layered-Electrode Perovskite Solar Cells
by Ryuki Tsuji, Dmitry Bogachuk, David Martineau, Lukas Wagner, Eiji Kobayashi, Ryoto Funayama, Yoshiaki Matsuo, Simone Mastroianni, Andreas Hinsch and Seigo Ito
Photonics 2020, 7(4), 133; https://doi.org/10.3390/photonics7040133 - 18 Dec 2020
Cited by 16 | Viewed by 4890
Abstract
We demonstrate the effect of sheet conductivity and infiltration using the example of two graphite types, showing that, in general, the graphite type is very important. Amorphous and pyrolytic graphite were applied to carbon electrodes in fully printable carbon-based multiporous-layered-electrode perovskite solar cells [...] Read more.
We demonstrate the effect of sheet conductivity and infiltration using the example of two graphite types, showing that, in general, the graphite type is very important. Amorphous and pyrolytic graphite were applied to carbon electrodes in fully printable carbon-based multiporous-layered-electrode perovskite solar cells (MPLE-PSCs): <glass/F-doped SnO2/compact-TiO2/porous-TiO2+perovskite/porous-ZrO2+perovskite/porous-carbon+perovskite>. The power conversion efficiency (PCE) using amorphous graphite-based carbon (AGC) electrode was only 5.97% due to the low short-circuit photocurrent density (Jsc) value, which was due to the low incident photon-to-current efficiency (IPCE) in the short wavelength region caused by the poor perovskite filling into the porous TiO2-ZrO2 layers. Conversely, using pyrolytic graphite-based carbon (PGC) electrode, Jsc, open-circuit photovoltage (Voc), fill factors (FF), and PCE values of 21.09 mA cm−2, 0.952 V, 0.670, and 13.45%, respectively, were achieved in the champion device. PGC had poorer wettability and a small specific surface area as compared with AGC, but it had better permeability of the perovskite precursor solution into the porous TiO2/ZrO2 layers, and therefore a denser filling and crystallization of the perovskite within the porous TiO2/ZrO2 layers than AGC. It is confirmed that the permeability of the precursor solution depends on the morphology and structure of the graphite employed in the carbon electrode. Full article
(This article belongs to the Special Issue Photovoltaic Materials and Devices)
Show Figures

Figure 1

9 pages, 1720 KiB  
Article
Studies of NO2 Gas-Sensing Characteristics of a Novel Room-Temperature Surface-Photovoltage Gas Sensor Device
by Monika Kwoka and Jacek Szuber
Sensors 2020, 20(2), 408; https://doi.org/10.3390/s20020408 - 11 Jan 2020
Cited by 9 | Viewed by 4714
Abstract
In this work the characteristics of a novel type of room temperature NO2 gas sensor device based on the surface photovoltage effect are described. It was shown that for our SPV gas sensor device, using porous sputtered ZnO nanostructured thin films as [...] Read more.
In this work the characteristics of a novel type of room temperature NO2 gas sensor device based on the surface photovoltage effect are described. It was shown that for our SPV gas sensor device, using porous sputtered ZnO nanostructured thin films as the active gas sensing electrode material, the basic gas sensor characteristics in a toxic NO2 gas atmosphere are strongly dependent on the target NO2 gas flow rate. Moreover, it was also confirmed that our SPV gas sensor device is able to detect the lowest NO2 relative concentration at the level of 125 ppb, with respect to the commonly assumed signal-to-noise (S/N) ratio, as for the commercial devices. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop