Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = succinimide derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 3596 KB  
Communication
The Crystal Structures of Some Bromo-Derivatives of the DPPH Stable Free Radical
by Adela F. Dobre, Augustin M. Madalan and Petre Ionita
Molbank 2024, 2024(3), M1880; https://doi.org/10.3390/M1880 - 10 Sep 2024
Cited by 1 | Viewed by 1522
Abstract
Bromination of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with bromine or N-bromo-succinimide (NBS) affords a complex mixture of bromo- and nitro-derivatives of the starting material. In this study, by chromatographic separation, most of the reaction products were isolated. Suitable crystals for X-ray measurements [...] Read more.
Bromination of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with bromine or N-bromo-succinimide (NBS) affords a complex mixture of bromo- and nitro-derivatives of the starting material. In this study, by chromatographic separation, most of the reaction products were isolated. Suitable crystals for X-ray measurements were obtained and characterized for the compounds 2-p-bromophenyl-2-phenyl-1-picrylhydrazyl free radical (Br-DPPH), 2-p-bromophenyl-2-phenyl-1-picrylhydrazine (Br-DPPH-H), and 2,2-(p-bromophenyl)-1-(2-bromo-4,6-dinitrophenyl)hydrazine (Br2-DPPBr-H). Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

9 pages, 1962 KB  
Communication
Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines
by Zhenzhen Gao, Xiaoming Zhou, Baoshen Nie, Hanchong Lu, Xiaotong Chen, Jiahui Wu, Xuekun Wang and Lei Li
Int. J. Mol. Sci. 2024, 25(13), 6916; https://doi.org/10.3390/ijms25136916 - 24 Jun 2024
Cited by 1 | Viewed by 3081
Abstract
3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ′-addition and aryl imines using PR3 as a [...] Read more.
3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ′-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ′-addition reaction of allenoates is seldom reported. Full article
Show Figures

Figure 1

14 pages, 3221 KB  
Article
Succinimide Derivatives as Acetylcholinesterase Inhibitors—In Silico and In Vitro Studies
by Błażej Grodner, Dariusz Maciej Pisklak and Łukasz Szeleszczuk
Curr. Issues Mol. Biol. 2024, 46(6), 5117-5130; https://doi.org/10.3390/cimb46060307 - 22 May 2024
Viewed by 2377
Abstract
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme’s activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the [...] Read more.
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme’s activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis–Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme’s active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives. Full article
(This article belongs to the Special Issue Synthesis and Theoretical Study of Bioactive Molecules)
Show Figures

Figure 1

20 pages, 6362 KB  
Article
New Derivatives of N-Hydroxybutanamide: Preparation, MMP Inhibition, Cytotoxicity, and Antitumor Activity
by Anastasia Balakina, Svyatoslav Gadomsky, Tatyana Kokovina, Tatyana Sashenkova, Denis Mishchenko and Alexei Terentiev
Int. J. Mol. Sci. 2023, 24(22), 16360; https://doi.org/10.3390/ijms242216360 - 15 Nov 2023
Cited by 2 | Viewed by 2034
Abstract
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the [...] Read more.
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1–1.5 μM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential. Full article
(This article belongs to the Special Issue Novel Chemical Tools for Targeted Cancer Therapy)
Show Figures

Graphical abstract

22 pages, 2429 KB  
Article
Desymmetrization of Prochiral N-Pyrazolyl Maleimides via Organocatalyzed Asymmetric Michael Addition with Pyrazolones: Construction of Tri-N-Heterocyclic Scaffolds Bearing Both Central and Axial Chirality
by Jianqi Geng, Xingfu Wei, Biru He, Yuting Hao, Jingping Qu and Baomin Wang
Molecules 2023, 28(11), 4279; https://doi.org/10.3390/molecules28114279 - 23 May 2023
Cited by 4 | Viewed by 2495
Abstract
The desymmetrization of N-pyrazolyl maleimides was realized through an asymmetric Michael addition by using pyrazolones under mild conditions, leading to the formation of a tri-N-heterocyclic pyrazole–succinimide–pyrazolone assembly in high yields with excellent enantioselectivities (up to 99% yield, up to 99% [...] Read more.
The desymmetrization of N-pyrazolyl maleimides was realized through an asymmetric Michael addition by using pyrazolones under mild conditions, leading to the formation of a tri-N-heterocyclic pyrazole–succinimide–pyrazolone assembly in high yields with excellent enantioselectivities (up to 99% yield, up to 99% ee). The use of a quinine-derived thiourea catalyst was essential for achieving stereocontrol of the vicinal quaternary–tertiary stereocenters together with the C–N chiral axis. Salient features of this protocol included a broad substrate scope, atom economy, mild conditions and simple operation. Moreover, a gram-scale experiment and derivatization of the product further illustrated the practicability and potential application value of this methodology. Full article
(This article belongs to the Special Issue Synthetic Studies Aimed at Heterocyclic Organic Compounds)
Show Figures

Scheme 1

23 pages, 2568 KB  
Article
Evaluation of Substituted N-Aryl Maleimide and Acrylamides for Bioconjugation
by Hugh G. Hiscocks, Giancarlo Pascali and Alison T. Ung
AppliedChem 2023, 3(2), 256-278; https://doi.org/10.3390/appliedchem3020016 - 15 May 2023
Cited by 3 | Viewed by 7043
Abstract
Novel SF5-bearing maleimide and acrylamide derivatives were synthesised as potential [18F]radio-prosthetic groups for radiolabelling peptides and proteins. The efficacy of selected prosthetic groups was first assessed through bioconjugation with protected model amino acid derivatives. These reactions were investigated on [...] Read more.
Novel SF5-bearing maleimide and acrylamide derivatives were synthesised as potential [18F]radio-prosthetic groups for radiolabelling peptides and proteins. The efficacy of selected prosthetic groups was first assessed through bioconjugation with protected model amino acid derivatives. These reactions were investigated on an analytical scale via LC-MS across a pH range to quantitatively evaluate this prosthetic group’s reactivity and stability. Model bioconjugate reactions were then replicated using analogous para-substituted derivatives to determine the influence of the electronic effects of -SF5. Finally, the SF5-bearing prosthetic groups were utilised for bioconjugation with cancer-targeting c-RGD peptides. N-aryl maleimides reacted extremely efficiently with the model amino acid N-acetyl-L-cysteine. The subsequent conjugates were obtained as regio-isomeric mixtures of the corresponding thio-succinamic acids in yields of 80–96%. Monitoring the bioconjugate reaction by LC-MS revealed that ring hydrolysis of the intermediate SF5–thio-succinimide conjugate occurred instantaneously, an advantageous quality in minimising undesirable thiol exchange reactions with non-targeted cysteine residues. In contrast, N-aryl acrylamides demonstrated poor solubility in semi-aqueous media (<1 mM). In turn, synthetic-scale model bioconjugations with Nα-acetyl-L-lysine were performed in methanol, affording the corresponding acrylamide conjugates in modest to high yield (58–89%). Including electron-deficient, fluorinated prosthetic groups for bioconjugation will broaden their applicability within the fields of 19F-MRI and PET imaging. Full article
(This article belongs to the Special Issue Feature Papers in AppliedChem)
Show Figures

Figure 1

13 pages, 3023 KB  
Article
Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics
by Xiaolei Song, Congzhu Xu, Wendong Yao, Jieyun Wen, Qufu Wei, Yonggui Li and Xinqun Feng
Molecules 2023, 28(7), 3175; https://doi.org/10.3390/molecules28073175 - 3 Apr 2023
Cited by 4 | Viewed by 2385
Abstract
Magnetic protective fabrics with fine wearability and great protective properties are highly desirable for aerospace, national defense, and wearable protective applications. The study of the controllable preparation method of Nd3+ doped in Fe3O4 nanoparticles with supposed magnetic properties remains [...] Read more.
Magnetic protective fabrics with fine wearability and great protective properties are highly desirable for aerospace, national defense, and wearable protective applications. The study of the controllable preparation method of Nd3+ doped in Fe3O4 nanoparticles with supposed magnetic properties remains a challenge. The characterization of the microstructure, elemental composition, and magnetic properties of NdFe2O4 nanoparticles was verified. Then, the surface of NdFe2O4 was treated with glyceric acid to provide sufficient –OH. Subsequently, the connection of the nanoparticle by the succinimide group was studied and then grafted onto cotton fabrics as its bridging effect. The optimal loading rate of the functional fabrics with nanoparticles of an average size of 230 nm was 1.37% after a 25% alkali pretreatment. The color fatness to rubbing results showed better stability after washing and drying. The corresponding hysteresis loop indicated that the functional fabrics exhibited typical magnetism behavior with a closed “S” shape and a magnetic saturation value of 17.61 emu.g−1 with a particle size of 230 nm. However, the magnetic saturation value of the cotton fabric of 90 nm was just 4.89 emu.g−1, exhibiting controllable preparation for the aimed electromagnetic properties and great potential in radiation protective fields. The electrochemical properties of the functional fabrics exhibited extremely weak electrical conductivity caused by the movement of the magnetic dipole derived from the NdFe2O4 nanoparticles. Full article
Show Figures

Figure 1

15 pages, 3130 KB  
Article
Site-Selective Incorporation of a Functional Group into Lys175 in the Vicinity of the Active Site of Chymotrypsin by Using Peptidyl α-Aminoalkylphosphonate Diphenyl Ester-Derivatives
by Shin Ono, Masato Koga, Yuya Arimura, Takahiro Hatakeyama, Mai Kobayashi, Jun-ichi Sagara, Takahiko Nakai, Yoshikazu Horino, Hirofumi Kuroda, Hiroshi Oyama and Kazunari Arima
Molecules 2023, 28(7), 3150; https://doi.org/10.3390/molecules28073150 - 31 Mar 2023
Viewed by 1960
Abstract
We previously reported that Lys175 in the region of the active site of chymotrypsin (Csin) could be site-selectively modified by using an N-hydroxy succinimide (NHS) ester of the peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester [NHS-Suc-Ala-Ala-PheP(OPh)2]. In this study, [...] Read more.
We previously reported that Lys175 in the region of the active site of chymotrypsin (Csin) could be site-selectively modified by using an N-hydroxy succinimide (NHS) ester of the peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester [NHS-Suc-Ala-Ala-PheP(OPh)2]. In this study, the Lys175-selective modification method was expanded to incorporate functional groups into Lys 175 in Csin. Two types of peptidyl phosphonate derivatives with the dansyl group (Dan) as a functional molecule, Dan-β-Ala-[Asp(NHS) or Glu(NHS)]-Ala-Ala-(R)-PheP(OPh)2 (DanD and DanE, respectively), were synthesized, and their action was evaluated when modifying Lys175 in Csin. Ion-exchange chromatography (IEC), fluorescence spectroscopy, and LC-MS/MS were used to analyze the products from the reaction of Csin with DanD or DanE. By IEC and LC-MS/MS, the results showed that DanE reacted with Csin more effectively than DanD to produce the modified Csin (DanMCsin) bearing Dan at Lys175. DanMCsin exhibited an enzymatic activity corresponding to 1/120 of Csin against Suc-Ala-Ala-Phe-pNA. In addition, an effect of Lys175 modification on the access of the proteinaceous Bowman–Birk inhibitor to the active site of DanMCsin was investigated. In conclusion, by using a peptidyl derivative containing 1-amino-2-ethylphenylphosphonate diphenyl ester, we demonstrated that a functional group could be incorporated into Lys175 in Csin. Full article
(This article belongs to the Special Issue New Insights into Biomolecular Structures and Interactions)
Show Figures

Figure 1

19 pages, 1319 KB  
Article
Design of New Dispersants Using Machine Learning and Visual Analytics
by María Jimena Martínez, Roi Naveiro, Axel J. Soto, Pablo Talavante, Shin-Ho Kim Lee, Ramón Gómez Arrayas, Mario Franco, Pablo Mauleón, Héctor Lozano Ordóñez, Guillermo Revilla López, Marco Bernabei, Nuria E. Campillo and Ignacio Ponzoni
Polymers 2023, 15(5), 1324; https://doi.org/10.3390/polym15051324 - 6 Mar 2023
Cited by 4 | Viewed by 3812
Abstract
Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models [...] Read more.
Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of 5.50±0.34 and a root mean square error of 7.56±0.47, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties. Full article
Show Figures

Figure 1

16 pages, 1935 KB  
Article
Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches
by Mater H. Mahnashi, Waqas Alam, Mohammed A. Huneif, Alqahtani Abdulwahab, Mohammed Jamaan Alzahrani, Khaled S. Alshaibari, Umar Rashid, Abdul Sadiq and Muhammad Saeed Jan
Molecules 2023, 28(4), 1589; https://doi.org/10.3390/molecules28041589 - 7 Feb 2023
Cited by 9 | Viewed by 2522
Abstract
Diabetes mellitus (DM) is counted among one of the leading challenges in the recent era, and it is a life-threatening disorder. Compound 4-hydroxy 3-methoxy phenylacetone (compound 1) was previously isolated from Polygonum aviculare. This compound was reacted with N-benzylmaleimide to synthesize the [...] Read more.
Diabetes mellitus (DM) is counted among one of the leading challenges in the recent era, and it is a life-threatening disorder. Compound 4-hydroxy 3-methoxy phenylacetone (compound 1) was previously isolated from Polygonum aviculare. This compound was reacted with N-benzylmaleimide to synthesize the targeted compound 3. The purpose of this research is to exhibit our developed compound 3’s ability to concurrently inhibit many targets that are responsible for hyperglycemia. Compound 3 was capable of inhibiting α-amylase, α-glucosidase, and protein tyrosine phosphatase 1 B. Even so, outstanding in vitro inhibition was shown by the compound against dipeptidyl peptidase-4 (DPP-4) with an IC50 value of 0.07 µM. Additionally, by using DPPH in the antioxidant activity, it exhibited good antioxidant potential. Similarly, in the in vivo activity, the experimental mice proved to be safe by treatment with compound 3. After 21 days of examination, the compound 3 activity pattern was found to be effective in experimental mice. Compound 3 decreased the excess peak of total triglycerides, total cholesterol, AST, ALT, ALP, LDL, BUN, and creatinine in the STZ-induced diabetic mice. Likewise, the histopathology of the kidneys, liver, and pancreas of the treated animals was also evaluated. Overall, the succinimde moiety, such as compound 3, can affect several targets simultaneously, and, finally, we were successful in synthesizing a multi-targeted preclinical therapy. Full article
Show Figures

Figure 1

17 pages, 2443 KB  
Article
New Succinimide–Thiazolidinedione Hybrids as Multitarget Antidiabetic Agents: Design, Synthesis, Bioevaluation, and Molecular Modelling Studies
by Mohammed A. Huneif, Mater H. Mahnashi, Muhammad Saeed Jan, Muhammad Shah, Sultan A. Almedhesh, Seham M. Alqahtani, Mohammad Jamaan Alzahrani, Muhammad Ayaz, Farhat Ullah, Umer Rashid and Abdul Sadiq
Molecules 2023, 28(3), 1207; https://doi.org/10.3390/molecules28031207 - 26 Jan 2023
Cited by 26 | Viewed by 3945
Abstract
Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue’s resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide–thiazolidinedione hybrids for [...] Read more.
Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue’s resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide–thiazolidinedione hybrids for the management of DM. In a multistep reaction, we were able to synthesize five new derivatives (10a–e). All the compounds were new containing a different substitution pattern on the N-atom of the succinimide ring. Initially, all the compounds were tested against the in vitro α-glucosidase, α-amylase, PTP1B, and DPP4 targets. In all of these targets, the compound 10d was observed to be the most potential antidiabetic agent. Based on this, the antidiabetic activity of the compound 10d was further investigated in experimental animals, which overall gave us encouraging results. The molecular docking studies of the compound 10d was also performed against the target enzymes α-glucosidase, α-amylase, PTP1B, and DPP4 using MOE. Overall, we observed that we have explored a new class of compounds as potential antidiabetic agents. Full article
Show Figures

Figure 1

10 pages, 3861 KB  
Article
Solid State Structure and Hydrogen Bonding of Some Cyclic NH Carboximides
by R. Alan Aitken, Alexander J. B. Nelson, Alexandra M. Z. Slawin and Dheirya K. Sonecha
Crystals 2023, 13(1), 150; https://doi.org/10.3390/cryst13010150 - 15 Jan 2023
Viewed by 2179
Abstract
Thirteen new crystal structures of cyclic NH carboximides have been determined and are compared with respect to the mode of intermolecular hydrogen bonding observed in the crystal. The structures include a new cyclobutane-fused succinimide, seven new simple bi- and tricyclic succinimides derived from [...] Read more.
Thirteen new crystal structures of cyclic NH carboximides have been determined and are compared with respect to the mode of intermolecular hydrogen bonding observed in the crystal. The structures include a new cyclobutane-fused succinimide, seven new simple bi- and tricyclic succinimides derived from Diels–Alder reactions of maleimide, three methylated glutarimides, a morpholinedione and adipimide, the first seven-membered ring NH carboximide to be structurally characterised. Overall, seven of the compounds adopt a ribbon structure, five show centrosymmetric dimers, and one has bonding between NH and a remote bridging ether oxygen. Halogen bonding was also detected in one case. Full article
(This article belongs to the Special Issue Feature Papers in Crystal Engineering in 2022)
Show Figures

Figure 1

20 pages, 8408 KB  
Article
Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin
by Joachim Müller, Ghalia Boubaker, Dennis Imhof, Kai Hänggeli, Noé Haudenschild, Anne-Christine Uldry, Sophie Braga-Lagache, Manfred Heller, Luis-Miguel Ortega-Mora and Andrew Hemphill
Biomedicines 2022, 10(11), 2675; https://doi.org/10.3390/biomedicines10112675 - 23 Oct 2022
Cited by 12 | Viewed by 2678
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly [...] Read more.
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans. Full article
(This article belongs to the Topic Proteomics and Metabolomics in Biomedicine)
Show Figures

Figure 1

15 pages, 1769 KB  
Article
Asymmetric Conjugate Addition of Ketones to Maleimides Organocatalyzed by a Chiral Primary Amine-Salicylamide
by Alejandro Torregrosa-Chinillach and Rafael Chinchilla
Molecules 2022, 27(19), 6668; https://doi.org/10.3390/molecules27196668 - 7 Oct 2022
Cited by 4 | Viewed by 2254
Abstract
Enantioenriched substituted succinimides are interesting compounds, and their asymmetric organocatalytic synthesis by the conjugated addition of ketones to maleimides has been scarcely explored. This study shows the enantioselective conjugate addition of ketones to maleimides organocatalyzed by a simple primary amine-salicylamide derived from a [...] Read more.
Enantioenriched substituted succinimides are interesting compounds, and their asymmetric organocatalytic synthesis by the conjugated addition of ketones to maleimides has been scarcely explored. This study shows the enantioselective conjugate addition of ketones to maleimides organocatalyzed by a simple primary amine-salicylamide derived from a chiral trans-cyclohexane-1,2-diamine, which provides the desired succinimides in good to excellent yields (up to 98%) and with moderate to excellent enantioselectivities (up to 99%). Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 3893 KB  
Article
Synthesis, Molecular Docking, and Preclinical Evaluation of a New Succinimide Derivative for Cardioprotective, Hepatoprotective and Lipid-Lowering Effects
by Muhammad Imran Qayyum, Sami Ullah, Umer Rashid, Abdul Sadiq, Obaidullah, Mater H. Mahnashi, Osama M. Alshehri, Mohammed M. Jalal, Khalid J. Alzahrani and Ibrahim F. Halawani
Molecules 2022, 27(19), 6199; https://doi.org/10.3390/molecules27196199 - 21 Sep 2022
Cited by 8 | Viewed by 3335
Abstract
Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological [...] Read more.
Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological effects of a new succinimide derivative (Comp-1) on myocardial and liver tissues, and the biochemical effects on selected cardiac biomarkers, hepatic enzymes, and lipid profiles. For this, an initially lethal/toxic dose was determined, followed by a grouping of selected albino rats into five groups (each group had n = 6). The control group received daily oral saline for 8 days. The 5-FU (5-Fluorouracil) group received oral saline daily for 8 days, added with the administration of a single dose of 5-FU (150 mg/kg I.P.) on day 5 of the study. The atenolol group received oral atenolol (20 mg/kg) for 8 days and 5-FU (150 mg/kg I.P.) on day 5 of the protocol. Similarly, two groups of rats treated with test compound (Comp-1) were administered with 5 mg/kg I.P. and 10 mg/kg I.P. for 8 days, followed by 5-FU (150 mg/kg I.P.) on day 5. Toxicity induced by 5-FU was manifested by increases in the serum creatinine kinase myocardial band (CK-MB), troponin I (cTnI) and lactate dehydrogenase (LDH), lipid profile, and selected liver enzymes, including ALP (alkaline phosphatase), ALT (alanine transaminase), AST (aspartate aminotransferase), BT (bilirubin total), and BD (direct bilirubin). These biomarkers were highly significantly decreased after the administration of the mentioned doses of the test compound (5 mg/kg and 10 mg/kg). Similarly, histological examination revealed cardiac and hepatic tissue toxicity by 5-FU. However, those toxic effects were also significantly recovered/improved after the administration of Comp-1 at the said doses. This derivative showed dose-dependent effects and was most effective at a dose of 10 mg/kg body weight. Binding energy data computed via docking simulations revealed that our compound interacts toward the human beta2-adrenergic G protein-coupled receptor (S = −7.89 kcal/mol) with a slight stronger affinity than the calcium channel T-type (S = −7.07 kcal/mol). In conclusion, the histological and biochemical results showed that the test compound (Comp-1) had prominent cardioprotective, hepatoprotective, and lipolytic effects against 5-FU-induced toxicity in the subjected animal model. Full article
Show Figures

Figure 1

Back to TopTop