Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (174)

Search Parameters:
Keywords = supply chain network resilience

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 217
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

22 pages, 1620 KiB  
Article
Economic Resilience in Intensive and Extensive Pig Farming Systems
by Lorena Giglio, Tine Rousing, Dagmara Łodyga, Carolina Reyes-Palomo, Santos Sanz-Fernández, Chiara Serena Soffiantini and Paolo Ferrari
Sustainability 2025, 17(15), 7026; https://doi.org/10.3390/su17157026 - 2 Aug 2025
Viewed by 353
Abstract
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and [...] Read more.
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and natural resources. This study is focused on the analysis of the economic resilience of intensive and extensive farming systems, based on data collected from 56 farms located in Denmark, Poland, Italy and Spain. Productive and economic performances of these farms are analyzed, and economic resilience is assessed through a survey including a selection of indicators, belonging to different themes: [i] resilience of resources, [ii] entrepreneurship, [iii] propensity to extensification. The qualitative data from the questionnaire allow for an exploration of how production systems relate to the three dimensions of resilience. Different levels of resilience were found and discussed for intensive and extensive farms. The findings suggest that intensive farms benefit from high standards and greater bargaining power within the supply chain. Extensive systems can achieve profitability through value-added strategies and generally display good resilience. Policies that support investment and risk reduction are essential for enhancing farm resilience and robustness, while strengthening farmer networks can improve adaptability. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

33 pages, 1238 KiB  
Article
Crisis Response Modes in Collaborative Business Ecosystems: A Mathematical Framework from Plasticity to Antifragility
by Javaneh Ramezani, Luis Gomes and Paula Graça
Mathematics 2025, 13(15), 2421; https://doi.org/10.3390/math13152421 - 27 Jul 2025
Viewed by 404
Abstract
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a [...] Read more.
Collaborative business ecosystems (CBEs) are increasingly exposed to disruptive events (e.g., pandemics, supply chain breakdowns, cyberattacks) that challenge organizational adaptability and value creation. Traditional approaches to resilience and robustness often fail to capture the full range of systemic responses. This study introduces a unified mathematical framework to evaluate four crisis response modes—plasticity, resilience, transformative resilience, and antifragility—within complex adaptive networks. Grounded in complex systems and collaborative network theory, our model formalizes both internal organizational capabilities (e.g., adaptability, learning, innovation, structural flexibility) and strategic interventions (e.g., optionality, buffering, information sharing, fault-injection protocols), linking them to pre- and post-crisis performance via dynamic adjustment functions. A composite performance score is defined across four dimensions (Innovation, Contribution, Prestige, and Responsiveness to Business Opportunities), using capability–strategy interaction matrices, weighted performance change functions, and structural transformation modifiers. The sensitivity analysis and scenario simulations enable a comparative evaluation of organizational configurations, strategy impacts, and phase-transition thresholds under crisis. This indicator-based formulation provides a quantitative bridge between resilience theory and practice, facilitating evidence-based crisis management in networked business environments. Full article
(This article belongs to the Special Issue Optimization Models for Supply Chain, Planning and Scheduling)
Show Figures

Figure 1

18 pages, 2813 KiB  
Article
Spatiotemporal Differentiation and Driving Factors Analysis of the EU Natural Gas Market Based on Geodetector
by Xin Ren, Qishen Chen, Kun Wang, Yanfei Zhang, Guodong Zheng, Chenghong Shang and Dan Song
Sustainability 2025, 17(15), 6742; https://doi.org/10.3390/su17156742 - 24 Jul 2025
Viewed by 302
Abstract
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving [...] Read more.
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving the resilience of its supply chain and ensuring the stable supply of energy resources. This paper summarizes the law of the change of its import volume by using the complex network method, constructs a multi-dimensional index system such as demand, economy, and security, and uses the geographic detector model to mine the driving factors affecting the spatiotemporal evolution of natural gas imports in EU countries and propose different sustainable development paths. The results show that from 2000 to 2023, Europe’s natural gas imports generally show an upward trend, and the import structure has undergone great changes, from pipeline gas dominance to LNG diversification. After the conflict between Russia and Ukraine, the number of import source countries has increased, the market network has become looser, France has become the core hub of the EU natural gas market, the importance of Russia has declined rapidly, and the status of countries in the United States, North Africa, and the Middle East has increased rapidly; natural gas consumption is the leading factor in the spatiotemporal differentiation of EU natural gas imports, and the influence of import distance and geopolitical risk is gradually expanding, and the proportion of energy consumption is significantly higher than that of other factors in the interaction with other factors. Combined with the driving factors, three different evolutionary directions of natural gas imports in EU countries are identified, and energy security paths such as improving supply chain control capabilities, ensuring export stability, and using location advantages to become hub nodes are proposed for different development trends. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

32 pages, 15499 KiB  
Article
Enhancing Transparency in Buyer-Driven Commodity Chains for Complex Products: Extending a Blockchain-Based Traceability Framework Towards the Circular Economy
by Ritwik Takkar, Ken Birman and H. Oliver Gao
Appl. Sci. 2025, 15(15), 8226; https://doi.org/10.3390/app15158226 - 24 Jul 2025
Viewed by 372
Abstract
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full [...] Read more.
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full lifecycle transparency to bolster sustainability and resilience in supply chains by enabling data-driven accountability and tracking for closed-loop resource flows. The enhanced approach can track post-consumer returns, use of recycled materials, and second-life goods, all represented using a closed-loop supply chain topology. We describe the extended network architecture and smart contract logic needed to capture circular lifecycle events, while proposing new metrics for evaluating lifecycle traceability and reuse auditability. To validate the extended framework, we outline simulation experiments that incorporate circular flows and cross-industry scenarios. Results from these simulations indicate improved transparency on recycled content, audit trails for returned products, and acceptable performance overhead when scaling to different product domains. Finally, we offer conclusions and recommendations for implementing WEave functionality into real-world settings consistent with the goals of digital, resilient, and sustainable supply chains. Full article
Show Figures

Figure 1

17 pages, 2181 KiB  
Article
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
by Sai Chen and Yuxi Tian
Energies 2025, 18(15), 3944; https://doi.org/10.3390/en18153944 - 24 Jul 2025
Viewed by 230
Abstract
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including [...] Read more.
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including a centralized structure, overdependence on key countries, and limited resilience to external disruptions. Based on this, we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore, we propose a composite sustainability index constructed from structural, economic, and environmental resilience indicators, enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions, with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances, economic losses, and risks of carbon rebound, their impacts are largely concentrated in a limited number of hub countries, with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural, economic, and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions, chain-like transmission, and localized clustering. Accordingly, policy recommendations are proposed, including the establishment of a polycentric coordination mechanism, the enhancement of regional emergency coordination mechanisms, and the advancement of differentiated capacity-building efforts. Full article
Show Figures

Figure 1

16 pages, 2350 KiB  
Article
The Impact of the Spread of Risks in the Upstream Trade Network of the International Cobalt Industry Chain
by Xiaoxue Wang, Han Sun, Linjie Gu, Zhenghao Meng, Liyi Yang and Jinhua Cheng
Sustainability 2025, 17(15), 6711; https://doi.org/10.3390/su17156711 - 23 Jul 2025
Viewed by 233
Abstract
The intensifying global competition for cobalt resources and the increasing likelihood of trade decoupling and disruption are profoundly impacting the global energy transition. In a globalized trade environment, a decline in cobalt supply from exporting countries can spread through the trade network, negatively [...] Read more.
The intensifying global competition for cobalt resources and the increasing likelihood of trade decoupling and disruption are profoundly impacting the global energy transition. In a globalized trade environment, a decline in cobalt supply from exporting countries can spread through the trade network, negatively affecting demand countries. Quantitative analysis of the negative impacts of export supply declines in various countries can help identify early risks in the global supply chain, providing a scientific basis for energy security, industrial development, and policy responses. This study constructs a trade network using trade data on metal cobalt, cobalt powder, cobalt concentrate, and ore sand from the upstream (mining, selection, and smelting) stages of the cobalt industry chain across 155 countries and regions from 2000 to 2023. Based on this, an impact diffusion model is established, incorporating the trade volumes and production levels of cobalt resources in each country to measure their resilience to shocks and determine their direct or indirect dependencies. The study then simulates the impact on countries (regions) when each country’s supply is completely interrupted or reduced by 50%. The results show that: (1) The global cobalt trade network exhibits a ‘one superpower, multiple strong players’ characteristic. Congo (DRC) has a far greater destructive power than other countries, while South Africa, Zambia, Australia, Russia, and other countries have higher destructive power due to their strong storage and production capabilities, strong smelting capabilities, or as important trade transit countries. (2) The global cobalt trade network primarily consists of three major risk areas. The African continent, the Philippines and Indonesia in Southeast Asia, Australia in Oceania, and Russia, the United States, China, and the United Kingdom in Eurasia and North America form the primary risk zones for global cobalt trade. (3) When there is a complete disruption or a 50% reduction in export supply, China will suffer the greatest average demand loss, far exceeding the second-tier countries such as the United States, South Africa, and Zambia. In contrast, European countries and other regions worldwide will experience the smallest average demand loss. Full article
Show Figures

Figure 1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 326
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Assessing Port Connectivity from the Perspective of the Supply Chain: A Bayesian Network-Based Integrated Approach
by Yuan Ji, Jing Lu, Wan Su and Danlan Xie
Sustainability 2025, 17(14), 6643; https://doi.org/10.3390/su17146643 - 21 Jul 2025
Viewed by 388
Abstract
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this [...] Read more.
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this gap, this study develops an integrated Bayesian Network (BN) modeling approach that, for the first time, simultaneously incorporates international connectivity, port competitiveness, and hinterland connectivity within a unified probabilistic framework. Drawing on empirical data from 26 major coastal countries in Asia, the model quantifies the multi-layered and interdependent determinants of port connectivity. The results demonstrate that port competitiveness and hinterland connectivity are the dominant drivers, while the impact of international shipping links is comparatively limited in the current Asian context. Sensitivity analysis further highlights the critical roles of rail transport development and trade facilitation in enhancing port connectivity. The proposed BN framework supports comprehensive scenario analysis under uncertainty and offers targeted, practical policy recommendations for port authorities and regional planners. By systematically capturing the interactions among maritime, port, and inland factors, this study advances both the theoretical understanding and practical management of port connectivity. Full article
Show Figures

Figure 1

21 pages, 7366 KiB  
Article
A GIS-Based Safe System Approach for Risk Assessment in the Transportation of Dangerous Goods: A Case Study in Italian Regions
by Angela Maria Tomasoni, Abdellatif Soussi, Enrico Zero and Roberto Sacile
Systems 2025, 13(7), 580; https://doi.org/10.3390/systems13070580 - 14 Jul 2025
Viewed by 381
Abstract
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and [...] Read more.
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and management. Utilizing Geographic Information Systems (GIS), meteorological data, and material-specific information, the research develops a data-driven approach to identify analyze, evaluate, and mitigate risks associated with DGT. The main objectives include monitoring dangerous goods flows to identify critical risk areas, optimizing emergency response using a shared model, and providing targeted training for stakeholders involved in DGT. The study leverages Information and Communication Technologies (ICT) to systematically collect, interpret, and evaluate data, producing detailed risk scenario maps. These maps are instrumental in identifying vulnerable areas, predicting potential accidents, and assessing the effectiveness of risk management strategies. This work introduces an innovative GIS-based risk assessment model that combines static and dynamic data to address various aspects of DGT, including hazard identification, accident prevention, and real-time decision support. The results contribute to enhancing safety protocols and provide actionable insights for policymakers and practitioners aiming to improve the resilience of technological systems for road transport networks handling dangerous goods. Full article
(This article belongs to the Special Issue Application of the Safe System Approach to Transportation)
Show Figures

Figure 1

20 pages, 1851 KiB  
Article
ISO-Based Framework Optimizing Industrial Internet of Things for Sustainable Supply Chain Management
by Emad Hashiem Abualsauod
Sustainability 2025, 17(14), 6421; https://doi.org/10.3390/su17146421 - 14 Jul 2025
Viewed by 394
Abstract
The Industrial Internet of Things (IIoT) offers transformative potential for supply chain management by enabling automation, real-time monitoring, and predictive analytics. However, fragmented standardization, interoperability challenges, and cybersecurity risks hinder its sustainable adoption. This study aims to develop and validate an ISO-based framework [...] Read more.
The Industrial Internet of Things (IIoT) offers transformative potential for supply chain management by enabling automation, real-time monitoring, and predictive analytics. However, fragmented standardization, interoperability challenges, and cybersecurity risks hinder its sustainable adoption. This study aims to develop and validate an ISO-based framework to optimize IIoT networks for sustainable supply chain operations. A quantitative time-series research design was employed, analyzing 150 observations from 10–15 industrial firms over five years. Analytical methods included ARIMA, structural equation modeling (SEM), and XGBoost for predictive evaluation. The findings indicate a 6.2% increase in system uptime, a 4.7% reduction in operational costs, a 2.8% decrease in lead times, and a 55–60% decline in security incidents following ISO standard implementation. Interoperability improved by 40–50%, and integration cost savings ranged from 35–40%, contributing to a 25% boost in overall operational efficiency. These results underscore the critical role of ISO frameworks such as ISO/IEC 30141 and ISO 50001 in enhancing connectivity, energy efficiency, and network security across IIoT-enabled supply chains. While standardization significantly improves key performance indicators, the persistence of lead time variability suggests the need for additional optimization strategies. This study offers a structured and scalable methodology for ISO-based IIoT integration, delivering both theoretical advancement and practical relevance. By aligning with internationally recognized sustainability standards, it provides policymakers, practitioners, and industry leaders with an evidence-based framework to accelerate digital transformation, enhance operational efficiency, and support resilient, sustainable supply chain development in the context of Industry 4.0. Full article
(This article belongs to the Special Issue Network Operations and Supply Chain Management)
Show Figures

Figure 1

44 pages, 1067 KiB  
Review
Toward Adaptive and Immune-Inspired Viable Supply Chains: A PRISMA Systematic Review of Mathematical Modeling Trends
by Andrés Polo, Daniel Morillo-Torres and John Willmer Escobar
Mathematics 2025, 13(14), 2225; https://doi.org/10.3390/math13142225 - 8 Jul 2025
Cited by 1 | Viewed by 739
Abstract
This study presents a systematic literature review on the mathematical modeling of resilient and viable supply chains, grounded in the PRISMA methodology and applied to a curated corpus of 235 peer-reviewed scientific articles published between 2011 and 2025. The search strategy was implemented [...] Read more.
This study presents a systematic literature review on the mathematical modeling of resilient and viable supply chains, grounded in the PRISMA methodology and applied to a curated corpus of 235 peer-reviewed scientific articles published between 2011 and 2025. The search strategy was implemented across four major academic databases (Scopus and Web of Science) using Boolean operators to capture intersections among the core concepts of supply chains, resilience, viability, and advanced optimization techniques. The screening process involved a double manual assessment of titles, abstracts, and full texts, based on inclusion criteria centered on the presence of formal mathematical models, computational approaches, and thematic relevance. As a result of the selection process, six thematic categories were identified, clustering the literature according to their analytical objectives and methodological approaches: viability-oriented modeling, resilient supply chain optimization, agile and digitally enabled supply chains, logistics optimization and network configuration, uncertainty modeling, and immune system-inspired approaches. These categories were validated through a bibliometric analysis and a thematic map that visually represents the density and centrality of core research topics. Descriptive analysis revealed a significant increase in scientific output starting in 2020, driven by post-pandemic concerns and the accelerated digitalization of logistics operations. At the methodological level, a high degree of diversity in modeling techniques was observed, with an emphasis on mixed-integer linear programming (MILP), robust optimization, multi-objective modeling, and the increasing use of bio-inspired algorithms, artificial intelligence, and simulation frameworks. The results confirm a paradigm shift toward integrative frameworks that combine robustness, adaptability, and Industry 4.0 technologies, as well as a growing interest in biological metaphors applied to resilient system design. Finally, the review identifies research gaps related to the formal integration of viability under disruptive scenarios, the operationalization of immune-inspired models in logistics environments, and the need for hybrid approaches that jointly address resilience, agility, and sustainability. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
Show Figures

Figure 1

41 pages, 883 KiB  
Article
Dependent-Chance Goal Programming for Sustainable Supply Chain Design: A Reinforcement Learning-Enhanced Salp Swarm Approach
by Yassine Boutmir, Rachid Bannari, Achraf Touil, Mouhsene Fri and Othmane Benmoussa
Sustainability 2025, 17(13), 6079; https://doi.org/10.3390/su17136079 - 2 Jul 2025
Viewed by 277
Abstract
The Sustainable Supply Chain Network Design Problem (SSCNDP) is to determine the optimal network configuration and resource allocation that achieve the trade-off among economic, environmental, social, and resilience objectives. The Sustainable Supply Chain Network Design Problem (SSCNDP) involves determining the optimal network configuration [...] Read more.
The Sustainable Supply Chain Network Design Problem (SSCNDP) is to determine the optimal network configuration and resource allocation that achieve the trade-off among economic, environmental, social, and resilience objectives. The Sustainable Supply Chain Network Design Problem (SSCNDP) involves determining the optimal network configuration and resource allocation that allows trade-off among economic, environmental, social, and resilience objectives. This paper addresses the SSCNDP under hybrid uncertainty, which combines objective randomness got from historical data, and subjective beliefs induced by expert judgment. Building on chance theory, we formulate a dependent-chance goal programming model that specifies target probability levels for achieving sustainability objectives and minimizes deviations from these targets using a lexicographic approach. To solve this complex optimization problem, we develop a hybrid intelligent algorithm that combines uncertain random simulation with Reinforcement Learning-enhanced Salp Swarm Optimization (RL-SSO). The proposed RL-SSO algorithm is benchmarked against standard metaheuristics—Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and standard SSO, across diverse problem instances. Results show that our method consistently outperforms these techniques in both solution quality and computational efficiency. The paper concludes with managerial insights and discusses limitations and future research directions. Full article
(This article belongs to the Special Issue Sustainable Operations and Green Supply Chain)
Show Figures

Figure 1

19 pages, 1265 KiB  
Article
The Effect of Digital Service Innovation on Strengthening Supply Chain Networks Against Disruptions: A Network Embedding Approach
by Yanjie Gou, Maozeng Xu, Lucille Aba Abruquah and Xudong Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 164; https://doi.org/10.3390/jtaer20030164 - 1 Jul 2025
Viewed by 385
Abstract
The advent of digital technology has transformed traditional service management approaches and offers new opportunities for the supply chain network to resist these interruptions. However, current research on how digital service innovation directly affects supply chain resilience is limited. This study constructs a [...] Read more.
The advent of digital technology has transformed traditional service management approaches and offers new opportunities for the supply chain network to resist these interruptions. However, current research on how digital service innovation directly affects supply chain resilience is limited. This study constructs a theoretical research framework to explore how digital service innovation promotes supply chain resilience in the manufacturing industry, using a network embeddedness perspective. Through extensive survey data, the research demonstrates that digital service innovation enhances resilience by fostering two types of network embeddedness, namely relational and structural embedding, which in turn enhances resistance to interruption. IT support capabilities further reinforce the relationship between digital service innovation and relational embedding and structural embedding, and enhance the overall impact on resilience. This paper is among the first to integrate digital service innovation into supply chain resilience research, unveiling a network embedding approach for enhancing the ability to respond to supply chain network disruptions. Full article
(This article belongs to the Special Issue Digitalization and Sustainable Supply Chain)
Show Figures

Figure 1

Back to TopTop