Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003
Abstract
1. Introduction
2. Data and Method
2.1. Medical Data
2.2. Cosmic Ray Intensity Data
2.3. Geomagnetic Activity Data
2.4. Statistical Methods
3. Results
4. Conclusions and Discussion
- (1)
- Concerning the p-values, results statistically significant were obtained for geomagnetic Ap-index one day after and for CRI on days before, during and after the development of physical events, showing that physical activity levels affect the physiological parameter HR. For the geomagnetic Dst-index no statistically significant results were obtained for the days under study.
- (2)
- For the geomagnetic index Dst, strong and severe geomagnetic storms (levels III and IV, respectively) were related to HR increase.
- (3)
- For the geomagnetic index Ap, strong and severe geomagnetic storms (levels III and IV) were connected to low HR values.
- (4)
- For the CRI levels, severe and major CRI decreases (levels −3 and −2) are related to high HR values.
- (5)
- For level 1 of the CRI, % classification (i.e., CRI increases) there is a notable HR increase to values comparable to the ones of severe and major CRI decreases.
- (6)
- Regarding the geomagnetic index Dst, for levels I0, I and II (i.e., low GMA) no notable variations in HR were recorded. HR presented peak values before and after the event for levels III and IV.
- (7)
- Regarding the geomagnetic index Ap, all GMA levels present variations in HR and peak values before or after a geomagnetic storm. Moreover, for day +1st, the HR decrease for Ap level IV is significant compared to level I0.
- (8)
- Regarding CRI, for levels −1 (moderate decreases) and +1 (increases in CRI) no significant variations were registered. For the highest levels −3 and −2 of the cosmic rays activity, on the days before and after the event HR presented peak values. Generally, it can be stated that HR is only marginally modified for CRI levels −3 to +1, showing that the significant correlation of HR with CRI is apparently very weak.
- (9)
- Concerning CRI, for level 0 (no CRI variations) HR’s behavior is also noticeable.
- (10)
- The most significant HR variations for high levels of physical activity were noticed mainly for the time period from two days before until 2 days after the events under consideration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gnevyshev, M.N.; Novikova, K.F. The influence of solar activity on the earth’s biosphere (Part I). J. Interdiscip. Cycle Res. 1972, 3, 99–104. [Google Scholar] [CrossRef]
- Platonova, A.T. Studies in Geomagnetism, Aeronomy and Solar Physics (Problems of Heliobiology and the Biological Effect of Magnetic Fields) (NASA-TT-F-15862); NASA technical translation, F-815; National Aeronautics and Space Administration (NASA): Washington, DC, USA; Scripta Technica, Inc.: Silver Spring, MA, USA, 1974. [Google Scholar]
- Chirkova, E.N. Mathematical methods of detection of biological and heliogeophysical rhythms in the light of developments in modern heliobiology: A platform for discussion. Cybern. Syst. Anal. 1995, 31, 903–918. [Google Scholar] [CrossRef]
- Guglielmi, A.; Ruban, V. To the 120th anniversary of A.L. Chizhevsky’s birth. Sol.-Terr. Phys. 2016, 2, 126–133. [Google Scholar] [CrossRef]
- Lovetsky, G.; Samylov, P.; Kosushkin, V.; Aleksandrov, M. Natural Scientific Foundations of Historiometry of Chizhevsky. In Advances in Social Science, Education and Humanities Research, Proceedings of the 2nd International Conference on Contemporary Education, Social Sciences and Ecological Studies (CESSES 2019), Moscow, Russia, 5–6 June 2019; Atlantis Press: Dordrecht, The Netherlands, 2019; Volume 356, pp. 1116–1119. [Google Scholar]
- Sergeenko, N.P. Heliogeophysical Conditions in Moscow during the Covid-19 Pandemic. Izv. Atmos. Ocean. Phys. 2022, 58 (Suppl. S1), S42–S51. [Google Scholar] [CrossRef] [PubMed Central]
- Zenchenko, T.A.; Khorseva, N.I.; Breus, T.K. Long-Term Study of the Synchronization Effect between Geomagnetic Field Variations and Minute-Scale Heart-Rate Oscillations in Healthy People. Atmosphere 2024, 15, 134. [Google Scholar] [CrossRef]
- Villoresi, G.; Breus, T.K.; Dorman, L.I.; Iuchi, N.; Rapoport, S.I. Effect of interplanetary and geomagnetic disturbances on the increase in number of clinically serious medical pathologies (myocardial infarct and stroke). Biofizika 1995, 40, 983–993. [Google Scholar]
- Dorman, L.I.; Iucci, N.; Ptitsyna, N.G.; Villoresi, G. Cosmic ray as indicator of space weather influence on frequency of infract myocardial, brain strokes, car and train accidents. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; pp. 3511–3514. [Google Scholar]
- Zhadin, M.N. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 2001, 22, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar. Nat. Hazards 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Babayev, E.S.; Allahverdiyeva, A.A. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies. Adv. Space Res. 2007, 40, 1941–1951, ISSN 0273-1177. [Google Scholar] [CrossRef]
- Kleimenova, N.G.; Kozyreva, O.V.; Breus, T.K.; Rapoport, S.I. Pc1 geomagnetic pulsations as a potential hazard of myocardial infarction. J. Atmos. Sol. Terr. Phys. 2007, 69, 1759–1764, ISSN 1364-6826. [Google Scholar] [CrossRef]
- Samsonov, S.N.; Manykina, V.I. Space Weather Parameters Capable of Influencing Health of a Human Being; Odessa Astronomical Publications: Odessa, Ukraine, 2012; Volume 25, p. 222. [Google Scholar]
- Verma, P.L. Solar Geomagnetic and Interplanetary Relations of Suicidal Death in Slovakia during the Period of 1997–2010. Eur. Acad. Res. 2014, II, 12399–12412, ISSN 2286-4822. [Google Scholar]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Sakalyte, G.; Lopatiene, K.; Mikelionis, N. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure. Int. J. Environ. Res. Public Health 2015, 12, 2622–2638. [Google Scholar] [CrossRef] [PubMed]
- Ozheredov, V.A.; Chibisov, S.M.; Blagonravov, M.L.; Khodorovich, N.A.; Demurov, E.A.; Goryachev, V.A.; Kharlitskaya, E.V.; Eremina, I.S.; Meladze, Z.A. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population. Int. J. Biometeorol. 2017, 61, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, S.; Mustafa, F.; Babayev, E. Geomagnetic activity variations of solar origin and dynamics of sudden cardiac deaths. In Proceedings of the 15th International Scientific Conference Space, Ecology, Safety, Sofia, Bulgaria, 6–8 November 2018; pp. 324–328, ISSN: p-ISSN 2603–3313/e-ISSN 2603–3321. [Google Scholar]
- Unger, S. The impact of space weather on human health. Biomed. J. Sci. Tech. Res. 2019, 22, 16442–16443. [Google Scholar] [CrossRef]
- Breus, T.; Binhi, V.N.; Petrukovich, A.A. Magnetic factor in solar-terrestrial relations and its impact on the human body: Physical problems and prospects for research. Phys.-Uspekhi 2016, 59, 502–510. [Google Scholar] [CrossRef]
- Vieira, C.; Alvares, D.; Blomberg, A.; Schwartz, J.; Coull, B.; Huang, S.; Koutrakis, P. Geomagnetic disturbances driven by solar activity enhance total and cardiovascular mortality risk in 263 U.S. cities. Environ. Health 2019, 18, 83. [Google Scholar] [CrossRef]
- Podolská, K. Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events. Atmosphere 2021, 12, 203. [Google Scholar] [CrossRef]
- Vaičiulis, V.; Venclovienė, J.; Tamošiūnas, A.; Kiznys, D.; Lukšienė, D.; Krančiukaitė-Butylkinienė, D.; Radišauskas, R. Associations between Space Weather Events and the Incidence of Acute Myocardial Infarction and Deaths from Ischemic Heart Disease. Atmosphere 2021, 12, 306. [Google Scholar] [CrossRef]
- Geronikolou, S.; Zimeras, S.; Tsitomeneas, S.; Cokkinos, D.; Chrousos, G.P. Total Solar Irradiance and Stroke Mortality by Neural Networks Modelling. Atmosphere 2023, 14, 114. [Google Scholar] [CrossRef]
- Hanzelka, M.; Dan, J.; Fiala, P.; Dohnal, P. Human Psychophysiology Is Influenced by Low-Level Magnetic Fields: Solar Activity as the Cause. Atmosphere 2021, 12, 1600. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Khorseva, N.I.; Breus, T.K.; Drozdov, A.V.; Seraya, O.Y. Effect of Synchronization Between Millihertz Geomagnetic Field Variations and Human Heart Rate Oscillations During Strong Magnetic Storms. Atmosphere 2025, 16, 219. [Google Scholar] [CrossRef]
- Ramishvili, A.; Janashia, K.; Tvildiani, L. High Heart Rate Variability Causes Better Adaptation to the Impact of Geomagnetic Storms. Atmosphere 2023, 14, 1707. [Google Scholar] [CrossRef]
- He, P.; Li, C.; Xu, M.; Guo, R.; Degeling, A.W.; Pitkänen, T.; Bu, Y.; Zheng, X.; Zhang, Y.; Jia, X.; et al. Potential influence of geomagnetic activity on blood pressure statistical fluctuations at mid-magnetic latitudes. Commun. Med. 2025, 5, 143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papailiou, M.; Ioannidou, S.; Tezari, A.; Lingri, D.; Konstantaki, M.; Mavromichalaki, H.; Dimitrova, S. Space weather phenomena on heart rate: A study in the Greek region. Int. J. Biometeorol. 2023, 67, 37–45. [Google Scholar] [CrossRef]
- Storini, M.; Signoretti, F. SVIRCO contribution to the world-wide network of cosmic ray detectors. Adv. Space Res. 2009, 44, 1221–1231. [Google Scholar] [CrossRef]
- Jämsen, T.; Usoskin, I.G.; Räihä, T.; Sarkamo, J.; Kovaltsov, G.A. Case study of Forbush decreases: Energy dependence of the recovery. Adv. Space Res. 2007, 40, 342–347. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Braun, I.; Gladysheva, O.G.; Hörandel, J.R.; Jämsén, T.; Kovaltsov, G.A.; Starodubtsev, S.A. Forbush decreases of cosmic rays: Energy dependence of the recovery phase. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Zhao, L.L.; Zhang, H. Transient galactic cosmic-ray modulation during solar cycle 24: A comparative study of two prominent Forbush decrease events. Astrophys. J. 2016, 827, 13. [Google Scholar] [CrossRef]
- Iacobucci, D. Analysis of Variance (ANOVA); CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2016; ISBN 13978-1530332021. [Google Scholar]
- Forbush, S.E. On the World-Wide Changes in Cosmic-Ray Intensity. Phys. Rev. 1938, 54, 975. [Google Scholar] [CrossRef]
- Kivelson, M.G.; Russell, C.T. Introductions to Space Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Melkumyan, A.A.; Belov, A.V.; Shlyk, N.S.; Abunina, M.A.; Abunin, A.A.; Oleneva, V.A.; Yanke, V.G. Statistical comparison of time profiles of Forbush decreases associated with coronal mass ejections and streams from coronal holes in solar cycles 23–24. Mon. Not. R. Astron. Soc. 2023, 521, 4544–4560. [Google Scholar] [CrossRef]
- Papailiou, M.-C.; Mavromichalaki, H. Space Weather Effects on Heart Rate Variations: Sex Dependence. Atmosphere 2024, 15, 685. [Google Scholar] [CrossRef]
- Zerbo, J.-L.; Amory-Mazaudier, C.; Ouattara, F. Geomagnetism during solar cycle 23: Characteristics. J. Adv. Res. 2013, 4, 265–274. [Google Scholar] [CrossRef] [PubMed]
- De Toma, G.; White, O.R.; Chapman, G.A.; Walton, S.R.; Preminger, D.G.; Cookson, A.M. Solar Cycle 23: An Anomalous Cycle? Astrophys. J. 2004, 609, 1140. [Google Scholar] [CrossRef]
- Mursula, K.; Qvick, T.; Holappa, L.; Asikainen, T. Magnetic storms during the space age: Occurrence and relation to varying solar activity. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030830. [Google Scholar] [CrossRef]
- Lotz, S.I.; Danskin, D.W. Extreme value analysis of induced geoelectric field in South Africa. Space Weather 2017, 15, 1347–1356. [Google Scholar] [CrossRef]
- Švanda, M.; Mourenas, D.; Žertová, K.; Výbošt’oková, T. Immediate and delayed responses of power lines and transformers in the Czech electric power grid to geomagnetic storms. J. Space Weather Space Clim. 2020, 10, 26. [Google Scholar] [CrossRef]
- Ebihara, Y.; Fok, M.-C.; Sazykin, S.; Thomsen, M.F.; Hairston, M.R.; Evans, D.S.; Rich, F.J.; Ejiri, M. Ring current and the magnetosphere ionosphere coupling during the superstorm of 20 November 2003. J. Geophys. Res. 2005, 110, A09S22. [Google Scholar] [CrossRef]
- Dimitrova, S.; Mustafa, F.R.; Stoilova, I.; Babayev, E.S.; Kazimov, E.A. Possible influence of solar extreme events and related geomagnetic disturbances on human cardio-vascular state: Results of collaborative Bulgarian-Azerbaijani studies. Adv. Space Res. 2009, 43, 641–648. [Google Scholar] [CrossRef]
- Papailiou, M.-C.; Ioannidou, S.; Tezari, A.; Mavromichalaki, H. Geomagnetic and Cosmic Ray Activity Effect on Heart Rate during the Solar Cycle 24. Atmosphere 2024, 15, 158. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Papailiou, M.; Dimitrova, S.; Babayev, E.S.; Loucas, P. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat. Hazards 2012, 64, 1447–1459. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Papailiou, M.; Gerontidou, M.; Dimitrova, S.; Kudela, K. Human physiological parameters related to solar and geomagnetic disturbances: Data from different geographic regions. Atmosphere 2021, 12, 1613. [Google Scholar] [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and Geomagnetic Activity, Extremely Low Frequency Magnetic and Electric Fields and Human Health at the Earth’s Surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Stoupel, E.; Babayev, E.S.; Mustafa, F.R.; Abramson, E.; Israelevich, P.; Sulkes, J. Acute Myocardial Infarction Occurrence: Environmental Links—Baku 2003–2005 Data. Med. Sci. Monit. 2007, 13, 175–179. [Google Scholar]
- Dorman, L.I. Space weather and dangerous phenomena on the Earth: Principles of great geomagnetic storms forecasting by online cosmic ray data. Ann. Geophys. 2005, 23, 2997–3002. [Google Scholar] [CrossRef]
- Mattoni, M.; Ahn, S.; Fröhlich, C.; Fröhlich, F. Exploring the relationship between geomagnetic activity and human heart rate variability. Eur. J. Appl. Physiol. 2020, 120, 1371–1381. [Google Scholar] [CrossRef]
- Podolská, K. The impact of ionospheric and geomagnetic changes on mortality from diseases of the circulatory system. J. Stroke Cerebrovasc. Dis. 2018, 27, 404–417. [Google Scholar] [CrossRef]
- Sasonko, M.L.; Ozheredov, V.A.; Breus, T.K.; Ishkov, V.N.; Klochikhina, O.A.; Gurfinkel, Y.I. Combined influence of the local atmosphere conditions and space weather on three parameters of 24-h electrocardiogram monitoring. Int. J. Biometeorol. 2019, 63, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Zenchenko, T.A.; Breus, T.K. The possible effect of space weather factors on various physiological systems of the human organism. Atmosphere 2021, 12, 346. [Google Scholar] [CrossRef]
- Stoupel, E. 50 years in research on space weather effects on human health (Clinical Cosmobiology). EC Cardiol. 2019, 6, 470–478. [Google Scholar]
- Dmitreva, I.V.; Khabarova, O.V.; Obridko, V.N.; Ragulskaja, M.V.; Reznikov, A.E. Experimental confirmations of bioeffective effect of magnetic storms. Astron. Astrophys. Trans. 2000, 19, 67–77. [Google Scholar] [CrossRef]
- Khabarova, O.V. Change of geomagnetic oscillatory regime is a possible cause of human sensitivity to ‘cosmic weather’. In Proceedings of the Tenth Jubilee National Conference STIL-BAS, Sofia, Bulgaria, 26–30 August 2003; Panchev, A.S., Ed.; pp. 128–131. [Google Scholar]
- Khabarova, O.V. Investigation of the Tchijevsky—Velhover effect. Biofiz. (Russ. J. Biophys.) 2004, 49, 60–67. [Google Scholar]
- Vencloviene, J.; Babarskiene, R.M.; Kiznys, D. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome. Int. J. Biometeorol. 2017, 61, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Radisauskas, R.; Vaiciulis, V.; Kiznys, D.; Bernotiene, G.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. Int. J. Biometeorol. 2020, 64, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Radisauskas, R.; Tamosiunas, A.; Luksiene, D.; Sileikiene, L.; Milinaviciene, E.; Rastenyte, D. Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere 2021, 12, 334. [Google Scholar] [CrossRef]
- Azcarate, T.; Mendoza, B.; de la Pena, S.S.; Martinez, J.L. Temporal variation of the arterial pressure in healthy young people and its relation to geomagnetic activity in Mexico. Adv. Space Res. 2012, 50, 1310–1315. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int. J. Biometeorol. 2014, 58, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
Intensity | CRI Levels | CRI, % | Number of Measurements |
---|---|---|---|
Severe decreases | −3 | −17 ≤ CRI ≤ −11 | 33 |
Major decreases | −2 | −11 < CRI ≤ −6 | 114 |
Moderate decreases | −1 | −6 < CRI ≤ −1 | 1274 |
Quiet | 0 | CRI = 0 | 233 |
CRI increases | 1 | 1 ≤ CRI ≤ 3 | 393 |
Activity | Dst/Ap Levels | Dst-index Values (nT) | Number of Measurements | Ap-Index Values | Number of Measurements |
---|---|---|---|---|---|
Quiet | I0 | Dst ≥ 0 | 212 | Ap < 8 | 375 |
Minor | I | −20 < Dst < 0 | 779 | 8 ≤ Ap < 15 | 459 |
Moderate | II | −50 < Dst ≤ −20 | 891 | 15 ≤ Ap < 30 | 695 |
Strong | III | −100 < Dst ≤ −50 | 105 | 30 ≤ Ap < 50 | 367 |
Severe | IV | Dst ≤ −100 | 60 | Ap ≥ 50 | 151 |
Date | Dst-Index Values (nT) | CRI, % | Ap-Index Values |
---|---|---|---|
20 November 2003 | −156 | −3 | 150 |
21 November 2003 | −140 | −4 | 42 |
29 October 2003 | −128 | −11 | 204 |
30 October 2003 | −221 | −16 | 191 |
31 October 2003 | −117 | −17 | 116 |
Days | Dst | Ap | CRI |
---|---|---|---|
−3 | 0.36972 | 0.56033 | 0.01596 * |
−2 | 0.43717 | 0.42622 | 0.14030 |
−1 | 0.74530 | 0.23454 | 0.05954 |
0 | 0.83491 | 0.79509 | 0.01172 * |
+1 | 0.97541 | 0.01415 * | 0.02898 * |
+2 | 0.90324 | 0.64736 | 0.53414 |
+3 | 0.81379 | 0.58817 | 0.06004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papailiou, M.-C.; Mavromichalaki, H. Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003. Atmosphere 2025, 16, 711. https://doi.org/10.3390/atmos16060711
Papailiou M-C, Mavromichalaki H. Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003. Atmosphere. 2025; 16(6):711. https://doi.org/10.3390/atmos16060711
Chicago/Turabian StylePapailiou, Maria-Christina, and Helen Mavromichalaki. 2025. "Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003" Atmosphere 16, no. 6: 711. https://doi.org/10.3390/atmos16060711
APA StylePapailiou, M.-C., & Mavromichalaki, H. (2025). Heart Rate Variations During Two Historic Geomagnetic Storms: October and November 2003. Atmosphere, 16(6), 711. https://doi.org/10.3390/atmos16060711