Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = super storm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1571 KiB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 168
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

18 pages, 12319 KiB  
Article
The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024
by Di Bai, Yijun Fu, Chunyong Yang, Kedeng Zhang and Yongqiang Cui
Remote Sens. 2025, 17(15), 2616; https://doi.org/10.3390/rs17152616 - 28 Jul 2025
Viewed by 236
Abstract
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), [...] Read more.
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), in situ electron density data from the Swarm satellite, and corresponding simulations from the thermosphere–ionosphere–electrodynamics general circulation model (TIEGCM), the dynamic poleward shift of the equatorial ionization anomaly (EIA) during the main phase of the super geomagnetic storm has been explored. The results show that the EIA crests moved poleward from ±15° magnetic latitude (MLat) to ±20° MLat at around 19.6 UT, to ±25° MLat at 21.2 UT, and to ±31° MLat at 22.7 UT. This poleward shift was primarily driven by the enhanced eastward electric field, neutral winds, and ambipolar diffusion. Storm-induced meridional winds can move ionospheric plasma upward/downward along geomagnetic field lines, causing the poleward movement of EIA crests, with minor contributions from zonal winds. Ambipolar diffusion contributes/prevents the formation of EIA crests at most EIA latitudes/the equatorward edge. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

21 pages, 1200 KiB  
Article
On the Role of Abrupt Solar Wind Pressure Changes in Forbidden Energetic Electron Enhancements
by Alla V. Suvorova and Alexei V. Dmitriev
Universe 2025, 11(7), 226; https://doi.org/10.3390/universe11070226 - 9 Jul 2025
Viewed by 156
Abstract
The sudden increase of fluxes of quasi-trapped energetic electrons under the Earth’s radiation belt (ERB) has remained a puzzling phenomenon for decades. It is known as enhancements of forbidden energetic electrons (FEEs). The FEE enhancements are occasionally observed by low-Earth orbit NOAA/POES satellites. [...] Read more.
The sudden increase of fluxes of quasi-trapped energetic electrons under the Earth’s radiation belt (ERB) has remained a puzzling phenomenon for decades. It is known as enhancements of forbidden energetic electrons (FEEs). The FEE enhancements are occasionally observed by low-Earth orbit NOAA/POES satellites. Previously, no strong correlation was established between FEEs and geomagnetic activity, while external control of FEE occurrence by solar activity and interplanetary parameters was revealed on a long time-scale. Two important questions are still open: (1) key parameters of the mechanism and (2) solar wind drivers or triggers. In the present study we conducted detailed analysis of three FEE events that occurred during the greatest geomagnetic storms, which dramatically affected space weather. The FEE enhancements occurred under northward IMF and, thus, Bz and convection electric fields could have been neither driver nor trigger. We found that an abrupt and significant change in solar wind pressure is a key solar wind driver of the FEE enhancements observed. The characteristic time of FEE injection from the inner edge of the ERB at L-shell 1.2 to the forbidden zone at L < 1.1 was estimated to be 10–20 min. In the mechanism of ExB drift, this characteristic time corresponds to the radial inward transport of electrons caused by a transient electric field with the magnitude ~10 mV/m. Full article
Show Figures

Figure 1

28 pages, 48949 KiB  
Article
Effects of the October 2024 Storm over the Global Ionosphere
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses and Sharad C. Tripathi
Remote Sens. 2025, 17(13), 2329; https://doi.org/10.3390/rs17132329 - 7 Jul 2025
Viewed by 1414
Abstract
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres [...] Read more.
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres on the dayside, primarily driven by equatorward thermospheric winds and prompt penetration electric fields (PPEFs). However, this uplift did not correspond with increases in foF2 due to enhanced molecular nitrogen-promoting recombination in sunlit regions and the F2 peak rising beyond the COSMIC—2 detection range. In contrast, in the Southern Hemisphere nightside ionosphere exhibited pronounced Ne depletion and low hmF2 values, attributed to G-conditions and thermospheric composition changes caused by storm-time circulation. Strong vertical plasma drifts exceeding 100 m/s were observed during both the main and recovery phases, particularly over Ascension Island, driven initially by southward IMF—Bz-induced PPEFs and later by disturbance dynamo electric fields (DDEFs) as IMF—Bz turned northward. Swarm data revealed a poleward expansion of the Equatorial Ionization Anomaly (EIA), with more pronounced effects in the Southern Hemisphere due to seasonal and longitudinal variations in ionospheric conductivity. Additionally, the storm excited Large-Scale Travelling Ionospheric Disturbances (LSTIDs), triggered by thermospheric perturbations and electrodynamic drivers, including PPEFs and DDEFs. These disturbances, along with enhanced westward thermospheric wind and altered zonal electric fields, modulated ionospheric irregularity intensity and distribution. The emergence of anti-Sq current systems further disrupted quiet-time electrodynamics, promoting global LSTID activity. Furthermore, storm-induced equatorial plasma bubbles (EPBs) were observed over Southeast Asia, initiated by enhanced PPEFs during the main phase and suppressed during recovery, consistent with super EPB development mechanisms. Full article
Show Figures

Figure 1

20 pages, 6414 KiB  
Article
D- and F-Region Ionospheric Response to the Severe Geomagnetic Storm of April 2023
by Arnab Sen, Sujay Pal, Bakul Das and Sushanta K. Mondal
Atmosphere 2025, 16(6), 716; https://doi.org/10.3390/atmos16060716 - 13 Jun 2025
Viewed by 581
Abstract
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 [...] Read more.
This study investigates the impact on the Earth’s ionosphere of a severe geomagnetic storm (Dst  212 nT) that began on 23 April 2023 at around 17:37 UT according to very low-frequency (VLF, 3–30 kHz) or low-frequency (LF, 30–300 kHz) radio signals and ionosonde data. We analyze VLF/LF signals received by SuperSID monitors located in mid-latitude (Europe) and low-latitude (South America, Colombia) areas across nine different propagation paths in the Northern Hemisphere. Mid-latitude regions exhibited a daytime amplitude perturbation, mostly an increase, by ∼3–5 dB during the storm period, with a subsequent recovery after 7–8 days post April 23. In contrast, signals received in low-latitude regions (UTP, Colombia) did not show significant variation during the storm-disturbed days. We also observe that the 3-hour average of foF2 data declined by up to 3 MHz on April 23 and April 24 at the European Digisonde stations. However, no significant variation in foF2 was observed at the low-latitude Digisonde stations in Brazil. Both the VLF and ionosonde data exhibited anomalies during the storm period in the European regions, confirming that both D- and F-region ionospheric perturbation was caused by the severe geomagnetic storm. Full article
Show Figures

Figure 1

14 pages, 905 KiB  
Article
Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003
by Maria-Christina Papailiou and Helen Mavromichalaki
Atmosphere 2025, 16(6), 711; https://doi.org/10.3390/atmos16060711 - 12 Jun 2025
Viewed by 1269
Abstract
The investigation of the two phenomena of Space Weather, i.e., Forbush decreases in the cosmic ray intensity and geomagnetic storms, is a highly developing field of modern scientific research, since these two phenomena can affect not only technological activities, e.g., electronics, telecommunications, navigations, [...] Read more.
The investigation of the two phenomena of Space Weather, i.e., Forbush decreases in the cosmic ray intensity and geomagnetic storms, is a highly developing field of modern scientific research, since these two phenomena can affect not only technological activities, e.g., electronics, telecommunications, navigations, etc., but also, as evidenced by recent studies, human life as well. This study analyses data of heart rate of volunteers of the Polyclinico Tor Vergata, Rome, Italy, with regard to geomagnetic field’s variations (i.e., geomagnetic storms) and cosmic ray intensity’s fluctuations (i.e., Forbush decreases). Data concerning geomagnetic (Dst- and Ap-index values) and cosmic ray activity derived from the Rome Cosmic Ray Station (Studio Variazioni Intensità Raggi Cosmici: S.V.I.R.CO.) were analyzed. The analysis expands from 24 April 2003 to 12 May 2004 and includes October–November 2003, which was a period of severe activity, when extreme events were recorded (i.e., the Great Halloween Solar Storms and the super storm on November 2003). The variations in heart rate were studied using the ANalysis Of Variance—ANOVA (for various levels of activity of the geophysical environment) and the superimposed epochs methods (during an event’s temporal evolution). Results revealed that high geomagnetic (defined by Dst-index values) and cosmic rays activity is related to heart rate increase. Moreover, the most significant heart rate variations are observed two days before until two days after the development of an event (either geomagnetic storm or a variation in the cosmic ray intensity). The results are in agreement with conclusions presented in the international scientific literature. Full article
Show Figures

Figure 1

28 pages, 11667 KiB  
Article
Investigation of the Ionospheric Response on Mother’s Day 2024 Geomagnetic Superstorm over the European Sector
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses, Christina Oikonomou, Stelios M. Potirakis, Nicolas Bergeot and Jean-Marie Chevalier
Atmosphere 2025, 16(2), 180; https://doi.org/10.3390/atmos16020180 - 5 Feb 2025
Cited by 5 | Viewed by 1803
Abstract
The present study examines the negative ionospheric response over Europe during two geomagnetic storms on 10–13 May 2024, known as the Mother’s Day geomagnetic superstorm. The first storm, with a peak SYM-H value of −436 nT, occurred in the interval 10–11 May, while [...] Read more.
The present study examines the negative ionospheric response over Europe during two geomagnetic storms on 10–13 May 2024, known as the Mother’s Day geomagnetic superstorm. The first storm, with a peak SYM-H value of −436 nT, occurred in the interval 10–11 May, while the second, less intense storm (SYM-H~−103 nT), followed in the interval 12–13 May. Using data from four European locations, temporal and spatial variations in ionospheric parameters (TEC, foF2, and hmF2) were analyzed to investigate the morphology of the strong negative response. Sharp electron density (Ne) depletion is associated with the equatorward displacement of the Midlatitude Ionospheric Trough (MIT), confirmed by Swarm satellite data. A key finding was the absence of foF2 and hmF2 values over all ionosonde stations during the recovery phase of the storms, likely due to the coupling between the Equatorial Ionization Anomaly (EIA) crests and the auroral ionosphere influenced by the intense uplift of the F layer. Relevant distinct features such as Large-scale Travelling Ionospheric Disturbance (LSTID) signatures and Spread F were also noted, particularly during the initial and main phase of the first storm over high midlatitude regions. Regional effects varied, with high European midlatitudes exhibiting different features compared to lower European latitude areas. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

19 pages, 9780 KiB  
Article
Sedimentary Signatures of Super Typhoon Haiyan: Insight from Core Record in South China Sea
by Yu-Huang Chen, Chih-Chieh Su, Pai-Sen Yu, Ta-Wei Hsu, Sheng-Ting Hsu, Hsing-Chien Juan, Yuan-Pin Chang, Yu-Fang Ma and Shye-Donq Chiu
J. Mar. Sci. Eng. 2025, 13(1), 10; https://doi.org/10.3390/jmse13010010 - 25 Dec 2024
Viewed by 1146
Abstract
Sedimentary records of event deposits are crucial for regional natural disaster risk assessments and hazard history reconstructions. After Super Typhoon Haiyan passed through the South China Sea in 2013, five gravity cores were collected along the typhoon path in the southern South China [...] Read more.
Sedimentary records of event deposits are crucial for regional natural disaster risk assessments and hazard history reconstructions. After Super Typhoon Haiyan passed through the South China Sea in 2013, five gravity cores were collected along the typhoon path in the southern South China Sea basin (>3800 mbsl). The results showed that Super Typhoon Haiyan deposits with clear graded bedding are preserved at the top of all cores. The thickness of the typhoon layers ranges from 20 to 240 cm and is related to changes in typhoon intensity. The lack of river-connected submarine canyon systems limited the transportation of terrestrial sediments from land to sea. Super Typhoon Haiyan-induced large surface waves played an important role in carrying suspended sediment from the Philippines. The Mn-rich layers at the bottom of the typhoon layers may be related to the soil and rock composition of the Palawan region, which experienced tsunami-like storm surges caused by Super Typhoon Haiyan. These Mn-rich layers may serve as a proxy for sediment export from large-scale extreme terrigenous events. This study provides the first sedimentary record of extreme typhoon events in the deep ocean, which may shed light on reconstructing regional hazard history. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

12 pages, 6125 KiB  
Article
Real-Time Operational Trial of Atmosphere–Ocean–Wave Coupled Model for Selected Tropical Cyclones in 2024
by Sin Ki Lai, Pak Wai Chan, Yuheng He, Shuyi S. Chen, Brandon W. Kerns, Hui Su and Huisi Mo
Atmosphere 2024, 15(12), 1509; https://doi.org/10.3390/atmos15121509 - 17 Dec 2024
Cited by 1 | Viewed by 1027
Abstract
An atmosphere–ocean–wave coupled regional model, the UWIN-CM, began its operational trial in real time at the Hong Kong Observatory (HKO) in the second half of 2024. Its performance in the analysis of three selected tropical cyclones, Severe Tropical Storm Prapiroon, Super Typhoon Gaemi, [...] Read more.
An atmosphere–ocean–wave coupled regional model, the UWIN-CM, began its operational trial in real time at the Hong Kong Observatory (HKO) in the second half of 2024. Its performance in the analysis of three selected tropical cyclones, Severe Tropical Storm Prapiroon, Super Typhoon Gaemi, and Super Typhoon Yagi, are studied in this paper. The forecast track and intensity of the tropical cyclones were verified against the operational analysis. It is shown that the track error of the UWIN-CM was lower than other regional numerical weather prediction (NWP) models in operation at the HKO, with a reduction in mean direct positional error of up to 50% for the first 48 forecast hours. For cyclone intensity, the performance of the UWIN-CM was the best out of the available global and regional models at HKO for Yagi at forecast hours T + 36 to T + 84 h. The model captured the rapid intensification of Yagi over the SCS with a lead time of 24 h or more. The forecast winds were compared with the in situ measurements of buoy and with the wind field analysis obtained from synthetic-aperture radar (SAR). The correlation of forecast winds with measurements from buoy and SAR ranged between 65–95% and 50–70%, respectively. The model was found to perform generally satisfactorily in the above comparisons. Full article
(This article belongs to the Special Issue Tropical Cyclones: Observations and Prediction (2nd Edition))
Show Figures

Figure 1

16 pages, 6329 KiB  
Technical Note
Dynamic Expansion and Merging of the Equatorial Ionization Anomaly During the 10–11 May 2024 Super Geomagnetic Storm
by Ercha Aa, Yanhong Chen and Bingxian Luo
Remote Sens. 2024, 16(22), 4290; https://doi.org/10.3390/rs16224290 - 18 Nov 2024
Cited by 11 | Viewed by 2057
Abstract
This study investigates the responses of the equatorial and low-latitude ionosphere in the American–Atlantic longitude sector during the super geomagnetic storm that occurred on 10–11 May 2024. The investigation utilizes multi-instrument datasets, including ground-based observations (GNSS TEC, ionosonde, and Fabry–Perot interferometer) as well [...] Read more.
This study investigates the responses of the equatorial and low-latitude ionosphere in the American–Atlantic longitude sector during the super geomagnetic storm that occurred on 10–11 May 2024. The investigation utilizes multi-instrument datasets, including ground-based observations (GNSS TEC, ionosonde, and Fabry–Perot interferometer) as well as space-borne satellite measurements (GOLD, Swarm, DMSP, and TIMED). Our findings reveal significant day-to-day variations in the storm-time equatorial ionization anomaly (EIA), summarized as follows: (1) During the main phase of the storm, the low- and mid-latitude ionosphere experienced a positive storm, with TEC drastically enhanced by 50–100% within a few hours. The EIA crests exhibited a substantial poleward expansion, reaching as high as ±35° MLAT. This expansion was caused by the enhanced fountain effect driven by penetration electric fields, along with increased ambipolar diffusion due to transient meridional wind surges. (2) During the recovery phase of the storm, the global ionosphere was characterized by a substantial negative storm with a 50–80% depletion in TEC. The EIA crests were notably suppressed and merged into a single equatorial band, which can be attributed to the composition change effect and the influence of disturbance dynamo electric fields. These results illustrate the complex processes of magnetosphere–ionosphere–thermosphere coupling during a superstorm, highlighting the significant impacts of space weather on the global ionosphere. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

12 pages, 2049 KiB  
Article
“I Have One More Hour of Power and Many Miles of Communication to Go”: Lessons Learned from Community Research Interrupted by Climate Crises
by Antonia R. G. Alvarez, Sherry Manning and Teresa Dosdos Ruelas
Genealogy 2024, 8(4), 138; https://doi.org/10.3390/genealogy8040138 - 5 Nov 2024
Viewed by 1567
Abstract
The Ang Pagtanom og Binhi Project is a University–Community partnership and community-based participatory research project exploring the health benefits of food sovereignty practices in the Philippines. In late 2021, in the midst of data collection, Super Typhoon Odette made landfall in the Philippines [...] Read more.
The Ang Pagtanom og Binhi Project is a University–Community partnership and community-based participatory research project exploring the health benefits of food sovereignty practices in the Philippines. In late 2021, in the midst of data collection, Super Typhoon Odette made landfall in the Philippines causing massive environmental and structural devastation. In the aftermath of the storm, community partners in the Philippines and members of the research team in the United States shared photos, texts, and updates. These messages included descriptions of structural and environmental damage caused by the storm and stories of mutual aid efforts and actions taken by individuals and small organizations, each highlighting connections between food sovereignty efforts in the Philippines and the impacts of climate change. Due to the richness of the stories, the interconnectedness between these conversations and the research topic, and the alignment within the theoretical foundations of the project, the researchers understood that these communications should be included as data. With feedback from the Community Advisory Board, the Research and Design Team amended project protocols, research questions, and consent forms to incorporate this emergent data. This manuscript describes the process that the team undertook and some of the lessons learned by taking this approach. Full article
Show Figures

Figure 1

17 pages, 9729 KiB  
Article
Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021)
by Abdulhaleem H. Labban, H. M. Hasanean, Ali Almahri, Ali Salem Al-Sakkaf and Mahmoud A. A. Hussein
Oceans 2024, 5(4), 840-856; https://doi.org/10.3390/oceans5040048 - 4 Nov 2024
Cited by 1 | Viewed by 2230
Abstract
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm [...] Read more.
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm (SCS), very severe cyclonic storm (VSCS), extreme severe cyclonic storm (ESCS), and super cyclonic storm (Sup. CS), has significantly increased, while the tendency of TCs < 34 knots, depressions and deep depressions (Ds) over the Arabian Sea has only slightly increased. Most of the TC activity in the first two decades (1982–2001) over the Arabian Sea activated on the eastern side, while in the last two decades (2002–2021), there was an expansion toward the southwest region of the Arabian Sea, especially in the post-monsoon season. The composite analysis of environmental parameters over the Arabian Sea reveals that the negative anomalies of outgoing longwave radiation (OLR) and the positive anomalies of relative humidity at 500 hPa (RH–500 hPa) in the first decade (1982–1991) and the second decade (1992–2001) are more concentrated on the eastern side of the Arabian Sea, leading to increased activity for TCs. Decades three (2002–2011) and four (2012–2021) demonstrated a wide distribution of weak vertical wind shear (VWS) and strong convection (OLR and RH–500 hPa) over the Arabian Sea basin. This led to TCs occurring more frequently and stronger, especially in the post-monsoon season. SST over the Arabian Sea was sufficient for tropical storm activity (≥26.5 °C) for both typical seasons. Full article
Show Figures

Figure 1

11 pages, 2959 KiB  
Article
Different Effects of a Super Storm on Atmospheric Electric Fields at Different Latitudes
by Wen Li, Zhibin Sun, Tao Chen, Zhaoai Yan, Jing Luo, Qingchen Xu and Zhongsong Ma
Atmosphere 2024, 15(11), 1314; https://doi.org/10.3390/atmos15111314 - 31 Oct 2024
Cited by 3 | Viewed by 1677
Abstract
Geomagnetic storms have a significant impact on Earth’s magnetosphere and ionosphere, as well as on the global atmospheric circuit. This study focuses on investigating the anomalous variations in the vertical atmospheric electric field at eight mid-latitude and low-latitude stations during a mega-geomagnetic storm [...] Read more.
Geomagnetic storms have a significant impact on Earth’s magnetosphere and ionosphere, as well as on the global atmospheric circuit. This study focuses on investigating the anomalous variations in the vertical atmospheric electric field at eight mid-latitude and low-latitude stations during a mega-geomagnetic storm on 24 April 2023. The majority of stations observed vertical atmospheric electric field increases, while only three nearby stations exhibited vertical atmospheric electric field decreases. The analysis revealed that vertical atmospheric electric field changes ranged from 19 to 370 V/m, and the time differences between extreme vertical atmospheric electric field values and the minimum Dst value ranged from 0 to 5.3 h. Other response patterns to this super magnetic storm at different latitudes are summarized, and the physical mechanisms of different effects of magnetic storms on the electric fields of stations at different latitudes are also discussed. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

24 pages, 6253 KiB  
Article
WRF-ROMS-SWAN Coupled Model Simulation Study: Effect of Atmosphere–Ocean Coupling on Sea Level Predictions Under Tropical Cyclone and Northeast Monsoon Conditions in Hong Kong
by Ngo-Ching Leung, Chi-Kin Chow, Dick-Shum Lau, Ching-Chi Lam and Pak-Wai Chan
Atmosphere 2024, 15(10), 1242; https://doi.org/10.3390/atmos15101242 - 17 Oct 2024
Cited by 4 | Viewed by 2275
Abstract
The Hong Kong Observatory has been using a parametric storm surge model to forecast the rise of sea level due to the passage of tropical cyclones. This model includes an offset parameter to account for the rise in sea level due to other [...] Read more.
The Hong Kong Observatory has been using a parametric storm surge model to forecast the rise of sea level due to the passage of tropical cyclones. This model includes an offset parameter to account for the rise in sea level due to other meteorological factors. By adding the sea level rise forecast to the astronomical tide prediction using the harmonic analysis method, coastal sea level prediction can be produced for the sites with tidal observations, which supports the high water level forecast operation and alert service for risk assessment of sea flooding in Hong Kong. The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modelling System, which comprises the Weather Research and Forecasting (WRF) Model and Regional Ocean Modelling System (ROMS), which in itself is coupled with wave model WaveWatch III and nearshore wave model SWAN, was tested with tropical cyclone cases where there was significant water level rise in Hong Kong. This case study includes two super typhoons, namely Hato in 2017 and Mangkhut in 2018, three cases of the combined effect of tropical cyclone and northeast monsoon, including Typhoon Kompasu in 2021, Typhoon Nesat and Severe Tropical Storm Nalgae in 2022, as well as two cases of monsoon-induced sea level anomalies in February 2022 and February 2023. This study aims to evaluate the ability of the WRF-ROMS-SWAN model to downscale the meteorological fields and the performance of the coupled models in capturing the maximum sea levels under the influence of significant weather events. The results suggested that both configurations could reproduce the sea level variations with a high coefficient of determination (R2) of around 0.9. However, the WRF-ROMS-SWAN model gave better results with a reduced RMSE in the surface wind and sea level anomaly predictions. Except for some cases where the atmospheric model has introduced errors during the downscaling of the ERA5 dataset, bias in the peak sea levels could be reduced by the WRF-ROMS-SWAN coupled model. The study result serves as one of the bases for the implementation of the three-way coupled atmosphere–ocean–wave modelling system for producing an integrated forecast of storm surge or sea level anomalies due to meteorological factors, as well as meteorological and oceanographic parameters as an upgrade to the two-way coupled Operational Marine Forecasting System in the Hong Kong Observatory. Full article
Show Figures

Figure 1

14 pages, 4330 KiB  
Article
Quantitative Assessment of Typhoon Disaster Risk at County Level
by Guizhen Guo, Jie Yin, Lulu Liu and Shaohong Wu
J. Mar. Sci. Eng. 2024, 12(9), 1544; https://doi.org/10.3390/jmse12091544 - 4 Sep 2024
Cited by 2 | Viewed by 1393
Abstract
Using the historical disaster records of 28 typhoons in Cangnan County since 2000, combining typhoon paths and hazard-bearing bodies data and based on the theoretical framework of climate change risk, the social and economic risks of typhoon disasters in Cangnan County with four [...] Read more.
Using the historical disaster records of 28 typhoons in Cangnan County since 2000, combining typhoon paths and hazard-bearing bodies data and based on the theoretical framework of climate change risk, the social and economic risks of typhoon disasters in Cangnan County with four intensity levels—severe tropical storm, typhoon, severe typhoon, and super typhoon—were quantitatively assessed. The results show that with the increase in typhoon disaster intensity, the spatial pattern of typhoon disaster hazard in Cangnan County changes from high in the west and low in the east to high in the south and low in the north. Super typhoons mainly affected Mazhan town and Dailing town in the south. The vulnerability shows an obvious upward trend. Super typhoons cause more than 40% of the population to be affected, more than 20% of direct economic losses and house collapse, and nearly 30% of crops to be affected in Cangnan County. The spatial pattern of risks that typhoon disasters have on populations, economies, crops, and houses change from low in south and high in north to high in north and south, and these risks increase gradually. The comprehensive risk of typhoon disasters is higher in the north and lower in the south, with the risk level being higher in the central and northern regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop