Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (933)

Search Parameters:
Keywords = supply chain wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 3871 KiB  
Review
Shaping Sustainability Through Food Consumption: A Conceptual Perspective
by Juta Deksne, Jelena Lonska, Lienite Litavniece and Tatjana Tambovceva
Sustainability 2025, 17(15), 7138; https://doi.org/10.3390/su17157138 - 6 Aug 2025
Abstract
The food consumption stage, the final step in the food supply chain (FSC), where food has already undergone resource-intensive processes, plays a central role in the transition to a sustainable food system. Consumers’ food choices and consumption practices directly influence food demand, production [...] Read more.
The food consumption stage, the final step in the food supply chain (FSC), where food has already undergone resource-intensive processes, plays a central role in the transition to a sustainable food system. Consumers’ food choices and consumption practices directly influence food demand, production methods, and resource use across the FSC. These factors affect global challenges such as overconsumption, malnutrition, hunger, and food waste (FW)—issues integral to the UN Sustainable Development Goals (SDGs). Therefore, this study aims to identify key aspects of the food consumption stage that influence the shift toward sustainability and to develop a conceptual framework to guide this transition. To achieve this, an integrative literature review (ILR), supported by bibliometric analysis and narrative review elements, was conducted to strengthen the conceptual foundation. The results reveal four central aspects: FW and its reduction, the need for dietary shifts, changes in consumer behaviour, and policy reform, highlighting the consumer and their behaviour as the central connecting element. Based on the findings, a framework was developed linking the identified problems with targeted solutions, which can be implemented through various tools that also act as drivers of change, enhancing sustainable food consumption, food system sustainability, and the achievement of global SDGs. Full article
Show Figures

Figure 1

23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Viewed by 185
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

22 pages, 337 KiB  
Review
Contract Mechanisms for Value-Based Technology Adoption in Healthcare Systems
by Aydin Teymourifar
Systems 2025, 13(8), 655; https://doi.org/10.3390/systems13080655 - 3 Aug 2025
Viewed by 118
Abstract
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and [...] Read more.
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and waste associated with the adoption of health technology. This narrative review examines the dual impact of healthcare technology and evaluates how contract mechanisms can serve as strategic tools for promoting cost-effective, outcome-oriented integration. Drawing from healthcare management, and supply chain literature, this paper analyzes various payment and contract models, including performance-based, bundled, cost-sharing, and revenue-sharing agreements, through the lens of stakeholder alignment. It explores how these mechanisms influence provider behavior, patient access, and system sustainability. The study contends that well-designed contract mechanisms can align stakeholder incentives, reduce inefficiencies, and support the delivery of high-value care across diverse healthcare settings. We provide concrete examples to illustrate how various contract mechanisms impact the integration of health technologies in practice. Full article
(This article belongs to the Special Issue Operations Management in Healthcare Systems)
20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 284
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 202
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 274
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 494
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

23 pages, 5229 KiB  
Review
The Key Constituents, Research Trends, and Future Directions of the Circular Economy Applied to Wind Turbines Using a Bibliometric Approach
by Luis Zanon-Martinez and Conrado Carrascosa-Lopez
Energies 2025, 18(15), 4024; https://doi.org/10.3390/en18154024 - 29 Jul 2025
Viewed by 220
Abstract
The concept of the circular economy aims to develop systems for reusing, recovering, and recycling products and services, pursuing both economic growth and sustainability. In many countries, legislation has been enacted to create frameworks ensuring environmental protection and fostering initiatives to implement the [...] Read more.
The concept of the circular economy aims to develop systems for reusing, recovering, and recycling products and services, pursuing both economic growth and sustainability. In many countries, legislation has been enacted to create frameworks ensuring environmental protection and fostering initiatives to implement the circular economy across various sectors. The wind energy industry is no exception, with industries and institutions adopting strategies to address the forthcoming challenge of repowering or dismantling a significant quantity of wind turbines in the coming years reaching a total of global wind power capacity by 2024. This also involves managing the resulting waste, which includes materials with high economic value as well as others that have considerable environmental impacts but that can be reused, recycled, or converted. In parallel, the research activity in this field has increased significantly in response to this challenge, leading to a vast body of work in the literature, especially in the last three years. The aim of this paper is to conduct a bibliometric study to provide a global perspective on the current literature in the field, covering the period from 2009 to 2024. A total of 670 publications were retrieved from Web of Science and Scopus, with 57% of them published in the last three years, highlighting the growing interest in the field. This study analyzes the research product, the most relevant journal, the most cited authors and institutions, their collaborative patterns, emerging trends, and gaps in the literature. This contribution will provide an up-to-date analysis of the field, fostering better understanding of the direction of the research and establishing a solid foundation for future studies Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

26 pages, 16740 KiB  
Article
An Integrated Framework for Zero-Waste Processing and Carbon Footprint Estimation in ‘Phulae’ Pineapple Systems
by Phunsiri Suthiluk, Anak Khantachawana, Songkeart Phattarapattamawong, Varit Srilaong, Sutthiwal Setha, Nutthachai Pongprasert, Nattaya Konsue and Sornkitja Boonprong
Agriculture 2025, 15(15), 1623; https://doi.org/10.3390/agriculture15151623 - 26 Jul 2025
Viewed by 375
Abstract
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% [...] Read more.
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% for peel and 37.51% for eyes, with a benefit–cost ratio of 1.56 and an estimated unit cost of USD 0.17 per gram. A complementary zero-waste pathway produced functional gummy products using vinegar fermented from pineapple eye waste, with the preferred formulation scoring a mean of 4.32 out of 5 on a sensory scale with 158 untrained panelists. For spatial carbon modeling, the Bare Land Referenced Algorithm (BRAH) and Otsu thresholding were applied to multi-temporal Sentinel-2 and THEOS imagery to estimate plantation age, which strongly correlated with field-measured emissions (r = 0.996). This enabled scalable mapping of plot-level greenhouse gas emissions, yielding an average footprint of 0.2304 kg CO2 eq. per kilogram of fresh pineapple at the plantation gate. Together, these innovations form a replicable model that aligns tropical fruit supply chains with circular economy goals and carbon-related trade standards. The framework supports waste traceability, resource efficiency, and climate accountability using accessible, data-driven tools suitable for smallholder contexts. By demonstrating practical value addition and spatially explicit carbon monitoring, this study shows how integrated circular and geospatial strategies can advance sustainability and market competitiveness for the ‘Phulae’ pineapple industry and similar perennial crop systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

21 pages, 487 KiB  
Article
A Set of Sustainability Indicators for Brazilian Small and Medium-Sized Non-Alcoholic Beverage Industries
by Alexandre André Feil, Angie Lorena Garcia Zapata, Mayra Alejandra Parada Lazo, Maria Clair da Rosa, Jordana de Oliveira and Dusan Schreiber
Sustainability 2025, 17(15), 6794; https://doi.org/10.3390/su17156794 - 25 Jul 2025
Viewed by 354
Abstract
Sustainability in the non-alcoholic beverage industry requires effective metrics to assess environmental, social, and economic performance. However, the lack of standardised indicators for small and medium-sized enterprises (SMEs) hinders the implementation of sustainable strategies. This study aims to select a set of sustainability [...] Read more.
Sustainability in the non-alcoholic beverage industry requires effective metrics to assess environmental, social, and economic performance. However, the lack of standardised indicators for small and medium-sized enterprises (SMEs) hinders the implementation of sustainable strategies. This study aims to select a set of sustainability indicators for small and medium-sized non-alcoholic beverage industries in Brazil. Seventy-four indicators were identified based on the Global Reporting Initiative (GRI) guidelines, which were subsequently evaluated and refined by industry experts for prioritisation. Statistical analysis led to the selection of 31 final indicators, distributed across environmental (10), social (12), and economic (9) dimensions. In the environmental dimension, priority indicators include water management, energy efficiency, carbon emissions, and waste recycling. The social dimension highlights working conditions, occupational safety, gender equity, and impacts on local communities. In the economic dimension, key indicators relate to supply chain efficiency, technological innovation, financial transparency, and anti-corruption practices. The results provide a robust framework to guide managers in adopting sustainable practices and support policymakers in improving the environmental, social, and economic performance of small and medium-sized non-alcoholic beverage industries. Full article
Show Figures

Figure 1

29 pages, 2251 KiB  
Article
Embedding Circular Operations in Manufacturing: A Conceptual Model for Operational Sustainability and Resource Efficiency
by Antonius Setyadi, Suharno Pawirosumarto and Alana Damaris
Sustainability 2025, 17(15), 6737; https://doi.org/10.3390/su17156737 - 24 Jul 2025
Viewed by 429
Abstract
In response to growing environmental pressures and material constraints, circular economy principles are gaining traction across manufacturing sectors. However, most existing frameworks emphasize design and supply chain considerations, with limited focus on how circularity can be operationalized within internal manufacturing systems. This paper [...] Read more.
In response to growing environmental pressures and material constraints, circular economy principles are gaining traction across manufacturing sectors. However, most existing frameworks emphasize design and supply chain considerations, with limited focus on how circularity can be operationalized within internal manufacturing systems. This paper proposes a conceptual model that embeds circular operations at the core of production strategy. Grounded in circular economy theory, operations management, and socio-technical systems thinking, the model identifies four key operational pillars: circular input management, looping process and waste valorization, product-life extension, and reverse logistics. These are supported by enabling factors—digital infrastructure, organizational culture, and leadership—and mediated by operational flexibility, which facilitates adaptive, closed-loop performance. The model aims to align internal processes with long-term sustainability outcomes, specifically resource efficiency and operational resilience. Practical implications are outlined for resource-intensive industries such as automotive, electronics, and FMCG, along with a readiness assessment framework for guiding implementation. This study offers a pathway for future empirical research and policy development by integrating circular logic into the structural and behavioral dimensions of operations. The model contributes to advancing the Sustainable Development Goals (SDGs), particularly SDG 9 and SDG 12, by positioning circularity as a regenerative operational strategy rather than a peripheral initiative. Full article
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 483
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

13 pages, 1585 KiB  
Communication
An Inexpensive AI-Powered IoT Sensor for Continuous Farm-to-Factory Milk Quality Monitoring
by Kaneez Fizza, Abhik Banerjee, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Ali Yavari and Anas Dawod
Sensors 2025, 25(14), 4439; https://doi.org/10.3390/s25144439 - 16 Jul 2025
Viewed by 497
Abstract
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in [...] Read more.
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in the supplier’s tanks enables the production of higher quality products, better milk supply chain optimization, and reduced milk waste. This paper presents an inexpensive AI-powered IoT sensor that continuously measures the protein and fat in the raw milk in the tanks of dairy farms, pickup trucks, and intermediate storage depots across any milk supply chain. The proposed sensor consists of an in-tank IoT device and related software components that run on any IoT platform. The in-tank IoT device quality incorporates a low-cost spectrometer and a microcontroller that can send milk supply measurements to any IoT platform via NB-IoT. The in-tank IoT device of the milk quality sensor is housed in a food-safe polypropylene container that allows its deployment in any milk tank. The IoT software component of the milk quality sensors uses a specialized machine learning (ML) algorithm to translate the spectrometry measurements into milk fat and protein measurements. The paper presents the design of an in-tank IoT sensor and the corresponding IoT software translation of the spectrometry measurements to protein and fat measurements. Moreover, it includes an experimental milk quality sensor evaluation that shows that sensor accuracy is ±0.14% for fat and ±0.07% for protein. Full article
(This article belongs to the Special Issue Advances in Physical, Chemical, and Biosensors)
Show Figures

Figure 1

Back to TopTop