Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Illustration of the Preparation Process
2.2. Characteristics and Magnetic Properties of NdFe2O4 NPs
2.3. Characteristics and Magnetic protective of the Functional Fabrics
3. Experiment
3.1. Materials
3.2. Synthesis of Nd3+-doped Fe3O4 NPs
3.3. Preparation of Functional Fabrics with Modified NPs
3.4. Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Qi, Y.; Yin, P.; Zhang, L.; Wang, J.; Feng, X.; Wang, K.; Zhao, L.; Sun, X.; Dai, J. Novel microwave absorber of NixMn1-xFe2O4/carbonized chaff (x = 0.3, 0.5 and 0.7) based on biomass. ACS Omega 2019, 4, 12376–12384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Su, M.; Yang, D.-X.; Han, G.; Feng, Y.; Wang, B.; Ma, J.; Liu, C.; Shen, C. Flexible MXene/siver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 2020, 12, 40859–40869. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Long, Z.; Wan, X.; Zhang, J.; He, S.; He, Y. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 2018, 444, 710–720. [Google Scholar] [CrossRef]
- Liang, L.-Y.; Li, Q.-M.; Yan, X.; Feng, Y.-Z.; Wang, Y.-M.; Zhang, H.-B.; Zhou, X.-P.; Liu, C.-T.; Shen, C.-Y.; Xie, X.-L. Multifunctional magnetic Ti3C2Tx MXene/ graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Wang, P.-L.; Ji, G.; Song, J.; Zheng, L.; Zeng, H.; Xu, Z.-J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Zhang, X.; Wang, X.; Wang, H.; Shi, C.; He, F. Enhanced shielding performance of layered carbon fiber composites filled with carbonyl iron and carbon nanotubes in the koch curve fractal method. Molecules 2020, 25, 969. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.-K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B 2018, 149, 188–197. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Zhu, J.-Q.; Yin, P.-G.; Guo, A.-P.; Huang, A.-P.; Guo, L.; Wang, G.-S. Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 2018, 28, 1800761. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490. [Google Scholar] [CrossRef]
- Qiao, M.; Lei, X.; Ma, Y.; Tian, L.; He, X.; Su, K.; Zhang, Q. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.-D.; Li, R.-S.; Ji, S.-R.; Zhao, B.-C.; Cui, T.-R.; Tan, X.-C.; Gou, G.-Y.; Jian, J.-M.; Xu, H.-K.; Qiao, Y.-C.; et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable application. ACS Nano 2021, 15, 8907–8918. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Liang, C.-B.; Wang, L.; Qiu, H.; Gu, H.-B.; Kong, J.; Gu, J.-W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 8, 107698. [Google Scholar] [CrossRef]
- Sridhar, V.; Lee, I.; Park, H. Metal organic frameworks derived Fe-N-C nanostructures as high-performance electrodes for sodium ion batteries and electromagnetic interference (EMI) shielding. Molecules 2021, 26, 1018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Zhang, K.; Yan, F.; Zhu, C.; Yuan, H.; Zhang, X.; Chen, Y. Interface-induced enhanced electromagnetic wave absorption property of metal-organic frameworks wrapped by graphene sheets. J. Alloys Compd. 2019, 780, 718–726. [Google Scholar] [CrossRef]
- Giannakoudakis, D.-A.; Bandosz, T.-J. Building MOF nanocomposites with oxidized graphitic carbon nitride nanospheres: The effect of framework geometry on the structural heterogeneity. Molecules 2019, 24, 4529. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-L.; Wu, Y.-L.; Zhang, S.-R.; Chen, Z.; Li, Y.-G. NdFe2O4 nanoparticles: Synthesis, characterization and magnetic properties. Sci. Adv. Mater. 2020, 12, 810–814. [Google Scholar] [CrossRef]
- Chen, X.; Shi, T.; Wu, G.; Lu, Y. Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci. 2020, 572, 227–235. [Google Scholar] [CrossRef]
- Adam, A.; Parkhomenko, K. Orienting the pore morphology of core-shell magnetic mesoporous silica with the sol-gel temperature. influence on MRI and magnetic hyperthermia properties. Molecules 2021, 26, 971. [Google Scholar] [CrossRef]
- Wei, Q.; Pei, S.; Qian, X.; Liu, H.; Liu, Z.; Zhang, W.; Zhou, T.; Zhang, Z.; Zhang, X.; Cheng, H.-M. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411. [Google Scholar] [CrossRef]
- Ji, B.; Fan, S.-W.; Kou, S. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2TX MXene/polymer films. Carbon 2021, 181, 130–142. [Google Scholar] [CrossRef]
- Zirak, M.; Abdollahiyan, A.; Eftekhari, S.-B.; Saraei, M. Carboxymethyl cellulose coated Fe3O4@SiO2 core-shell magnetic nanoparticles for methylene blue removal: Equilibrium, kinetic, and thermodynamic studies. Cellulose 2017, 25, 503–515. [Google Scholar] [CrossRef]
- Ebenezer, C.N.; Peter, A.A. Multifunctional magnetic oxide nanoparticle (MNP) core-shell: Review of synthesis, structural studies and application for wastewater treatment. Molecules 2020, 25, 4110. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mei, J.; Zhang, C.; Zhang, J.; Shi, R. Synthesis and magnetic properties of shuriken-like nickel nanoparticles. J. Mater. Sci. Technol. 2018, 34, 836–841. [Google Scholar] [CrossRef]
- Iqbal, A.; Symbyal, P.; Koo, C.-M. 2D MXenes for electromagnetic shielding: A review. Adv. Func. Mater. 2020, 30, 2000833. [Google Scholar] [CrossRef]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.-B.; Pasha, S.-K.-K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites. Compos. Part A-Appl. S 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Lei, Z.-M.; Tian, D.-K.; Liu, X.-B.; Wei, J.-H.; Rajavel, K.; Zhao, T.; Hu, Y.-G. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 2021, 424, 130365. [Google Scholar] [CrossRef]
- Jia, L.-C.; Yan, D.-X.; Liu, X.-F.; Ma, R.-J.; Wu, H.-Y.; Li, Z.-M. Highly efficient and reliable transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Yan, D.; Duan, H.; Zhao, G.; Liu, Y. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interface 2018, 10, 19143–19152. [Google Scholar] [CrossRef]
- Duan, H.; Zhu, H.; Gao, J.; Yan, D.; Dai, K.; Yang, Y.; Zhao, G.; Liu, Y.; Li, Z. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.-I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Gupta, S.; Tai, N. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187. [Google Scholar] [CrossRef]
- Adebayo, L.-L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Wahaab, F.-A.; Ayinla, R.-T.; Ali, H. Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram. Int. 2020, 46, 1249–1268. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Li, H.; Jing, X.; Zhang, Q.; Feng, P.-Y.; Ping, H.; Liu, Y.-J. Superhydrophobic cellulose nanofibril/silica fiber/Fe3O4 nanocomposite aerogel for magnetically driven selective oil absorption. Cellulose 2020, 27, 8909–8922. [Google Scholar] [CrossRef]
- Luo, X.; Li, H.-F.; Deng, D.-D.; Zheng, L.; Wu, Y.-B.; Luo, W.-J.; Zhang, M.-J.; Gong, R.-Z. Preparation and excellent electromagnetic absorption properties of dendritic structured Fe3O4@PANI composites. J. Alloys Compd. 2022, 891, 161922. [Google Scholar] [CrossRef]
- Xu, L.; Zhong, W.-D.; Yang, C.; Zhao, R.; Wu, J.; Li, X.; Yang, N. Tailoring interfacial electron redistribution of Ni/Fe3O4 electrocatalysts for superior overall water splitting. J. Energy Chem. 2022, 73, 330–338. [Google Scholar] [CrossRef]
- Bui, D.-P.; Nguyen, T.-D.; Vo, T.-T.-L.; Cao, T.-M.; You, S.-J.; Pham, V.-V. SnO2-x nanoparticles decorated on graphitic carbon nitride as S-scheme photocatalysts for activation of peroxymonosulfate. ACS Appl. Nano Mater. 2021, 4, 9333–9343. [Google Scholar] [CrossRef]
- Almessiere, M.-A.; Khan, F.-A.; Auwal, I.-A.; Sertkol, M.; Tashkandi, N.; Rehan, I.; Baykal, A. Green synthesis, characterization and anti-cancer capability of Co0.5Ni0.5Nd0.02Fe1.98O4 nanocomposites. Arab. J. Chem. 2022, 15, 103564. [Google Scholar] [CrossRef]
- Sahar, B.-K.; Samuel, R.-J.; Sonia, S.; Stephen, E.-H.; Andrew, D.-W. Structure-based virtual screening, synthesis and biological evaluation of potential FAK-FAT domain inhibitors for treatment of metastatic cancer. Molecules 2020, 25, 3488. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, F.; Wang, H.; Zhou, B.; Hao, S. Amine-promoted Ru1/Fe3O4 encapsulated in hollow periodic mesoporous organosilica sphere as a highly selective and stable catalyst for aqueous levulinic acid hydrogenation. J. Colloid Interface Sci. 2021, 581, 167–176. [Google Scholar] [CrossRef]
- Li, P.-L.; Zhang, S.; Zhu, Y.; Fan, H.; Ma, W.; Dong, P.; Wang, W.-Z.; Liu, T. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 2021, 9, 2086–2094. [Google Scholar] [CrossRef]
- Sandhiya, M.; Subramani, K.; Sathish, M. Augmenting the electrochemical performance of NiMn2O4 by doping of transition metal ions and compositing with rGO. J. Colloid Interface Sci. 2021, 598, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Liu, Q.; Zhao, J. In situ visualization of hierarchical agglomeration growth during electrochemical deposition of Cu nanocrystals in an open ionic liquid cell. Mater. Today Nano 2022, 18, 2–9. [Google Scholar] [CrossRef]
- Ma, J.; Wang, T.; Yu, S.; Zhang, Y.; Lyu, B. Preparation and application of dialdehyde nanocellulose reinforced jatropha oil based polymer emulsions as leather fatliquors. Cellulose 2020, 28, 331–346. [Google Scholar] [CrossRef]
- Elshypany, R.; Selim, H.; Zakaria, K.; Houstafa, A.-H. Magnetic ZnO crystal nanoparticle growth on reduced graphene oxide for enhanced photocatalytic performance under visible light irradiation. Molecules 2021, 26, 2269. [Google Scholar] [CrossRef] [PubMed]
- Kuwa, M.; Harada, M.; Sato, R.; Teranishi, T. Ligand-stabilized CoO and NiO nanoparticles for spintronic devices with antiferromagnetic insulators. ACS Appl. Nano Mater. 2020, 3, 2745–2755. [Google Scholar] [CrossRef]
- Zeynizadeh, B.; Mohammadzadeh, I.; Shokri, Z.; Ali, H.-S. Synthesis and characterization of NiFe2O4@Cu nanoparticles as a magnetically recoverable catalyst for reduction of nitroarenes to arylamines with NaBH4. J. Colloid Interface Sci. 2017, 500, 285–293. [Google Scholar] [CrossRef]
- Joanna, O.; Jadwiga, S.-L.; Anetta, W.; Anna, A.; Katarzyna, S.-C.; Jakub, Z.; Teofil, J. Antimicrobial activity and barrier properties against UV radiation of alkaline and enzymatically treated linen woven fabrics coated with inorganic hybrid material. Molecules 2020, 25, 5701. [Google Scholar] [CrossRef]
- Ding, K.; Liu, Z.; Xiao, C.-F. Fabrication of a novel one-step coating hyper-hydrophobic fluorine-free TiO2 decorated hollow composite membrane for use in longer-term VMD with enhanced flux, rejection, anti-wetting and anti-fouling performances. Nanoscale 2021, 13, 12342–12355. [Google Scholar] [CrossRef]
- Zhang, Y.; Fulajtárová, K.; Kub, M.; Mazur, M.; Shamzhy, M.; Hronec, M. Controlling dispersion and accessibility of Pd nanoparticles via 2D-to-3D zeolite transformation for shape-selective catalysis: Pd@MWW case. Mater. Today Nano 2019, 8, 100056. [Google Scholar] [CrossRef]
- Li, G.-H.; Ma, S.-P. High-quality ferromagnet Fe3GeTe2 for high-efficiency electromagnetic wave absorption and shielding with wideband radar cross section reduction. ACS Nano 2022, 16, 7861–7879. [Google Scholar] [CrossRef]
- Sun, S.; Wang, D.; Feng, Z.; Tan, W. Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer. Nanoscale 2020, 12, 22289–22297. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Gao, Y.; Fang, C.-F.; Wu, A.-M.; Dong, X.-L.; Kim, B.-S.; Byun, J.-H.; Zhang, G.-F. Spray granulation of Fe and C nanoparticles and their impedance match for microwave absorption. J. Mater. Sci. Technol. 2018, 34, 496–502. [Google Scholar] [CrossRef]
- Zhang, C.-J.; McKeon, L.; Kremer, M.-P.; Park, S.-H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileain, C.-O.; McEvoy, N.; Nerl, H.-C. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.-H.; Wei, C.-Y.; Tang, J.-C.; Yan, J.-H. Tensile stress-gated electromagnetic interference shielding fabrics with real-time adjustable shielding efficiency. ACS Sustainable Chem. Eng. 2021, 9(42), 13999–14005. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Z.; Zou, Y.; Chen, H.; Guo, S.; Yang, Q.; Chen, L. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions. J. Mater. Sci. Technol. 2020, 43, 144–153. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, Y.; Yang, P.; Zheng, W.; Li, N.; Bai, J.; Zhang, Y.; Li, K.; Wang, D. Enhanced electromagnetic wave absorption properties of ultrathin MnO2 nanosheet-decorated spherical flower-shaped carbonyl iron powder. Molecules 2022, 27, 135. [Google Scholar] [CrossRef]
- Yuan, B.-G.; Li, J.; Xia, M.-M.; Zhang, Y.; Lei, R.-Y.; Zhao, P.; Li, X. Synthesis and electrochemical performance of hollow-structured NiO + Ni nanofibers wrapped by graphene as anodes for Li-ion batteries. Nanotechnology 2021, 32, 335603. [Google Scholar] [CrossRef]
- Haider, W.-A.; Tahir, M.; He, L.; Mirza, H.-A.; Zhu, R.; Han, Y.; Mai, L. Structural engineering and coupling of two-dimensional transition metal compounds for micro-supercapacitor electrodes. ACS Cent. Sci. 2020, 6, 1901–1915. [Google Scholar] [CrossRef]
- Han, M.; Shuck, C.-E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C.-M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Xu, C.; Yao, W.; Wen, J.; Wei, Q.; Li, Y.; Feng, X. Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics. Molecules 2023, 28, 3175. https://doi.org/10.3390/molecules28073175
Song X, Xu C, Yao W, Wen J, Wei Q, Li Y, Feng X. Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics. Molecules. 2023; 28(7):3175. https://doi.org/10.3390/molecules28073175
Chicago/Turabian StyleSong, Xiaolei, Congzhu Xu, Wendong Yao, Jieyun Wen, Qufu Wei, Yonggui Li, and Xinqun Feng. 2023. "Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics" Molecules 28, no. 7: 3175. https://doi.org/10.3390/molecules28073175
APA StyleSong, X., Xu, C., Yao, W., Wen, J., Wei, Q., Li, Y., & Feng, X. (2023). Study on the Controllable Preparation of Nd3+ Doped in Fe3O4 Nanoparticles for Magnetic Protective Fabrics. Molecules, 28(7), 3175. https://doi.org/10.3390/molecules28073175