Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = supercritical oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

20 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Viewed by 230
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

18 pages, 1425 KiB  
Article
Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare
by Daniela F. Maluf, Brenda A. Lopes, Mariana D. Miranda, Luana C. Teixeira, Ana P. Horacio, Amanda Jansen, Madeline S. Correa, Guilherme dos Anjos Camargo, Jessica Mendes Nadal, Jane Manfron, Patrícia M. Döll-Boscardin and Paulo Vitor Farago
Cosmetics 2025, 12(4), 159; https://doi.org/10.3390/cosmetics12040159 - 25 Jul 2025
Viewed by 449
Abstract
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was [...] Read more.
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was characterized by Ultra-High-Performance Liquid Chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and incorporated into PCL nanocapsules (NCBSO) using the preformed polymer deposition method. Physicochemical properties, stability (at 4 °C, room temperature, and 37 °C for 90 days), cytotoxicity, and collagen production were assessed in human fibroblasts. Additionally, a predictive in silico analysis using PASS Online, Molinspiration, and SEA platforms was performed to identify the bioactivities of major BSO compounds related to collagen synthesis, antioxidant potential, and anti-aging effects. Results: NCBSO showed a nanometric size of ~267 nm, low polydispersity (PDI < 0.2), negative zeta potential (−28 mV), and spherical morphology confirmed by FE-SEM. The dispersion remained stable across all tested temperatures, preserving pH and colloidal properties. In particular, BSO and NCBSO at 100 µg.mL−1 significantly enhanced in vitro collagen production by 170% and 200%, respectively, compared to untreated cells (p < 0.01). Superior bioactivity was observed for NCBSO. The in silico results support the role of key compounds in promoting collagen biosynthesis and protecting skin structure. No cytotoxic effects were achieved. Conclusions: The nanoencapsulation of BSO into PCL nanocapsules ensured formulation stability and potentiated collagen production. These findings support the potential of NCBSO as a promising candidate for future development as a collagen-boosting cosmeceutical. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Graphical abstract

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

35 pages, 2913 KiB  
Article
Effect of Supplementation of Antioxidant Lipids Synthetized by Enzymatic Acidolysis with EPA/DHA Concentrate and Maqui (Aristotelia chilensis (Mol.) Stuntz) Seed Oil for Mitigating High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice
by Benjamín Claria, Alejandra Espinosa, Alicia Rodríguez, María Elsa Pando, Gretel Dovale-Rosabal, Nalda Romero, Katherynne Mayorga, Evelyn Tapia, Jenifer Saez, Melissa Tsuchida, Karla Vásquez, Rodrigo Valenzuela, Álvaro Pérez, Patricio Díaz and Santiago P. Aubourg
Antioxidants 2025, 14(7), 790; https://doi.org/10.3390/antiox14070790 - 26 Jun 2025
Viewed by 613
Abstract
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were [...] Read more.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were derived from a concentrate of rainbow trout (Oncorhynchus mykiss) belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, Aristotelia chilensis (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg−1, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels (p < 0.01), and enhanced postprandial glucose tolerance (p < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3′s potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

24 pages, 6378 KiB  
Article
Fluid Characteristics of Radial Hydrodynamic Bearings Using Supercritical Carbon Dioxide as Lubricant
by Chengtao Niu, Sung-Ki Lyu, Yu-Ting Wu, Zhen Qin and Jie Zhang
Lubricants 2025, 13(6), 271; https://doi.org/10.3390/lubricants13060271 - 18 Jun 2025
Viewed by 650
Abstract
Hydrodynamic journal bearings play a vital role in high-speed, heavy-load machinery. Their performance directly affects system efficiency and reliability. Supercritical carbon dioxide (S-CO2), with its favorable thermophysical properties, is a promising lubricant. This study focused on a four-oil-cavity hydrodynamic journal bearing [...] Read more.
Hydrodynamic journal bearings play a vital role in high-speed, heavy-load machinery. Their performance directly affects system efficiency and reliability. Supercritical carbon dioxide (S-CO2), with its favorable thermophysical properties, is a promising lubricant. This study focused on a four-oil-cavity hydrodynamic journal bearing using S-CO2 as the working fluid. A numerical model was established in ANSYS Workbench 2024 R1 using a fluid–structure interaction (FSI) method. The model was validated through comparison with literature data. Parametric studies were conducted by varying radial clearance, eccentricity, inlet diameter, and oil cavity size. Results showed that reducing the oil cavity wrap angle enhanced load capacity. Larger inlet diameters improved lubrication but could increase deformation. An appropriate combination of inlet diameter and eccentricity effectively reduced shell deformation. These findings offer design guidance for S-CO2-lubricated bearings in high-speed applications. Full article
Show Figures

Figure 1

27 pages, 3488 KiB  
Review
Current Perspectives on the Extraction, Isolation, and Identification of Fats and Fatty Acids Using Conventional and Green Methods
by Ytaiara Lima-Pereira, Esther Maria Oliveira de Souza, David Silva dos Reis, Ian Gardel Carvalho Barcellos-Silva, Karine Sayuri Lima Miki, Valdir F. Veiga-Júnior and Barbara Elisabeth Teixeira-Costa
Separations 2025, 12(6), 160; https://doi.org/10.3390/separations12060160 - 13 Jun 2025
Viewed by 911
Abstract
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this [...] Read more.
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this demand, it is essential to not only identify richer sources of lipids but also develop efficient, sustainable, and environmentally friendly methods for their extraction, isolation, and characterization. In this context, the present work provides a comprehensive review of current perspectives on the extraction, isolation, and identification of lipids and fatty acids, comparing conventional and green methodologies for food applications. Ideally, analytical and processing methodologies for obtaining food-grade materials should prioritize low energy consumption, minimal or no use of hazardous substances, and the generation of non-polluting residues, thereby safeguarding both human health and the environment. In recent years, green extraction techniques have emerged as promising alternatives to conventional methods, offering partial or complete replacements, such as ultrasound-assisted extraction, microwave-assisted extraction, supercritical and subcritical fluid extraction, and others. However, significant advancements are still required to fully address these concerns. Techniques such as chromatography and spectrometry play pivotal roles in the isolation and identification process, especially gas chromatography coupled with mass spectrometry or with flame ionization detectors; while separating individual fatty acids based on their chain length and degree of unsaturation, reversed-phase high-performance liquid chromatography (HPLC) is quite a helpful approach. Furthermore, the isolation and structural elucidation of fatty acids are critical steps in ensuring the nutritional quality and commercial viability of lipid products. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Graphical abstract

18 pages, 2934 KiB  
Article
Stabilization of the Bio-Oil Organic Phase via Solvent-Assisted Hydrotreating, Part 1: Investigating the Influence of Various Solvents
by Manqoba Shezi, Manish Sakhakarmy, Sushil Adhikari and Sammy Lewis Kiambi
Bioengineering 2025, 12(5), 537; https://doi.org/10.3390/bioengineering12050537 - 16 May 2025
Viewed by 480
Abstract
Conventional mild hydrotreatment processes of bio-oil present significant challenges of a high degree of polymerization, a low oil yield, high coke formation, and poor catalyst recovery. To address these challenges, the current study looked into investigating and enhancing the properties of raw bio-oil [...] Read more.
Conventional mild hydrotreatment processes of bio-oil present significant challenges of a high degree of polymerization, a low oil yield, high coke formation, and poor catalyst recovery. To address these challenges, the current study looked into investigating and enhancing the properties of raw bio-oil organic phase samples via a solvent-assisted stabilization approach using methanol (METH), ethanol (ETH), isopropyl alcohol (IPA), and ethyl ether (DME). Solvents like methanol (METH) and ethanol (ETH), which are highly polar, yielded higher oil fractions (64% and 62%, respectively) compared to less polar solvents like ethyl ether (DME) at 59%. Isopropyl alcohol (IPA), with intermediate polarity, achieved a balanced oil yield of 63%, indicating its ability to dissolve both polar and non-polar components. Moisture reduction in stabilized bio-oils followed the order IPA > ETH > METH > DME, with IPA showing the highest reduction due to its structural characteristics facilitating dehydration. Viscosity reduction varied, with IPA > ETH > DME > METH. Carbon recovery in stabilized bio-oils ranged from 65% to 75% for DME, ETH, and METH and was 71% for IPA. The heating values of stabilized bio-oils ranged from 28 to 29 MJ/kg, with IPA-stabilized bio-oil showing the highest value (29.05 ± 0.06 MJ/kg). METH demonstrated high efficiency (74.8%) in stabilizing bio-oil, attributed to its strong hydrogen-donating capability. ETH followed closely at 69.5%, indicating its comparable performance in bio-oil stabilization. With moderate efficiency (69.3%), IPA presents a balanced alternative considering its molecular structure and hydrogen solubility. In contrast, DME exhibited lower efficiency (63.6%) due to its weaker hydrogenation capability and propensity for undesired side reactions. The current study suggests that subcritical conditions up to 200 °C are adequate for METH, ETH, and IPA in bio-oil stabilization, comparable to results obtained under supercritical conditions. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

26 pages, 1052 KiB  
Review
Study on Biodiesel Production: Feedstock Evolution, Catalyst Selection, and Influencing Factors Analysis
by Fangyuan Zheng and Haeng Muk Cho
Energies 2025, 18(10), 2533; https://doi.org/10.3390/en18102533 - 14 May 2025
Cited by 1 | Viewed by 1499
Abstract
As fossil fuel depletion and environmental pollution become increasingly severe, biodiesel has emerged as a promising renewable alternative to conventional diesel due to its biodegradability, low sulfur emissions, and high combustion efficiency. This paper provides a comprehensive review of the evolution of biodiesel [...] Read more.
As fossil fuel depletion and environmental pollution become increasingly severe, biodiesel has emerged as a promising renewable alternative to conventional diesel due to its biodegradability, low sulfur emissions, and high combustion efficiency. This paper provides a comprehensive review of the evolution of biodiesel feedstocks, major production technologies, and key factors influencing production efficiency and fuel quality. It traces the development of feedstocks from first-generation edible oils, second-generation non-edible oils and waste fats, to third-generation microalgal oils and fourth-generation biofuels based on synthetic biology, with a comparative analysis of their respective advantages and limitations. Various production technologies such as transesterification, direct esterification, supercritical alcohol methods, and enzyme-catalyzed transesterification are examined in terms of reaction mechanisms, process conditions, and applicability. The effects of critical process parameters including the alcohol-to-oil molar ratio, reaction time, and temperature on biodiesel yield and quality are discussed in detail. Particular attention is given to the role of catalysts, including both homogeneous and heterogeneous types, in enhancing conversion efficiency. In addition, life cycle assessment (LCA) is briefly considered to evaluate the environmental impact and sustainability of biodiesel production. This review serves as a valuable reference for improving biodiesel production technologies, advancing sustainable feedstock development, and promoting the commercial application of biodiesel. Full article
Show Figures

Figure 1

18 pages, 13500 KiB  
Article
Impact of Polymers on Sand Sedimentation Characteristics of Shale Oil-Produced Fluid
by Yongbin Shang, Qiaosheng Zhang, Wanrui Li, Tian Gao, Ruhao Zhao, Lan Bai and Xiaoming Luo
Materials 2025, 18(10), 2269; https://doi.org/10.3390/ma18102269 - 14 May 2025
Viewed by 425
Abstract
The introduction of polymers has significantly altered the properties of sand particles in shale oil production fluids, leading to a more complex sedimentation mechanism. However, the specific ways in which polymers influence sand sedimentation dynamics remain poorly understood. In this study, Soxhlet extraction [...] Read more.
The introduction of polymers has significantly altered the properties of sand particles in shale oil production fluids, leading to a more complex sedimentation mechanism. However, the specific ways in which polymers influence sand sedimentation dynamics remain poorly understood. In this study, Soxhlet extraction and supercritical water oxidation techniques were employed to compare the particle size distribution of polymer-containing sand with that of actual sand. The results show that sand sedimentation in polymer-containing shale oil production fluids involves two mechanisms: gravity-dominated single-particle sedimentation and polymer-induced multi-particle flocculation–sedimentation. Additionally, polymers induce both flocculation–sedimentation and hindering effects. Specifically, the water content and temperature can promote single-particle sedimentation and flocculation–sedimentation of the sand particle group by adjusting the rheology, polymer content, and stability of the production fluid. In this experimental study, the sedimentation rates of the two processes were increased by 38.05% and 54.76%, respectively. Based on these findings, the sedimentation characteristics of sand particles in production fluids under the influence of polymers were obtained, offering valuable insights for the management and control of sand in polymer-containing shale oil production fluids. Full article
Show Figures

Graphical abstract

11 pages, 2174 KiB  
Article
Proof-of-Concept Study on Supercritical Fluid Chromatography Hyphenated with a Fast Optoelectronic Nose for Online Monitoring of Odorant Molecules
by Cyrille Santerre, David Touboul, Thierry Livache and Cyril Herrier
Processes 2025, 13(5), 1425; https://doi.org/10.3390/pr13051425 - 7 May 2025
Viewed by 589
Abstract
In this study, we explored the use of surface plasmon resonance (SPR) and Mach–Zehnder interferometry for detecting compounds in complex mixtures separated by supercritical fluid chromatography. Each molecule was individually injected and analyzed by supercritical fluid chromatography (SFC) in a 10% alcoholic solution. [...] Read more.
In this study, we explored the use of surface plasmon resonance (SPR) and Mach–Zehnder interferometry for detecting compounds in complex mixtures separated by supercritical fluid chromatography. Each molecule was individually injected and analyzed by supercritical fluid chromatography (SFC) in a 10% alcoholic solution. The fingerprints obtained via the sensors were then compared to the fingerprints of the same molecules present in a lemon essential oil (EO) at the same dilution. The results show a remarkable correlation between UV sensors and electronic noses (e-nose), enabling compound detection. The obtained signals are normalized and presented as radar charts to visualize the specific olfactory signatures of each molecule. The olfactory profiles of monoterpenes C10H16 such as α-pinene and limonene show notable differences, as do the C10H16O isomers (citral, geranial, and neral). Mach–Zehnder interferometry also allows for the discrimination of limonene enantiomers, a challenging task for current chromatography techniques. Statistical analysis confirms the ability of these technologies to differentiate compounds, including isomers. Even if UV detection is more sensitive than SPR, e-noses (SPR and Mach–Zehnder interferometers) offer the unique advantage of providing specific signatures for each compound, facilitating real-time identification. This study demonstrates the effectiveness of combining e-noses with SFC for rapid, non-destructive detection of volatile compounds. This concept can be extended to other terpenoids and volatile compounds, and hybridization with gas chromatography could be a future potential development. Full article
Show Figures

Figure 1

18 pages, 6423 KiB  
Article
Influence of Chromium Content in Alloys on Corrosion in Saline Water Saturated with Supercritical CO2
by Haofei Sun, Minkang Liu, Yimin Zeng and Jing Liu
Processes 2025, 13(5), 1334; https://doi.org/10.3390/pr13051334 - 27 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Amid growing global efforts toward carbon capture, utilization, and storage (CCUS), this study investigates the influence of chromium (Cr) content in candidate construction alloys on their corrosion modes and kinetics in supercritical CO2 (s-CO2)-saturated saline water at 8 MPa and [...] Read more.
Amid growing global efforts toward carbon capture, utilization, and storage (CCUS), this study investigates the influence of chromium (Cr) content in candidate construction alloys on their corrosion modes and kinetics in supercritical CO2 (s-CO2)-saturated saline water at 8 MPa and 50 °C. The results indicate that alloys with a Cr concentration of over approximately 9 wt.%, including P91, 316L, and Alloy 800, exhibit a satisfactory corrosion performance in this environment. During exposure to s-CO2-saturated saline water, a non-protective FeCO3 layer forms on all tested alloys. For alloys containing more than 2 wt.% Cr, an inner Cr-enriched layer concurrently grows and acts as a barrier to resist environmental attack. The integrity of the inner and outer corrosion layers becomes more compact and uniform on alloys with at least 9 wt.% Cr. Pitting is unlikely to occur on candidate alloys used for s-CO2 storage or enhanced oil recovery. Full article
(This article belongs to the Special Issue Development of Corrosion-Resistant Materials)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Modeling the Temperature and Pressure Variations of Supercritical Carbon Dioxide in Coiled Tubing
by Zhixing Luan and Peng Wang
Processes 2025, 13(4), 1230; https://doi.org/10.3390/pr13041230 - 18 Apr 2025
Viewed by 380
Abstract
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, [...] Read more.
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, making it a highly promising innovative drilling technology. The thermo-hydraulic coupling characteristics of SC-CO2 in helical coiled tubes are critical to the design of SC-CO2 coiled tubing drilling systems. However, existing models often neglect thermal conduction, variable thermophysical properties, and friction-compression coupling effects, leading to significant deviations in the prediction of temperature and pressure variations. Considering heat transmission and fluid dynamics, a coiled tube heat-transfer model which considers varying properties of both pressure and temperature has been developed based on an optimized convective heat-transfer coefficient. Then, the physical parameters of the carbon dioxide in the helical coiled tubing were researched. Results indicated that the temperature change of carbon dioxide in helical coiled tubing was small due to the low temperature difference between the carbon dioxide and the air as well as the existence of an air interlayer and low natural convective heat-transfer efficiency. The drop in pressure of the carbon dioxide increased with increasing coiled tubing length, and the pressure was half that of the conventional drilling fluid in the same condition due to its low viscosity. The density of carbon dioxide in the helical coiled tubing changed from 1078 kg/m3 to 1047 kg/m3 with increasing coiled tubing length under the conditions stated herein, and the carbon dioxide remained liquid throughout the whole process. Full article
Show Figures

Figure 1

15 pages, 1823 KiB  
Article
Retention and Antimicrobial Activity of Alginate-Encapsulated Bioactive Compounds from Leaves and Fruits of Myrtle (Myrtus communis L.)
by Daniela Cvitković, Jasna Mrvčić, Erika Dobroslavić, Verica Dragović-Uzelac and Sandra Balbino
Processes 2025, 13(4), 1220; https://doi.org/10.3390/pr13041220 - 17 Apr 2025
Viewed by 425
Abstract
Myrtle (Myrtus communis L.) is a rich source of bioactive compounds and nutraceuticals of different polarities obtained from different parts of the plant, whose synergistic effect could be harnessed through the formulation of capsules. The aim of this work was to investigate [...] Read more.
Myrtle (Myrtus communis L.) is a rich source of bioactive compounds and nutraceuticals of different polarities obtained from different parts of the plant, whose synergistic effect could be harnessed through the formulation of capsules. The aim of this work was to investigate the antimicrobial activity of three myrtle formulations: essential oil and aqueous leaf extract and supercritical fruit extract, as well as the retention of volatile, phenolic and lipid compounds in low-viscosity alginate capsules obtained by the electrostatic extrusion microencapsulation of these formulations combined. At a temperature of 48 °C, 1.27% emulsifier and 3% CaCl2, 72.86% of the volatiles, 61.13% of the phenolics and 62.80% of the lipids were retained. All tested extracts showed good antibacterial activity, especially against Staphylococcus aureus and Listeria monocytogenes, which were the most sensitive. An exceptionally high inhibitory effect was achieved by aqueous leaf extract against L. monocytogenes (35.25 mm) and essential oil against Escherichia coli (28 mm). Supercritical extract and essential oil showed good antifungal activity, and none of the extracts showed inhibitory activity against lactic acid bacteria. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

20 pages, 7306 KiB  
Article
Chemical Composition and Bioactivity of Extracts Obtained from Prunus spinosa Seeds by Supercritical CO2 Extraction
by Alessandra Piras, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Franca Piras, Valeria Sogos and Antonella Rosa
Molecules 2025, 30(8), 1757; https://doi.org/10.3390/molecules30081757 - 14 Apr 2025
Viewed by 711
Abstract
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct [...] Read more.
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct extracts were obtained at low and high pressure (SFE90 and SFE200) and both extracts presented an aqueous phase (WE90 and WE200). SFE90 analysis by GC/MS allowed us to identify benzaldehyde and fatty acids (mainly oleic and linoleic acids). The fatty acid profile of SFE200, determined by HPLC-DAD/ELSD, showed that oleic and linoleic acids were predominant in supercritical oil. The phytochemical composition of the water extracts, analyzed via LC-DAD-ESI-MS, revealed that higher pressure enhanced the recovery of specific flavonols and anthocyanins, while lower pressure preserved various polyphenolic subclasses. WE90 was rich in 3-feruloylquinic acid and cyanidin-3-O-rutinoside, whereas WE200 was rich in caffeic acid hexoside 2 and dihydro-o-coumaric acid glucoside. Benzaldehyde was individuated in WE90 and WE200 by HPLC-DAD analysis. Cytotoxicity assays demonstrated that WE90, WE200 and SFE200 had anticancer effects on SH-SY5Y neuroblastoma cells, while all extracts did not remarkably affect the viability and morphology of human skin keratinocytes (HaCaT cells). These results suggest that P. spinosa seed extracts have potential nutraceutical and pharmaceutical applications. Full article
Show Figures

Graphical abstract

Back to TopTop