Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = sudden load disturbance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 20897 KiB  
Article
Voltage and Frequency Regulation in Interconnected Power Systems via a (1+PDD2)-(1+TI) Cascade Controller Optimized by Mirage Search Optimizer
by Kareem M. AboRas, Ali M. Elkassas, Ashraf Ibrahim Megahed and Hossam Kotb
Mathematics 2025, 13(14), 2251; https://doi.org/10.3390/math13142251 - 11 Jul 2025
Viewed by 379
Abstract
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using [...] Read more.
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using the Mirage Search Optimization (MSO) algorithm. Designed for dual-area power systems, the controller enhances both LFC and AVR by coordinating voltage and frequency loops. MSO was chosen after outperforming five algorithms (ChOA, DOA, PSO, GTO, and GBO), achieving the lowest fitness value (ITSE = 0.028). The controller was tested under various challenging conditions: sudden load disturbances, stochastic variations, nonlinearities like Generation Rate Constraints (GRC) and Governor Dead Band (GDB), time-varying reference voltages, and ±20% to ±40% parameter deviations. Across all scenarios, the (1+PDD2)-(1+TI) controller consistently outperformed MSO-tuned TID, FOPID, FOPI-PIDD2, (1+PD)-PID, and conventional PID controllers. It demonstrated superior performance in regulating frequency, tie-line power, and voltage, achieving approximately a 50% improvement in dynamic response. MATLAB/SIMULINK results confirm its effectiveness in enhancing overall system stability. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

17 pages, 2509 KiB  
Article
High-Performance Speed Control of PMSM Using Fuzzy Sliding Mode with Load Torque Observer
by Ping Xin, Peilin Liu and Pingping Qu
Appl. Sci. 2025, 15(13), 7053; https://doi.org/10.3390/app15137053 - 23 Jun 2025
Viewed by 274
Abstract
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode [...] Read more.
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode control. In comparison to previous work in hybrid SMC using fuzzy logic and torque observers, this p proposes a hyperbolic tangent function in replacement of the signum function to solve the conflict between rapidity and chattering in the traditional exponential reaching law, and fuzzy and segmental self-tuning rules adjust relevant switching terms to reduce chattering and improve the sliding mode arrival process. A load torque observer is designed to enhance the system’s anti-interference ability by compensating the observed load torque to the current loop input. Simulation results show that compared with traditional sliding mode control with a load torque observer (SMC + LO), PID control with a load torque observer (PID + LO), and Active Disturbance Rejection Control (ADRC), the proposed strategy can track the desired speed in 0.032 s, has a dynamic deceleration of 2.7 r/min during sudden load increases, and has a recovery time of 0.011 s, while the others have relatively inferior performance. Finally, the model experiment is carried out, and the results of the experiment are basically consistent with the simulation results. Simulation and experimental results confirm the superiority of the proposed control strategy in improving the system’s comprehensive performance. Full article
(This article belongs to the Special Issue Power Electronics and Motor Control)
Show Figures

Figure 1

28 pages, 8607 KiB  
Article
Analysis of Grid-Connected Damping Characteristics of Virtual Synchronous Generator and Improvement Strategies
by Xudong Cao, Ruogu Zhang, Jun Li, Li Ji, Xueliang Wei, Jile Geng and Bowen Li
Electronics 2025, 14(12), 2501; https://doi.org/10.3390/electronics14122501 - 19 Jun 2025
Viewed by 385
Abstract
Focused on the contradiction between the steady-state error of active power and the dynamic oscillation caused by the virtual damping characteristics of the virtual synchronous generator (VSG) under disturbances during grid-connected operation, this article proposes an adaptive virtual inertia regulation and compensation method [...] Read more.
Focused on the contradiction between the steady-state error of active power and the dynamic oscillation caused by the virtual damping characteristics of the virtual synchronous generator (VSG) under disturbances during grid-connected operation, this article proposes an adaptive virtual inertia regulation and compensation method (PFFCVSG_AJ) based on an active power differential feedforward compensation strategy (PFFCVSG). Firstly, this article presents the working and control principles of VSG, analyzing its control mechanisms through a small-signal model. Models for VSG’s active power, reactive power, and virtual impedance components are established, with particular focus on the impact of the damping coefficient on active power regulation. Based on the PFFCVSG, an adaptive virtual inertia adjustment method is introduced to resolve the inherent inertia deficiency in PFFCVSG control, the influence of the moment of inertia on PFFCVSG is theoretically analyzed, and a dynamic adjustment mechanism for moment of inertia is developed based on the rate of change in frequency (RoCoF). Finally, simulation validation using MATLAB/Simulink (MathWorks, R2022b, Natick, MA, USA) demonstrates that the proposed PFFCVSG_AJ strategy effectively eliminates active power steady-state deviation, suppresses active power dynamic oscillation, and mitigates the frequency overshoot issue prevalent in traditional PFFCVSG. Experimental verification is conducted via a TMS320F28378DPTPS-based control platform, confirming the algorithm’s effectiveness under sudden load variations, and that the power quality of the power grid is not affected under the premise of efficient grid connection. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

21 pages, 7401 KiB  
Article
Comparative Study of Discretization Methods for Non-Ideal Proportional-Resonant Controllers in Voltage Regulation of Three-Phase Four-Wire Converters with Vehicle-to-Home Mode
by Anh Tan Nguyen
World Electr. Veh. J. 2025, 16(6), 335; https://doi.org/10.3390/wevj16060335 - 18 Jun 2025
Viewed by 319
Abstract
Vehicle-to-home (V2H) technology enables electric vehicles (EVs) to supply power to residential loads, offering enhanced energy self-sufficiency and backup capabilities. Accurate voltage regulation is essential in such systems, especially under nonlinear and time-varying load conditions. The control method for three-phase four-wire (3P4W) converters [...] Read more.
Vehicle-to-home (V2H) technology enables electric vehicles (EVs) to supply power to residential loads, offering enhanced energy self-sufficiency and backup capabilities. Accurate voltage regulation is essential in such systems, especially under nonlinear and time-varying load conditions. The control method for three-phase four-wire (3P4W) converters plays a vital role in addressing these challenges. In the control configuration of such systems, the non-ideal proportional-resonant (PR) controller stands out due to its ability to reject periodic disturbances. However, the comprehensive study on the discretization of this controller for digital implementation in 3P4W systems has not been available in the literature to date. This paper presents a comparative study of several discretization methods for non-ideal PR controllers. The continuous-time complete transfer function of the integral term of non-ideal PR controllers is discretized using techniques such as Forward Euler, Backward Euler, Tustin, Zero-Order Hold, and Impulse Invariance. Additionally, the discretization methods based on two discrete integrators for the non-ideal PR controller, such as Forward Euler and Backward Euler, Backward Euler and Backward Euler plus computational delay, and Tustin and Tustin, are also evaluated. In the MATLAB/Simulink platform, through evaluating the performance of the non-ideal PR controllers, which are discretized using the above discretization methods, in controlling the output voltage of the 3P4W converter in the V2H application under nonlinear load scenarios, including substantial and sudden changes in load, the discretization method Backward Euler and Backward Euler plus delay is recommended. Full article
Show Figures

Figure 1

13 pages, 7502 KiB  
Article
Position Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Model Reference Adaptive Systems
by Meng Wang, Jian Liu, Lijun Jiang, Kun Tan and Yiyong Wang
Energies 2025, 18(10), 2531; https://doi.org/10.3390/en18102531 - 14 May 2025
Cited by 1 | Viewed by 374
Abstract
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the [...] Read more.
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the dynamic equations of the PMSM are used as the reference model, while the stator current equations incorporating speed variables are constructed as the adjustable model. Subsequently, a novel adaptive law is designed using Popov’s hyperstability theory to enhance the estimation accuracy of rotor position. A fractional-order system was introduced to construct both a fractional-order sliding surface and reaching law. Subsequently, a comparative study was conducted between the conventional integral terminal sliding surface and the proposed novel sliding mode reaching law. The results demonstrate that the new reaching law can adaptively adjust the switching gain based on system state variables. Under sudden load increases, the improved system achieves a 25% reduction in settling time compared to conventional sliding mode control (SMC), along with a 44% decrease in maximum speed fluctuation and a 42% reduction in maximum torque ripple, significantly enhancing dynamic response performance. Furthermore, a variable-gain terminal sliding mode controller is derived, and the stability of the closed-loop control system is rigorously proven using Lyapunov theory. Finally, simulations verify the effectiveness and feasibility of the proposed control strategy in improving system robustness and disturbance rejection capability. Full article
Show Figures

Figure 1

31 pages, 10538 KiB  
Article
Comprehensive Control Strategy for Hybrid Energy Storage System Participating in Grid Primary Frequency Regulation
by Haorui Jiang, Kuihua Han, Weiyu Bao and Yahui Li
Energies 2025, 18(10), 2423; https://doi.org/10.3390/en18102423 - 8 May 2025
Viewed by 512
Abstract
The increasing integration of renewable energy sources has posed significant challenges to grid frequency stability. To maximize the advantages of energy storage in primary frequency regulation, this paper proposes a comprehensive control strategy for a hybrid energy storage system (HESS) based on supercapacitor [...] Read more.
The increasing integration of renewable energy sources has posed significant challenges to grid frequency stability. To maximize the advantages of energy storage in primary frequency regulation, this paper proposes a comprehensive control strategy for a hybrid energy storage system (HESS) based on supercapacitor battery. Firstly, considering the characteristics of the HESS and different control strategies, the battery responds to virtual droop control to reduce frequency deviation, while the supercapacitor responds to inertia control to suppress frequency drops and facilitate frequency recovery. Simultaneously, a reasonable dynamic dead zone is configured to prevent frequent actions of the battery and thermal unit while allowing flexible adjustments according to the load condition. Thirdly, an algebraic S-curve-based adaptive droop coefficient incorporating SOC is proposed, while the inertia coefficient additionally considers load type, enhancing adaptability. Furthermore, to better maintain the battery’s SOC, an improved adaptive recovery strategy within the battery dead zone is proposed, considering both SOC recovery requirements and system frequency deviation constraints. Finally, a simulation validation was conducted in MATLAB/Simulink. Compared to the conventional strategy, the proposed control strategy reduces the frequency drop rate by 17.43% under step disturbance. Under compound disturbances, the RMS of frequency deviation decreases by 13.34%, and the RMS of battery SOC decreases by 68.61%. The economic benefit of this strategy is 3.212 times that of the single energy storage scheme. The results indicate that the proposed strategy effectively alleviates sudden frequency disturbances, suppresses frequency fluctuations, and reduces battery output while maintaining the SOC of both the supercapacitor and the battery, thereby extending the battery lifespan and improving economic performance. Full article
(This article belongs to the Special Issue Trends and Challenges in Power System Stability and Control)
Show Figures

Figure 1

19 pages, 17382 KiB  
Article
Speed–Pressure Compound Control of Thrust System Based on the Adaptive Sliding Mode Control Strategy
by Tong Xing, Hong Liu, Zhe Zheng, Lianhui Jia, Lijie Jiang, Guofang Gong, Huayong Yang and Dong Han
Machines 2025, 13(3), 213; https://doi.org/10.3390/machines13030213 - 6 Mar 2025
Viewed by 537
Abstract
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence [...] Read more.
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence or upheaval. Conversely, solely relying on pressure control causes fluctuations in speed, making it difficult to ensure that the deviation between the designed tunneling axis (DTA) and the actual tunneling axis (ATA) remains within the permissible range. Due to the increase in geological complexity and higher construction quality standards, primarily relying on single-mode speed or pressure control has become inadequate to meet operational demands. Therefore, to realize higher safety and precise trajectory tracking, it is necessary to ensure speed and pressure compound control for thrust systems. This paper proposes a novel adaptive sliding mode control (ASMC) strategy for thrust systems, which is composed of a proportional pressure relief valve (PPRV) and a proportional flow control valve (PFCV). Firstly, PPRV and PFCV are modeled as a second-order system and an ASMC is employed to control the pressure and speed. Next, to assess the performance of the ASMC controller, simulation experiments were conducted under various conditions, including speed regulation, sudden changed load, and disturbed load. The simulation results indicate that compared to the Proportion–Integral–Differential (PID) controller, the ASMC controller shows almost no overshoot in speed and pressure control during the initial stages, with the response time reduced by approximately 70%. During speed regulation process and sudden changed load process, the response time for both speed and pressure control is shortened by about 80%. In the disturbed load process, the ASMC controller maintains pressure stability. In conclusion, the ASMC controller significantly improves the response speed and stability of the thrust system, exhibiting better control performance under various operating conditions. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

24 pages, 9949 KiB  
Article
Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System
by Pingye Wan, Miao Huang, Jinshan Mou, Lili Tao, Shuping Zhang and Zhihua Hu
Energies 2025, 18(3), 554; https://doi.org/10.3390/en18030554 - 24 Jan 2025
Viewed by 743
Abstract
In view of the sudden grid voltage distortions, such as voltage sags and unbalances, that may occur in photovoltaic (PV) grid-connected systems under local shading conditions, this paper proposes a control strategy integrating a linear active disturbance rejection controller (LADRC)-based virtual synchronous generator [...] Read more.
In view of the sudden grid voltage distortions, such as voltage sags and unbalances, that may occur in photovoltaic (PV) grid-connected systems under local shading conditions, this paper proposes a control strategy integrating a linear active disturbance rejection controller (LADRC)-based virtual synchronous generator (VSG) and an active disturbance rejection controller (ADRC)-based dynamic voltage restorer (DVR). To enhance the stability and response speed of the PV inverter system, a novel LADRC-based voltage–current dual closed-loop control strategy with pre-synchronization is designed, ensuring stable operation of the inverter and load. To address the overshooting issues found in traditional PI control under local shading, the ADRC-based DVR compensates for PV system voltage fluctuations, achieving rapid voltage distortion compensation and ensuring grid-connected system safety. Simulink experiments verify the feasibility and effectiveness of the proposed control strategy in improving transient voltage quality in PV systems affected by local shading. The total harmonic distortion rates of voltage and current are both less than 0.5%, which significantly improves the performance compared to existing research. Full article
(This article belongs to the Topic Power System Modeling and Control, 2nd Edition)
Show Figures

Figure 1

24 pages, 6023 KiB  
Article
Advanced Control Scheme Optimization for Stand-Alone Photovoltaic Water Pumping Systems
by Maissa Farhat and Oscar Barambones
Computation 2024, 12(11), 224; https://doi.org/10.3390/computation12110224 - 11 Nov 2024
Cited by 4 | Viewed by 1429
Abstract
This study introduces a novel method for controlling an autonomous photovoltaic pumping system by integrating a Maximum Power Point Tracking (MPPT) control scheme with variable structure Sliding Mode Control (SMC) alongside Perturb and Observe (P&O) algorithms. The stability of the proposed SMC method [...] Read more.
This study introduces a novel method for controlling an autonomous photovoltaic pumping system by integrating a Maximum Power Point Tracking (MPPT) control scheme with variable structure Sliding Mode Control (SMC) alongside Perturb and Observe (P&O) algorithms. The stability of the proposed SMC method is rigorously analyzed using Lyapunov’s theory. Through simulation-based comparisons, the efficacy of the SMC controller is demonstrated against traditional P&O methods. Additionally, the SMC-based system is experimentally implemented in real time using dSPACE DSP1104, showcasing its robustness in the presence of internal and external disturbances. Robustness tests reveal that the SMC controller effectively tracks Maximum Power Points (MMPs) despite significant variations in load and solar irradiation, maintaining optimal performance even under challenging conditions. The results indicate that the SMC system can achieve up to a 70% increase in water flow rates compared with systems without MPPT controllers. Furthermore, SMC demonstrated high sensitivity to sudden changes in environmental conditions, ensuring efficient power extraction from the photovoltaic panels. This study highlights the advantages of integrating SMC into Photovoltaic Water Pumping Systems (PV-WPSs), providing enhanced control capabilities and optimizing system performance. The findings contribute to the development of sustainable water supply solutions, particularly in remote areas with limited access to the electrical grid. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

16 pages, 3155 KiB  
Article
Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control
by Limin Hou and Xiaoru Lan
Electronics 2024, 13(22), 4407; https://doi.org/10.3390/electronics13224407 - 11 Nov 2024
Viewed by 1258
Abstract
To improve the tracking performance and robustness of traditional multi-motor speed cooperative control, this paper proposes a speed cooperative control method for multiple permanent magnet synchronous motors (multi-PMSMs) based on the fixed-time consensus protocol for multi-agent systems (MASs) combined with CSMC. Firstly, the [...] Read more.
To improve the tracking performance and robustness of traditional multi-motor speed cooperative control, this paper proposes a speed cooperative control method for multiple permanent magnet synchronous motors (multi-PMSMs) based on the fixed-time consensus protocol for multi-agent systems (MASs) combined with CSMC. Firstly, the speed regulation system of multi-PMSMs is regarded as a MAS. By designing a distributed consensus protocol based on an undirected communication topology, the system achieves fixed-time consensus convergence. Then, a terminal integral sliding mode observer (TISMO) is designed to estimate disturbances, and feedforward compensation is introduced into the consensus protocol to obtain the desired q-axis current. Furthermore, within the framework of the vector control speed cooperative system of PMSMs, a CSMC is designed to track the q-axis reference current. Meanwhile, the stability of the above controllers and observers is theoretically proven using the Lyapunov functions. Finally, comparative experiments are conducted on a multi-PMSM speed regulation experimental platform to verify the proposed control method against the traditional deviation coupling control (DCC) method. The results indicate that under the new control method proposed in this paper, the chattering phenomenon is reduced by about 2 r/min compared to the traditional DCC method. During sudden load and sudden relief load conditions, the speed fluctuation is reduced by approximately 4%, demonstrating good tracking performance and strong robustness. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

19 pages, 4437 KiB  
Article
Adaptive Weighted Particle Swarm Optimization for Controlling Multiple Switched Reluctance Motors with Enhanced Deviatoric Coupling Control
by Tianyu Zhang, Xianglian Xu, Fangqing Zhang, Yifeng Gu, Kaitian Deng, Yuli Xu, Tunzhen Xie and Yuanqing Song
Electronics 2024, 13(21), 4320; https://doi.org/10.3390/electronics13214320 - 3 Nov 2024
Cited by 1 | Viewed by 1061
Abstract
Switched reluctance motors (SRMs) are widely used in industrial applications due to their advantages. Multi-motor synchronous control systems are crucial in modern industry, as their control strategies significantly impact synchronization performance. Traditional deviation coupling control structures face limitations during the startup phase, leading [...] Read more.
Switched reluctance motors (SRMs) are widely used in industrial applications due to their advantages. Multi-motor synchronous control systems are crucial in modern industry, as their control strategies significantly impact synchronization performance. Traditional deviation coupling control structures face limitations during the startup phase, leading to excessive tracking errors and exacerbated by uneven load distribution, resulting in desynchronized motor acceleration and increased speed synchronization errors. This study proposes a modified deviation coupling control method based on an adaptive weighted particle swarm optimization (PSO) algorithm to enhance multi-motor synchronization performance. Traditional deviation coupling control applies equal reference torque inputs to each motor’s current loop, failing to address uneven load distribution and causing inconsistent accelerations. To resolve this, a gain equation based on speed deviation is introduced, incorporating self-tracking error and gain coefficients for dynamic synchronization error compensation. The gain coefficients are optimized using the adaptive weighted PSO algorithm to improve system adaptability. A simulation model of a synchronization control system for three SRMs was developed in the Matlab/Simulink R2023b environment. This model compares the synchronization performance of traditional deviation coupling, Fuzzy-PID improved structure, and adaptive PSO improved structure during motor startup, sudden speed increases, and load disturbances. The validated deviation coupling control structure achieved the initial set speed in approximately 0.236 s, demonstrating faster convergence and a 6.35% reduction in settling time. In both the motor startup and sudden speed increase phases, the two optimized methods outperformed the traditional structure in dynamic performance and synchronization accuracy, with the adaptive PSO structure improving synchronization accuracy by 54% and 37.17% over the Fuzzy-PID structure, respectively. Therefore, the PSO-optimized control system demonstrates faster convergence, improved stability, and enhanced synchronization performance. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 5589 KiB  
Article
Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range
by Yong Chen and Ruodan Yuan
World Electr. Veh. J. 2024, 15(11), 496; https://doi.org/10.3390/wevj15110496 - 30 Oct 2024
Viewed by 1422
Abstract
To address the impact of load disturbances on the full-speed-range control of an interior permanent magnet synchronous motor (PMSM), an active disturbance rejection control (ADRC) method is proposed. The speed loop employs phased field-weakening control (FW) based on ADRC, while the current loop [...] Read more.
To address the impact of load disturbances on the full-speed-range control of an interior permanent magnet synchronous motor (PMSM), an active disturbance rejection control (ADRC) method is proposed. The speed loop employs phased field-weakening control (FW) based on ADRC, while the current loop utilizes proportional-integral-derivative (PID) control. Starting from the motor parameters, the Lagrange multiplier method was used to derive the critical speeds for the maximum torque per ampere (MTPA) and maximum torque per voltage (MTPV) ratios, and the timing for the field-weakening control was analyzed. A full-speed-range control model of the motor was established, and an ADRC-based speed loop controller was designed to achieve smooth transitions between high speeds and anti-disturbance solid capabilities. Based on the proposed control strategy, a 21 kW PMSM was used as the research object, and a full-speed-range control simulation model was developed in MATLAB/SIMULINK to verify the strategy. Compared to the traditional PID control, the simulation results demonstrate that the proposed strategy effectively observes and compensates for load disturbances, significantly reducing initial torque oscillations under three different operating conditions. After a sudden load increase, torque oscillations were reduced by 16%, with the stator current reaching steady state 0.03 s faster, response speed improving by 0.02 s, smooth transitions between speed ranges, and enhanced anti-disturbance performance. Full article
Show Figures

Figure 1

18 pages, 9405 KiB  
Article
Energy Management System and Control of Plug-in Hybrid Electric Vehicle Charging Stations in a Grid-Connected Microgrid
by Muhammad Roaid, Tayyab Ashfaq, Sidra Mumtaz, Fahad R. Albogamy, Saghir Ahmad and Basharat Ullah
Sustainability 2024, 16(20), 9122; https://doi.org/10.3390/su16209122 - 21 Oct 2024
Cited by 4 | Viewed by 1972
Abstract
In the complex environment of microgrid deployments targeted at geographic regions, the seamless integration of renewable energy sources meets a variety of essential challenges. These include the unpredictable nature of renewable energy, characterized by intermittent energy generation, as well as ongoing fluctuations in [...] Read more.
In the complex environment of microgrid deployments targeted at geographic regions, the seamless integration of renewable energy sources meets a variety of essential challenges. These include the unpredictable nature of renewable energy, characterized by intermittent energy generation, as well as ongoing fluctuations in load demand, the vulnerabilities present in distribution network failures, and the unpredictability that results from unfavorable weather conditions. These unexpected events work together to disturb the delicate balance between energy supply and demand, raising the alarming threat of system instability and, in the worst cases, the sudden advent of damaging blackouts. To address this issue, a fuzzy logic-based energy management system has been developed to monitor, manage, and optimize energy consumption in microgrids. This study focuses on the control of diesel generators and utility grids in a grid-connected microgrid which manages and evaluates numerous energy consumption and distribution features within a specified system, e.g., building or a microgrid. An energy management system is suggested based on fuzzy logic as a swift fix for complications with effective and competent resource management, and its presentation is compared with both the grid-connected and off-grid modes of the microgrid. In the end, the results exhibit that the proposed controller outclasses the predictable controllers in dropping sudden variations that arise during the addition of sources of renewable energy, supporting the refurbishment of the constant system. Full article
Show Figures

Figure 1

24 pages, 8395 KiB  
Article
Linear Active Disturbance Rejection Control System for the Travel Speed of an Electric Reel Sprinkling Irrigation Machine
by Lingdi Tang, Wei Wang, Chenjun Zhang, Zanya Wang, Zeyu Ge and Shouqi Yuan
Agriculture 2024, 14(9), 1544; https://doi.org/10.3390/agriculture14091544 - 6 Sep 2024
Cited by 12 | Viewed by 1041
Abstract
The uniformity of the travel speed of electric reel sprinkling irrigation machines is a key factor affecting irrigation quality. However, conventional PID control is susceptible to sudden disturbances under complex farmland conditions, leading to reduced speed uniformity. To enhance the robustness of the [...] Read more.
The uniformity of the travel speed of electric reel sprinkling irrigation machines is a key factor affecting irrigation quality. However, conventional PID control is susceptible to sudden disturbances under complex farmland conditions, leading to reduced speed uniformity. To enhance the robustness of the control system, it is necessary to investigate new disturbance rejection control algorithms and their effects. Therefore, a kinematic model of the reel sprinkling irrigation machine and a brushless DC (BLDC) motor model were established, and a linear active disturbance rejection control (LADRC) strategy based on improved particle swarm optimization (IPSO) was proposed. The simulation results show that under variable speed conditions, the system exhibits no overshoot, with an adjustment time of 0.064 s; under variable load conditions, the speed vibration amplitude is less than 0.3%. The field test results indicate that at travel speeds of 10 m/h and 30 m/h, the maximum absolute deviation rate under IPSO-LADRC control is reduced by 27.07% and 13.98%, respectively, compared to PID control. The control strategy based on IPSO-LADRC effectively improves the control accuracy and robustness under complex farmland conditions, providing a reference for enhancing the control performance of other electric agricultural machinery. Full article
(This article belongs to the Special Issue Application of Modern Agricultural Equipment in Crop Cultivation)
Show Figures

Figure 1

19 pages, 6194 KiB  
Article
Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control
by Shuang Luo, Guofeng He and Ning Hou
Energies 2024, 17(17), 4299; https://doi.org/10.3390/en17174299 - 28 Aug 2024
Viewed by 985
Abstract
The dual-active hybrid full-bridge (H-FDAB) DC–DC converter has great potential in medium-voltage high-power photovoltaic power station applications by introducing a three-level bridge arm to increase the output voltage range. However, its mathematical model and optimum modulation schemes have not been fully explored. Under [...] Read more.
The dual-active hybrid full-bridge (H-FDAB) DC–DC converter has great potential in medium-voltage high-power photovoltaic power station applications by introducing a three-level bridge arm to increase the output voltage range. However, its mathematical model and optimum modulation schemes have not been fully explored. Under the traditional PI control, the H-FDAB DC–DC converter will produce significant reflux power, which will lead to a decrease in converter efficiency and output voltage fluctuation. On this basis, this paper proposes a reflux power optimization strategy for an H-FDAB DC-DC converter based on active disturbance rejection control (ADRC). Firstly, the structure and power characteristics of the H-FDAB DC–DC converter are analyzed, and the relationship among the reflux power, the transmission power, and the phase shift angle is derived. Secondly, to reduce the complexity of the control calculation, upon the foundation of dual phase-shifting modulation, the Karush–Kuhn–Tucker (KKT) condition is used to solve for the phase shift angle that corresponds to the minimum reflux power. Simultaneously, we develop an ADRC loop utilizing an extended state observer (ESO) for the real-time estimation of system states. We also consider the sudden changes in input voltage, load switching, and transmission power fluctuations caused by reflux power optimization strategies as system disturbances and compensate for them accordingly. Finally, the experiments conclusively validate the designed control strategy’s correctness and feasibility. Full article
Show Figures

Figure 1

Back to TopTop