Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = super pre-stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9361 KiB  
Article
Experimental and Numerical Analysis of Ratcheting Behavior of Super Duplex SAF2507 Stainless Steel Under Uniaxial Loading
by Hongru Liu, Xiaohui Chen, Xiaoyue Zhang and Xiaodong Cui
Appl. Sci. 2025, 15(3), 1424; https://doi.org/10.3390/app15031424 - 30 Jan 2025
Viewed by 741
Abstract
Super duplex SAF2507 stainless steel is widely used in petrochemical piping systems during the transport of substances. The pipelines are subjected to cyclic loads due to road vibration and internal pressure, which causes the ratcheting behavior. In this research project, we conducted a [...] Read more.
Super duplex SAF2507 stainless steel is widely used in petrochemical piping systems during the transport of substances. The pipelines are subjected to cyclic loads due to road vibration and internal pressure, which causes the ratcheting behavior. In this research project, we conducted a battery of uniaxial ratcheting experiments of super duplex SAF2507 stainless steel under displacement cycling, and the effects of stress amplitude, mean stress, and pre-strain on the ratcheting strain were evaluated. The findings showed that ratcheting strain grew as mean stress and stress amplitude rose under identical stress conditions. Additionally, as pre-strain levels increased, the ratcheting strain was observed to diminish. In addition, a three-dimensional ratcheting boundary graph was created with stress amplitude, mean stress, and ratcheting strain rate. This represented a graphical surface area for the study of ratcheting strain rates for various combinations of mean stress and stress amplitude. A rate-independent model was developed by combining the Armstrong–Frederick (A-F) hardening rule with Ohno–Wang (O-W II) model, called the AF-OW II model. This constitutive model was implemented in the ABAQUS 2021 finite element software to numerically analyze the ratcheting evolution of SAF2507 stainless steel. The results indicated that the calculated results of the AF-OW II model closely aligned with the experimental data. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 8505 KiB  
Article
Experimental Study on the Flexural Properties of FRP-Reinforced Super-Span Concrete T-Beam after Service
by Dongxu Hou, Tieming Hu, Guanhua Zhang, Boqi Chu, Jing Zhu and Xingdong Yang
Sustainability 2023, 15(15), 11903; https://doi.org/10.3390/su151511903 - 2 Aug 2023
Viewed by 1393
Abstract
Super-span (20 m) non-prestressed T-section reinforced concrete beams have been in service for more than 30 years and are common in Chinese highway bridges. However, the actual performance of these super-span T-section reinforced concrete (RC) beams that have been reinforced with FRP, including [...] Read more.
Super-span (20 m) non-prestressed T-section reinforced concrete beams have been in service for more than 30 years and are common in Chinese highway bridges. However, the actual performance of these super-span T-section reinforced concrete (RC) beams that have been reinforced with FRP, including their process of failure from a service state to a failure state, has not been determined. In this study, original RC T-beams, with a 20 m span and retrofitted with FRP, were taken from a highway bridge. Their flexural performance was detected via experiments in a laboratory. The experiments revealed that the sectional strain distribution is more non-uniform. The mid-span ribs clearly play a role in strengthening the section and the bearing reservation was studied based on a subsequent sectional analysis. It became clear that the load-bearing reservation of an old super-span T-beam changes during the entire life of the specimen; not only because of the depression of the resistant capacity and the reinforced measure, but also due to the updates to load codes. Full article
Show Figures

Figure 1

23 pages, 8544 KiB  
Article
Estimation Method for an In Situ Stress Field along a Super-Long and Deep-Buried Tunnel and Its Application
by Qitao Pei, Xiaonan Wang, Lihong He, Lu Liu, Yong Tian and Cai Wu
Buildings 2023, 13(8), 1924; https://doi.org/10.3390/buildings13081924 - 28 Jul 2023
Cited by 3 | Viewed by 2004
Abstract
Aiming at some stress-induced failure phenomena in surrounding rock that occur during the construction of super-long and deep-buried tunnels, a method for estimating the in situ stress in the tunnels based on multivariate information integration is proposed, which uses a small amount of [...] Read more.
Aiming at some stress-induced failure phenomena in surrounding rock that occur during the construction of super-long and deep-buried tunnels, a method for estimating the in situ stress in the tunnels based on multivariate information integration is proposed, which uses a small amount of in situ stress measurement, stereographic projection technology, and a numerical simulation method. Firstly, by conducting a macroscopic analysis of the regional geological structure, topography, and pre-excavated small tunnels (such as exploration of adits and pilot tunnels), the strength of the tectonic stress field and the orientation of the principal stresses in the tunnel sections are preliminarily determined. Secondly, the reliability of the in situ stress measurement data were analyzed using full-space stereographic projection and the plane stress projection method. Then, some representative measurement points that reflected the distribution characteristics of in situ stress in the project area, on the whole, were determined. Thirdly, the finite difference (FDM) and multiple regression analysis (MRA) methods were used to inverse the in situ stress field in the project area. The proposed method was applied to a super-long and deep-buried tunnel project in Qinling, and the in situ stress distribution characteristics of the tunnel sections at different mileages were obtained. The results show that both the calculated principal stress values and the azimuth angle of the maximum horizontal principal stress are in good agreement with the measured ones, indicating that the method used in this study is reasonable. Finally, the typical surrounding rock failure phenomena encountered during the excavation of the project were investigated, and targeted treatment measures were proposed. The research results can provide references for support design and disaster management of surrounding rock in deep-buried long tunnels. Full article
Show Figures

Figure 1

16 pages, 4245 KiB  
Article
Abutment Pressure Distribution Law and Support Analysis of Super Large Mining Height Face
by Libo Zhang, Wenlong Shen, Xuelong Li, Yabo Wang, Qizhi Qin, Xutao Lu and Tianxi Xue
Int. J. Environ. Res. Public Health 2023, 20(1), 227; https://doi.org/10.3390/ijerph20010227 - 23 Dec 2022
Cited by 53 | Viewed by 2708
Abstract
Under the condition of the shallow coal seam, the laws of roof activity after large mining height longwall face mining and prevention measures for large-area roof weighting are problems that need to be solved urgently. In the background of the super large mining [...] Read more.
Under the condition of the shallow coal seam, the laws of roof activity after large mining height longwall face mining and prevention measures for large-area roof weighting are problems that need to be solved urgently. In the background of the super large mining height working face in the upper 108 working face of Jinjitan Coal Mine 12-2, the spatial distribution characteristics of the development and change of the mining-induced abutment pressure and the related support design in the 8.2 m super large mining height and fully mechanized mining face were conducted. It reveals the distribution characteristics of the dynamic stress field and internal and external stress fields. The influence range of the abutment pressure of the super high mining height working face was measured on site. The numerical simulation is carried out, the roadway support structure is analyzed, and the improvement measures are proposed. The research results demonstrate that: The influence range of abutment pressure is 234 m, the obvious influence range of the leading pressure is 47–60 m, and the peak position of the influence of the leading pressure is 15–20 m. The 5 m range is the lateral inward stress field of the coal pillar, the 10–15 m range is the outward stress field of the coal pillar, and the 20 m range is the original rock stress field of the coal pillar. Therefore, it is proposed that the reasonable size of the coal pillar for roadway protection is 20–22 m. Adjusting the distance between screw steel and FRP bolts from 1000 mm to 1200 mm, the length of the roof prestressed anchor cable should be appropriately reduced to 5.5–6 m according to the lithology of the roof. Full article
(This article belongs to the Special Issue Full Life-Cycle Safety Management of Coal and Rock Dynamic Disasters)
Show Figures

Figure 1

18 pages, 3666 KiB  
Article
Hydrochlorothiazide/Losartan Potassium Tablet Prepared by Direct Compression
by Qiuhua Luo, Qianying Zhang and Puxiu Wang
Pharmaceutics 2022, 14(8), 1741; https://doi.org/10.3390/pharmaceutics14081741 - 21 Aug 2022
Cited by 13 | Viewed by 3415
Abstract
Hydrochlorothiazide (HCTZ)/losartan potassium (LOS-K) was used as a model drug to prepare compound tablets through the investigation of the compression and mechanical properties of mixed powders to determine the formulation and preparation factors, followed by D-optimal mixture experimental design to optimize the final [...] Read more.
Hydrochlorothiazide (HCTZ)/losartan potassium (LOS-K) was used as a model drug to prepare compound tablets through the investigation of the compression and mechanical properties of mixed powders to determine the formulation and preparation factors, followed by D-optimal mixture experimental design to optimize the final parameters. The type and amount of lactose monohydrate (SuperTab®14SD, 19.53–26.91%), microcrystalline cellulose (MCC PH102, 32.86–43.31%), pre-gelatinized starch (Starch-1500, 10.96–15.91%), and magnesium stearate (0.7%) were determined according to the compressive work, stress relaxation curves, and Py value. Then, the compression mechanism of the mixed powder was investigated by the Kawakita equation, Shapiro equation, and Heckel analysis, and the mixed powder was classified as a Class-II powder. The compaction pressure (150–300 MPa) and tableting speed (1200–2400 Tab/h) were recommended. A D-optimal mixture experimental design was utilized to select the optimal formulation (No 1, 26.027% lactose monohydrate, 32.811% MCC PH102, and 15.462% pregelatinized starch) according to the drug dissolution rate, using Hyzaar® tablets as a control. Following oral administration in beagle dogs, there were no significant differences in bioavailability between the No. 1 tablet and the Hyzaar® tablet in HCTZ, losartan carboxylic acid (E-3174), and LOS-K (F < F0.05). Thus, formulation and preparation factors were determined according to the combination of the compression and mechanical properties of the mixed powder and quality of tablets, which was demonstrated to be a feasible method in direct powder compression. Full article
Show Figures

Figure 1

11 pages, 5625 KiB  
Article
In Vivo Antistress Effects of Synthetic Flavonoids in Mice: Behavioral and Biochemical Approach
by Mehreen Ghias, Syed Wadood Ali Shah, Fakhria A. Al-Joufi, Mohammad Shoaib, Syed Muhammad Mukarram Shah, Muhammad Naeem Ahmed and Muhammad Zahoor
Molecules 2022, 27(4), 1402; https://doi.org/10.3390/molecules27041402 - 18 Feb 2022
Cited by 4 | Viewed by 2844
Abstract
Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress [...] Read more.
Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress was induced by injecting acetic acid and physically through swimming immobilization. Among the synthesized flavones (F1–F6) and flavonols (OF1–OF6), the mono para substituted methoxy containing F3 and OF3 exhibited maximum scavenging potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) with IC50 of 31.46 ± 1.46 μg/mL and 25.54 ± 1.21 μg/mL, respectively. Minimum antioxidant potential was observed for F6 and OF6 with IC50 values of 174.24 ± 2.71 μg/mL and 122.33 ± 1.98 μg/mL, respectively, in comparison with tocopherol. The ABTS scavenging activity of all the synthesized flavones and flavonols were significantly higher than observed with DPPH assay, indicating their potency as good antioxidants and the effectiveness of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) assay in evaluating antioxidant potentials of chemical substances. The flavonoids-treated animals showed a significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) reduction in the number of writhes and an increase in swimming endurance time. Stressful conditions changed plasma glucose, cholesterol and triglyceride levels, which were used as markers when evaluating stress in animal models. The level of these markers was nearly brought to normal when pre-treated with flavones and flavonols (10 mg/kg) for fifteen days in experimental animals. These compounds also considerably reduced the levels of lipid peroxidation (TBARS: Thiobarbituric acid reactive substances), which was significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) compared to the control group. A significant rise in the level of catalase and SOD (super oxide dismutase) was also observed in the treated groups. Diazepam (2 mg/kg) was used as the standard drug. Additionally, the flavonoids markedly altered the weight of the adrenal glands, spleen and brain in stress-induced mice. The findings of the study suggest that these flavonoids could be used as a remedy for stress and are capable of ameliorating diverse physiological and biochemical alterations associated with stressful conditions. However, further experiments are needed to confirm the observed potentials in other animal models, especially in those with a closer resemblance to humans. Toxicological evaluations are also equally important. Full article
(This article belongs to the Special Issue Bioactive Compounds: Design, Synthesis and Biological Evaluation)
Show Figures

Figure 1

12 pages, 617 KiB  
Article
Application of Creep Feed and Phytase Super-Dosing as Tools to Support Digestive Adaption and Feed Efficiency in Piglets at Weaning
by Sophie A. Lee, Erica Febery, Pete Wilcock and Michael R. Bedford
Animals 2021, 11(7), 2080; https://doi.org/10.3390/ani11072080 - 12 Jul 2021
Cited by 9 | Viewed by 4851
Abstract
A total of 64 piglets were used in a 35-day study to evaluate whether creep feeding piglets on the sow or super-dosing phytase to piglets post-weaning can be used as a tool to reduce stress and support adaption to weaning. Treatments consisted of [...] Read more.
A total of 64 piglets were used in a 35-day study to evaluate whether creep feeding piglets on the sow or super-dosing phytase to piglets post-weaning can be used as a tool to reduce stress and support adaption to weaning. Treatments consisted of creep or no creep feed being offered pre-weaning and with or without phytase supplementation at 2000 FTU/kg post-weaning. Blood samples were collected from eight piglets per treatment on days 0 (weaning), 7 and 21 post-weaning to determine plasma cortisol and myo-inositol concentrations. Four piglets per treatment (n = 16) were administered Heidelberg pH capsules 1 week prior to weaning, on the day of weaning, as well as 7 days and 21 days post-weaning, with readings monitored over a 3 h period. In the first week post-weaning, creep-fed piglets had higher daily gains (0.23 vs. 0.14 kg/d, p < 0.05) and a lower feed conversion ratio (FCR, 0.99 vs. 1.35, p < 0.01), compared to non-creep-fed pigs. At 21 days post-weaning, irrespective of creep feed, phytase supplementation reduced FCR (1.10 vs. 1.18, p = 0.05) of piglets. Average real-time stomach pH was lower in creep-fed piglets at 1 week prior to weaning (pH 3.2 vs. 4.6, p < 0.001) and on day of weaning (pH 3.1 vs. 3.7, p < 0.01). Following weaning, phytase reduced average stomach pH of piglets at days 7 (pH 2.6 vs. 3.3, p < 0.001) and 21 (pH 2.2 vs. 2.6, p < 0.01). Both cortisol and myo-inositol concentrations in plasma decreased with age; however, cortisol levels were unaffected by either treatment. Plasma myo-inositol concentrations were higher in creep-fed piglets at day of weaning (p < 0.05) and with phytase super-dosing on day 21 (p < 0.001). These findings demonstrate that both creep feeding and phytase super-dosing are useful practices to encourage better adaption to weaning and support piglet performance. This response was not related to reduced stress in piglets, as determined by cortisol levels, but instead appears to relate to improved gastric conditions for digestion, phytate degradation and myo-inositol provision in piglets. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

11 pages, 4773 KiB  
Article
Investigation of Mechanical Properties for Group Anchors
by Juncai Cao, Nong Zhang, Shanyong Wang and Qun Wei
Appl. Sci. 2021, 11(4), 1521; https://doi.org/10.3390/app11041521 - 8 Feb 2021
Cited by 6 | Viewed by 2013
Abstract
Prestressed anchor support is one of the most important support methods for coal mine roadways. As the coal mining depth increases, the adaptability of existing prestressed anchor has become weaker and weaker, which is mainly reflected in the current anchor prestress is much [...] Read more.
Prestressed anchor support is one of the most important support methods for coal mine roadways. As the coal mining depth increases, the adaptability of existing prestressed anchor has become weaker and weaker, which is mainly reflected in the current anchor prestress is much smaller than the support resistance required for the stability of the roadways and makes it difficult to effectively control the roadways. In order to solve the problem, a group anchor structure was proposed to realize higher prestressed anchor support technology and improve the support status of deep roadways. For coal mine roadways, group anchor structure is a new technology and new topic, and the design method and theoretical basis of the group anchor support are lacking. Therefore, the paper studied the bearing capacity of the group anchors through physical tests and numerical simulations. Among them, a special set of group anchor drawing tooling was designed and processed to match the physical test. The test results show that the group anchor structure can double the bearing capacity and bearing rigidity compared with traditional anchors, and the group anchor support can further optimize the support parameters to improve the bearing capacity of the surrounding rock. Therefore, the group anchor support is helpful to the stability control of the surrounding rock of the deep roadway. Full article
Show Figures

Figure 1

20 pages, 5994 KiB  
Article
An Ascophyllum nodosum-Derived Biostimulant Protects Model and Crop Plants from Oxidative Stress
by Nikola S. Staykov, Mihail Angelov, Veselin Petrov, Pavel Minkov, Aakansha Kanojia, Kieran J. Guinan, Saleh Alseekh, Alisdair R. Fernie, Neerakkal Sujeeth and Tsanko S. Gechev
Metabolites 2021, 11(1), 24; https://doi.org/10.3390/metabo11010024 - 31 Dec 2020
Cited by 27 | Viewed by 6125
Abstract
Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to generate oxidative [...] Read more.
Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to generate oxidative stress in the model species Arabidopsis thaliana and the crops tomato and pepper. Pre-treatment with the biostimulant SuperFifty (SF) effectively and universally suppressed PQ-induced leaf lesions, H2O2 build up, cell destruction and photosynthesis inhibition. To further investigate the stress responses and SF-induced protection at the molecular level, we investigated the metabolites by GC-MS metabolomics. PQ induced specific metabolic changes such as accumulation of free amino acids (AA) and stress metabolites. These changes were fully prevented by the SF pre-treatment. Moreover, the metabolic changes of the specific groups were tightly correlating with their phenotypic characteristics. Overall, this study presents physiological and metabolomics data which shows that SF protects against oxidative stress in all three plant species. Full article
(This article belongs to the Special Issue Metabolomics in Agriculture Volume 2)
Show Figures

Figure 1

13 pages, 1280 KiB  
Article
Osmo-Priming with Seaweed Extracts Enhances Yield of Salt-Stressed Tomato Plants
by Emilio Di Stasio, Valerio Cirillo, Giampaolo Raimondi, Maria Giordano, Marco Esposito and Albino Maggio
Agronomy 2020, 10(10), 1559; https://doi.org/10.3390/agronomy10101559 - 13 Oct 2020
Cited by 47 | Viewed by 5202
Abstract
Salinization of agricultural land is an expanding phenomenon, which requires a multi-level strategy to counteract its deleterious effects on crop yield and quality. Plant biostimulants are increasingly used in agriculture with multiple purposes, including protection against abiotic stresses such as drought and salinity. [...] Read more.
Salinization of agricultural land is an expanding phenomenon, which requires a multi-level strategy to counteract its deleterious effects on crop yield and quality. Plant biostimulants are increasingly used in agriculture with multiple purposes, including protection against abiotic stresses such as drought and salinity. The complex nature of plant biostimulants, however, makes it difficult to establish a cause–effect relationship between the composition of the commercial product and its expected effects. Here, we demonstrate that field applications of two algal derivatives (Rygex, R and Super Fifty, SU) cause a 26% reduction in shoot biomass and a remodulation of the root-to-shoot ratio under moderately saline irrigation (6.3 dS m−1). Moreover, plants treated with the two algal derivatives showed lower leaf water potential and improved water use efficiency under control conditions, suggesting an osmo-priming effect by these two products. These pre-adaptation responses increased tomato yield by 49% (R) and 70% (SU) regardless of the salinity level, with a remarkable reallocation of the biomass toward the fruits. Overall, our results suggest that the application of these two biostimulants can be useful in the open field to protect tomato plants from osmotic stress due to seasonal salinization, a phenomenon that typically occurs in arid and semi-arid environments. Full article
Show Figures

Figure 1

26 pages, 3807 KiB  
Article
A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress
by Mohammad Amin Omidbakhshfard, Neerakkal Sujeeth, Saurabh Gupta, Nooshin Omranian, Kieran J. Guinan, Yariv Brotman, Zoran Nikoloski, Alisdair R. Fernie, Bernd Mueller-Roeber and Tsanko S. Gechev
Int. J. Mol. Sci. 2020, 21(2), 474; https://doi.org/10.3390/ijms21020474 - 11 Jan 2020
Cited by 54 | Viewed by 9296
Abstract
Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with [...] Read more.
Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. Full article
(This article belongs to the Special Issue ROS and Abiotic Stress in Plants)
Show Figures

Figure 1

6 pages, 3376 KiB  
Article
Single Particle Combustion of Pre-Stressed Aluminum
by Kevin J. Hill, Michelle L. Pantoya, Ephraim Washburn and Joseph Kalman
Materials 2019, 12(11), 1737; https://doi.org/10.3390/ma12111737 - 29 May 2019
Cited by 16 | Viewed by 3422
Abstract
An approach for optimizing fuel particle reactivity involves the metallurgical process of pre-stressing. This study examined the effects of pre-stressing on aluminum (Al) particle ignition delay and burn times upon thermal ignition by laser heating. Pre-stressing was by annealing Al powder at 573 [...] Read more.
An approach for optimizing fuel particle reactivity involves the metallurgical process of pre-stressing. This study examined the effects of pre-stressing on aluminum (Al) particle ignition delay and burn times upon thermal ignition by laser heating. Pre-stressing was by annealing Al powder at 573 K and quenching ranged from slow (i.e., 200 K/min) identified as pre-stressed (PS) Al to fast (i.e., 900 K/min) identified as super quenched (SQ) Al. Synchrotron X-ray Diffraction (XRD) analysis quantified an order of magnitude which increased dilatational strain that resulted from PS Al and SQ Al compared to untreated (UN) Al powder. The results show PS Al particles exhibit reduced ignition delay times resulting from elevated strain that relaxes upon laser heating. SQ Al particles exhibit faster burn times resulting from delamination at the particle core-shell interface that reduces dilatational strain and promotes accelerated diffusion reactions. These results link the mechanical property of strain to reaction mechanisms associated with shell mechanics that explain ignition and burning behavior, and show pre-stressing has the potential to improve particle reactivity. Full article
(This article belongs to the Special Issue Metal Combustion)
Show Figures

Figure 1

18 pages, 8237 KiB  
Article
Accuracy of Balloon Trajectory Forecasts in the Lower Stratosphere
by Selvaraj Dharmalingam, Riwal Plougonven, Albert Hertzog, Aurélien Podglajen, Michael Rennie, Lars Isaksen and Sélim Kébir
Atmosphere 2019, 10(2), 102; https://doi.org/10.3390/atmos10020102 - 25 Feb 2019
Cited by 5 | Viewed by 5312
Abstract
This paper investigates the accuracy of simulated long-duration super-pressure balloon trajectories in the lower stratosphere. The observed trajectories were made during the (tropical) Pre-Concordiasi and (polar) Concordiasi campaigns in 2010, while the simulated trajectories are computed using analyses and forecasts from the European [...] Read more.
This paper investigates the accuracy of simulated long-duration super-pressure balloon trajectories in the lower stratosphere. The observed trajectories were made during the (tropical) Pre-Concordiasi and (polar) Concordiasi campaigns in 2010, while the simulated trajectories are computed using analyses and forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System model. In contrast with the polar stratosphere situation, modelling accurate winds in the tropical lower stratosphere remains challenging for numerical weather prediction systems. The accuracy of the simulated tropical trajectories are quantified with the operational products of 2010 and 2016 in order to understand the impact of model physics and vertical resolution improvements. The median errors in these trajectories are large (typically ≳250 km after 24 h), with a significant negative bias in longitude, for both model versions. In contrast, using analyses in which the balloon-borne winds have been assimilated reduces the median error in the balloon position after 24 h to ∼60 km. For future campaigns, we describe operational strategies that take advantage of the geographic distribution and the episodic nature of large error events to anticipate the amplitude of error in trajectory forecasts. We finally stress the importance of a high vertical resolution in the model, given the intense shears encountered in the tropical lower stratosphere. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

12 pages, 942 KiB  
Article
Repeated Bouts of Advanced Strength Training Techniques: Effects on Volume Load, Metabolic Responses, and Muscle Activation in Trained Individuals
by William Wallace, Carlos Ugrinowitsch, Matt Stefan, Jacob Rauch, Christopher Barakat, Kevin Shields, Andrew Barninger, Renato Barroso and Eduardo O. De Souza
Sports 2019, 7(1), 14; https://doi.org/10.3390/sports7010014 - 6 Jan 2019
Cited by 10 | Viewed by 9887
Abstract
This study investigated the effects of advanced training techniques (ATT) on muscular responses and if performing a second training session would negatively affect the training stimulus. Eleven strength-trained males performed a traditional strength training session (TST) and four different ATT: pre-exhaustion A (PE-A), [...] Read more.
This study investigated the effects of advanced training techniques (ATT) on muscular responses and if performing a second training session would negatively affect the training stimulus. Eleven strength-trained males performed a traditional strength training session (TST) and four different ATT: pre-exhaustion A (PE-A), pre-exhaustion B (PE-B), forced repetitions (FR), and super-set (SS). On day 1, SS produced lower volume load than TST, FR, and PE-B (−16.0%, p ≤ 0.03; −14.9, p ≤ 0.03 and −18.2%, p ≤ 0.01, respectively). On day 2, SS produced lower volumes than all the other ATT (−9.73–−18.5%, p ≤ 0.03). Additionally, subjects demonstrated lower perceived exertion on day 1 compared to day 2 (6.5 ± 0.4 AU vs. 8.7 ± 0.3 AU, p = 0.0001). For blood lactate concentration [La-] on days 1 and 2, [La-] after the tenth set was the highest compared to all other time points (baseline: 1.7 ± 0.2, fifth-set: 8.7 ± 1.0, tenth-set 9.7 ± 0.9, post-5 min: 8.7 ± 0.7 mmol∙L−1, p ≤ 0.0001). Acute muscle swelling was greater immediately and 30-min post compared to baseline (p ≤ 0.0001). On day 2, electromyography (EMG) amplitude on the clavicular head of the pectoralis major was lower for SS than TST, PE-A, and PE-B (−11.7%, p ≤ 0.01; −14.4%, p ≤ 0.009; −20.9%, p = 0.0003, respectively). Detrimental effects to the training stimulus were not observed when ATT (besides SS) are repeated. Strength trained individuals can sustain performance, compared to TST, when they are using ATT in an acute fashion. Although ATT have traditionally been used as a means to optimize metabolic stress, volume load, and neuromuscular responses, our data did not project differences in these variables compared to TST. However, it is important to note that different ATT might produce slight changes in volume load, muscle excitation, and fluid accumulation in strength-trained individuals from session to session. Full article
Show Figures

Figure 1

23 pages, 8005 KiB  
Article
Numerical Analysis of the Behavior of an IPM Bridge According to Super-Structure and Sub-Structure Properties
by Mincheol Park and Moon S. Nam
Sustainability 2018, 10(3), 833; https://doi.org/10.3390/su10030833 - 15 Mar 2018
Cited by 2 | Viewed by 5903
Abstract
A bridge with an integrated and pile-bent abutment with a mechanically stabilized earth-wall (IPM) was developed by separating earth pressure from the abutment to overcome the problems typically faced by integral abutment bridges. Also, the IPM bridge removes expansion joints and bearing by [...] Read more.
A bridge with an integrated and pile-bent abutment with a mechanically stabilized earth-wall (IPM) was developed by separating earth pressure from the abutment to overcome the problems typically faced by integral abutment bridges. Also, the IPM bridge removes expansion joints and bearing by integrating the super-structure and the abutment and does not need many piles because it separates the earth pressure from backfills. Therefore, it is superior in cost, durability, and maintainability to traditional bridges and is sustainable due to using less material. A numerical analysis was conducted to ascertain the behavior of the IPM bridge according to its super-structural and sub-structural characteristics. Based on the analysis results, the behaviors of the IPM bridge are as follows: The bending moments ( M y ) of the pre-stressed concrete (PSC) girder and the steel-plate girder of the bridge were influenced by the presence of the time-dependent loads. The contraction behavior in the PSC girder is largely due to the time-dependent loads, whereas the expansion behavior in the steel-plate girder is large due to its greater thermal expansion coefficient and temperature range compared with those of the PSC girder. In general, the suggested bridge length limit for PSC girders in both the integral abutment bridge and the IPM bridge is larger than that in a steel bridge. This needs to be reviewed again with consideration of the long-term and seasonal behaviors. Full article
(This article belongs to the Collection Sustainable Built Environment)
Show Figures

Figure 1

Back to TopTop