Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,879)

Search Parameters:
Keywords = suppression system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13445 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
25 pages, 19515 KiB  
Article
Towards Efficient SAR Ship Detection: Multi-Level Feature Fusion and Lightweight Network Design
by Wei Xu, Zengyuan Guo, Pingping Huang, Weixian Tan and Zhiqi Gao
Remote Sens. 2025, 17(15), 2588; https://doi.org/10.3390/rs17152588 - 24 Jul 2025
Abstract
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where [...] Read more.
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where model size, computational load, and power consumption are tightly restricted. Thus, guided by the principles of lightweight design, robustness, and energy efficiency optimization, this study proposes a three-stage collaborative multi-level feature fusion framework to reduce model complexity without compromising detection performance. Firstly, the backbone network integrates depthwise separable convolutions and a Convolutional Block Attention Module (CBAM) to suppress background clutter and extract effective features. Building upon this, a cross-layer feature interaction mechanism is introduced via the Multi-Scale Coordinated Fusion (MSCF) and Bi-EMA Enhanced Fusion (Bi-EF) modules to strengthen joint spatial-channel perception. To further enhance the detection capability, Efficient Feature Learning (EFL) modules are embedded in the neck to improve feature representation. Experiments on the Synthetic Aperture Radar (SAR) Ship Detection Dataset (SSDD) show that this method, with only 1.6 M parameters, achieves a mean average precision (mAP) of 98.35% in complex scenarios, including inshore and offshore environments. It balances the difficult problem of being unable to simultaneously consider accuracy and hardware resource requirements in traditional methods, providing a new technical path for real-time SAR ship detection on satellite platforms. Full article
Show Figures

Figure 1

16 pages, 1269 KiB  
Article
Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
by Shujuan Jiao, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li and Shuhao Qin
Agronomy 2025, 15(8), 1784; https://doi.org/10.3390/agronomy15081784 - 24 Jul 2025
Abstract
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity [...] Read more.
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity in fully mulched treatments (T2–T3) versus controls (CK), suggesting mulching enhances microbial community richness. This result suggests that complete mulching combined with ridge planting (T2) may significantly enhance bacterial proliferation in soil. The bacterial communities were predominantly composed of Acidobacteria, Pseudomonadota, Bacteroidota, Chloroflexota, and Planctomycetota. Among these, Acidobacteria showed the highest abundance, with ridge planting patterns favoring greater Acidobacteria richness compared to furrow planting. In contrast, Pseudomonadota exhibited higher abundance under half-mulching conditions than under complete mulching. At class level, Acidobacteria and Proteobacteria emerged as the most abundant groups, with Proteobacteria constituting 22.6–35.7% of total microbial populations. Notably, Proteobacteria demonstrated particular dominance under the complete mulching with ridge planting pattern (T2). At the genus level, Subgroup_6_norank represented the most dominant taxon among the 439 identified bacterial genera, accounting for 14.0–20.2% of communities across all treatments, with half-mulching ridge planting (T4) showing the highest relative abundance. Our findings demonstrate that different ridge-furrow film mulching patterns significantly influence soil microbial diversity. While traditional non-mulched (CK) and mulched flat plots (T1) exhibited similar impacts on bacterial community structure, other treatments displayed distinct taxonomic profiles. Complete mulching patterns, particularly ridge planting (T2), appear most conducive to microbial development, suggesting their potential to enhance soil biogeochemical cycling in continuous cropping systems. These results provide valuable insights for optimizing mulching practices to improve soil health in agricultural ecosystems. Full article
20 pages, 1067 KiB  
Article
Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC
by Fang Zhou, Dengfeng Zhao, Yudong Zhong, Pengpeng Wang, Junjie Jiang, Zhenwei Wang and Zhijun Fu
Machines 2025, 13(8), 650; https://doi.org/10.3390/machines13080650 - 24 Jul 2025
Abstract
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in [...] Read more.
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral directions, while there is relatively little research on the coupling effect and coupled optimization of the longitudinal and vertical directions. This study proposes a coupled framework of ACC and active suspension control system based on MPC. By adding pitch angle changes caused by longitudinal acceleration to the suspension model, a coupled state equation of half-car vertical dynamics and ACC longitudinal dynamics is constructed to achieve integrated optimization of ACC and suspension for motion suppression. The suspension active forces and vehicle acceleration are regulated coordinately to optimize vehicle vertical, longitudinal, and pitch dynamics simultaneously. Simulation experiments show that compared to decoupled control of ACC and suspension, the integrated control framework can be more effective. The research results confirm that the dynamic coordination between the suspension and ACC system can effectively suppress the motion sickness, providing a new idea for solving the comfort conflict in the human vehicle environment coupling system. Full article
(This article belongs to the Section Vehicle Engineering)
24 pages, 4784 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
17 pages, 1173 KiB  
Review
The Potential Therapeutic Role of Bruton Tyrosine Kinase Inhibition in Neurodegenerative Diseases
by Francesco D’Egidio, Housem Kacem, Giorgia Lombardozzi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Appl. Sci. 2025, 15(15), 8239; https://doi.org/10.3390/app15158239 - 24 Jul 2025
Abstract
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. [...] Read more.
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. Recent evidence implicates aberrant BTK signaling in the exacerbation of neuroinflammatory cascades contributing to neuronal damage in disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and Huntington’s disease. Pharmacological inhibition of BTK has shown promise in attenuating microglial-mediated neurotoxicity, reducing pro-inflammatory cytokine release, and promoting neuroprotection in preclinical models. BTK inhibitors, originally developed for hematological malignancies, demonstrate favorable blood–brain barrier penetration and immunomodulatory effects relevant to central nervous system pathology. This therapeutic approach may counteract detrimental neuroimmune interactions without broadly suppressing systemic immunity, thus preserving host defense. Ongoing clinical trials are evaluating the safety and efficacy of BTK inhibitors in patients with neurodegenerative conditions, with preliminary results indicating potential benefits in slowing disease progression and improving neurological outcomes. This review consolidates current knowledge on BTK signaling in neurodegeneration and highlights the rationale for BTK inhibition as a novel, targeted therapeutic strategy to modulate neuroinflammation and mitigate neurodegenerative processes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

15 pages, 5562 KiB  
Article
Effect of Amino Trimethylene Phosphonic Acid and Tartaric Acid on Compressive Strength and Water Resistance of Magnesium Oxysulfate Cement
by Yutong Zhou, Zheng Zhou, Lvchao Qiu, Kuangda Lu, Dongmei Xu, Shiyuan Zhang, Shixuan Zhang, Shouwei Jian and Hongbo Tan
Materials 2025, 18(15), 3473; https://doi.org/10.3390/ma18153473 - 24 Jul 2025
Abstract
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, [...] Read more.
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, the enhancement efficiency of different organic acids in MOS systems varies significantly due to differences in their molecular structures. To determine the underlying mechanism, this study comparatively investigated the effects of amino trimethylene phosphonic acid (ATMP) and tartaric acid (TA) on the setting time, fluidity, compressive strength, and water resistance of the MOS system, with the two additives incorporated at mole ratios to MgO ranging from 0.002 to 0.006. The mechanism behind it was revealed by discussion on the hydration heat, hydrates, and pH value. Results showed that both ATMP and TA could effectively improve the fluidity, delay the setting process, and enhance the mechanical properties, including strength and water resistance. At a mole ratio of 0.006, the incorporation of ATMP increased the 28 d compressive strength and the softening coefficient by 214.12% and 37.29%, respectively, compared with the blank group. In contrast, under the same dosage, TA led to an increase of 55.13% in the 28 d strength and 22.03% in the softening coefficient. Furthermore, hydration heat, product analysis, and pH measurements indicated that both ATMP and TA inhibited hydration during the initial hours but promoted hydration at later stages. The potential reason could be divided into two aspects: (1) H+ ions from ATMP and TA suppressing the formation of Mg(OH)2; (2) anion chelation with Mg2+ in the liquid phase, leading to a supersaturated solution with higher saturation, which further hindered Mg(OH)2 formation and facilitated the later development of 5Mg(OH)2·MgSO4·7H2O (517 phase). By contrast, under the same mole dosage of H+ or anions, the enhancement in compressive strength as well as the water resistance is superior when using ATMP. This was owing to its stronger chelating ability of ATMP, which more effectively inhibited Mg(OH)2 formation and then promoted the formation of the 517 phase. These findings confirm that the chelating ability of anions exerts an important impact on the retarding effect as well as the enhancement of strength in MOS systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

22 pages, 1149 KiB  
Review
A Review of Influencing and Controlling Vortex-Induced Vibrations for Deepwater Risers
by Chao Yan, Qi Feng and Shuangchun Yang
Processes 2025, 13(8), 2353; https://doi.org/10.3390/pr13082353 - 24 Jul 2025
Abstract
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the [...] Read more.
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the vortex-induced vibration of flexible risers. This review provides a detailed discussion of vortex-induced vibration in marine risers. This review begins with the engineering background. It then systematically analyzes the key factors that influence VIV response. These factors include the riser’s structural parameters, such as aspect ratio and mass ratio. They also include the external fluid environment. Next, this review evaluates current VIV suppression strategies by analyzing specific experimental results. It compares the effectiveness and trade-offs of passive techniques. It also examines the potential and limitations of active methods, which often use smart materials, like piezoelectrics. This study highlights the major challenges in VIV research today. These challenges relate to prediction accuracy and suppression efficiency. Key problems include model uncertainty at high Reynolds numbers and the practical implementation of suppression devices in engineering systems. Finally, this paper presents an outlook on the future directions. It concludes that an intelligent, full-lifecycle integrity management system is the best path forward. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

21 pages, 1905 KiB  
Article
Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
by Gerard Sweeney, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li and Gavin P. Andrews
Pharmaceutics 2025, 17(8), 955; https://doi.org/10.3390/pharmaceutics17080955 - 24 Jul 2025
Abstract
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Methods: Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix. Microcrystalline cellulose (MCC) and lactose monohydrate were incorporated as functional fillers and processing aids. The influence of wax content and filler type on mechanical properties, wettability, and drug release behaviour was systematically evaluated. Ethanol susceptibility testing was conducted under simulated co-ingestion conditions (4%, 20%, and 40% v/v ethanol) to assess AIDD risk. Results: MCC-containing tablets demonstrated superior sustained-release characteristics over 24 h, showing better wettability and disintegration. In contrast, tablets formulated with lactose monohydrate remained structurally intact during dissolution, overly restricting drug release. This limitation was effectively addressed through granulation, where reduced particle size significantly improved surface accessibility, with 0.5–1 mm granules achieving a satisfactory release profile. Ethanol susceptibility testing revealed divergent behaviours between the two filler systems. Unexpectedly, MCC-containing tablets showed suppressed drug release in ethanolic media, likely resulting from inhibitory effect of ethanol on filler swelling and disintegration. Conversely, formulations containing lactose monohydrate retained their release performance in up to 20% v/v ethanol, with only high concentrations (40% v/v) compromising matrix drug-retaining functionality and leading to remarkably increased drug release. Conclusions: This study highlights the pivotal role of excipient type and constitutional ratios in engineering wax-based sustained-release formulations. It further contributes to the understanding of AIDD risk through in vitro assessment and offers a rational design strategy for robust, alcohol-resistant oral delivery systems for felodipine. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Protective Efficacy Induced by Virus-like Particles Expressing Dense Granule Protein 5 of Toxoplasma gondii
by Su In Heo, Hae-Ji Kang, Jie Mao, Zhao-Shou Yang, Md Atique Ahmed and Fu-Shi Quan
Vaccines 2025, 13(8), 787; https://doi.org/10.3390/vaccines13080787 - 24 Jul 2025
Abstract
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. [...] Read more.
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. Methods: This study evaluated the protective immune responses induced by a virus-like particle (VLP) vaccine expressing the T. gondii-derived antigen GRA5 in a mouse model challenged with the ME49 strain of T. gondii. GRA5 VLPs were generated using a baculovirus expression system, and VLP formation was confirmed by Western blotting and visualized using transmission electron microscopy. Mice were intranasally immunized with GRA5 VLPs three times at 4-week intervals to induce immune responses, followed by infection with T. gondii ME49. Results: Intranasal immunization with GRA5 VLPs induced parasite-specific IgG antibody responses in the serum and both IgG and IgA antibody responses in the brain. Compared to the non-immunized group, immunized mice exhibited significantly higher levels of germinal center B cells and antibody-secreting cell responses. Moreover, the VLP vaccine suppressed the production of IFN-γ and IL-6 cytokines, leading to a significant reduction in brain inflammation and decreased cyst counts following lethal challenge with T. gondii ME49 infection. Conclusion: These findings suggest that the GRA5 VLP vaccine derived from T. gondii elicits a protective immune response, highlighting its potential as an effective vaccine candidate against toxoplasmosis. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

11 pages, 3264 KiB  
Article
An Oncolytic Vaccinia Virus Expressing Aphrocallistes Vastus Lectin Modulates Hepatocellular Carcinoma Metabolism via ACSS2/TFEB-Mediated Autophagy and Lipid Accumulation
by Qiang Wang, Simeng Zhou, Yin Wang, Yajun Gao, Yanrong Zhou, Ting Ye, Gongchu Li and Kan Chen
Mar. Drugs 2025, 23(8), 297; https://doi.org/10.3390/md23080297 - 24 Jul 2025
Abstract
Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to metabolic plasticity and drug resistance. Oncolytic viruses (OVs), such as thymidine kinase-deleted vaccinia virus (oncoVV), selectively lyse tumors while stimulating antitumor immunity, however, their metabolic interplay with cancer cells is poorly understood. Here, we [...] Read more.
Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to metabolic plasticity and drug resistance. Oncolytic viruses (OVs), such as thymidine kinase-deleted vaccinia virus (oncoVV), selectively lyse tumors while stimulating antitumor immunity, however, their metabolic interplay with cancer cells is poorly understood. Here, we engineered an oncoVV-expressing Aphrocallistes vastus lectin (oncoVV-AVL) and uncovered its unique ability to exploit the ACSS2/TFEB axis, driving metabolic competition in HCC. In vitro, oncoVV-AVL triggered cell autophagy and lipid accumulation (3.4–5.7-fold upregulation of FASN and ACC1) while suppressing glucose uptake (41–63% higher extracellular glucose and 33–34% reduced lactate). Mechanistically, oncoVV-AVL upregulated acetyl-CoA synthetase 2 (ACSS2), promoting its nuclear translocation and interaction with transcription factor EB (TFEB) to concurrently activate lipogenesis and autophagic flux. The pharmacological inhibition of ACSS2 abolished these effects, confirming its central role. In vivo, oncoVV-AVL suppressed tumor growth while inducing lipid deposition (2-fold triglyceride increase), systemic hypoglycemia (42% glucose reduction), and autophagy activation (elevated LC3B-II/I ratios). This study establishes ACSS2 as a metabolic checkpoint in OV therapy, providing a rationale for combining oncolytic virotherapy with metabolic modulators in HCC. Full article
(This article belongs to the Special Issue Marine Glycobiology)
Show Figures

Figure 1

25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

Back to TopTop