Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = subsurface chlorophyll maximum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 12068 KB  
Article
Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence
by Irina Catianis, Mihaela Mureșan, Tatiana Begun, Adrian Teacă, Andra Bucșe, Florina Rădulescu, Florina Macau, Naliana Lupașcu, Daniela Florea, Florentina Fediuc, Sorin Ujeniuc, Radu Seremet, Silvia Ise, Iulian Andreicovici and Ana Bianca Pavel
J. Mar. Sci. Eng. 2026, 14(1), 84; https://doi.org/10.3390/jmse14010084 - 31 Dec 2025
Viewed by 407
Abstract
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to [...] Read more.
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to quantify nutrients, chlorophyll-a, TOC, and TN. Dissolved metals and PAHs were measured in seawater, while surface sediments were analyzed for CaCO3, TOC, trace metals, and γ-emitting radionuclides. Multivariate statistics (PCA/FA) were used to resolve the dominant environmental controls. Summer stratification was characterized by the bottom-layer maxima of PO43−, SiO44−, and NH4+ and a pronounced subsurface chlorophyll-a maximum at 12–16 m. Surface-water Σ16PAH ranged from 134 to 347 ng L−1 and was dominated by low-molecular-weight compounds, with episodic nearshore enrichment in high-molecular-weight species. In sediments, CaCO3 ranged from 7.6 to 29.9% and TOC from 0.11 to 0.96%. Trace metals were generally low. Pb and Hg peaked at nearshore station S23, whereas mean Ni (38.88 ppm) slightly exceeded the 35 ppm guideline, consistent with natural Fe/Mn-oxide association. PCA/FA identified a terrigenous axis (Fe-Al-Ti-V-Ni-Cr), a carbonate axis (CaCO3; Sr where available), and an anthropogenic factor (Pb, Hg, HMW-PAHs). γ-spectrometry provided a compatible radiometric baseline that supports the multi-proxy interpretation. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

23 pages, 9600 KB  
Article
Vertical Monitoring of Chlorophyll-a and Phycocyanin Concentrations High-Latitude Inland Lakes Using Sentinel-3 OLCI
by Jinpeng Shen, Zhidan Wen, Kaishan Song, Hui Tao, Shizhuo Liu, Zhaojiang Yan, Chong Fang and Lili Lyu
Remote Sens. 2026, 18(1), 139; https://doi.org/10.3390/rs18010139 - 31 Dec 2025
Viewed by 305
Abstract
Massive phytoplankton blooms threaten lake ecosystems, causing significant ecological and socio-economic damage. While remote sensing is vital for monitoring, the vertical stratification of algae influences light propagation and distorts remote sensing reflectance signals. This effect is particularly understudied in high-latitude lakes, leaving a [...] Read more.
Massive phytoplankton blooms threaten lake ecosystems, causing significant ecological and socio-economic damage. While remote sensing is vital for monitoring, the vertical stratification of algae influences light propagation and distorts remote sensing reflectance signals. This effect is particularly understudied in high-latitude lakes, leaving a gap in understanding phytoplankton biomass patterns. To address this, our study investigated three high-latitude water bodies: Lake Hulun, Fengman Reservoir, and Lake Khanka. We collected water samples from three depths based on total and euphotic zone depth and developed layer-specific inversion models for chlorophyll-a (Chal) and phycocyanin (PC) using a random forest algorithm. These models demonstrated strong performance and were applied to Sentinel-3 OLCI imagery from 2016–2024. Our results show that Chla generally decreases exponentially with depth, whereas PC exhibits a Gaussian-like vertical distribution with a pronounced subsurface maximum at approximately 1 m. In addition, a significant positive correlation between Chla and PC was observed in surface waters. In Lake Khanka, the northern basin exhibited a significant interannual increase in phytoplankton biomass. At 3 m, PC correlated negatively with turbidity and responded strongly to cyanobacterial blooms, while organic suspended matter correlated positively with Chla. This work establishes a robust framework for multilayer water quality monitoring in high-latitude lakes, providing critical insights for eutrophication management and cyanobacterial bloom early warning. Full article
(This article belongs to the Special Issue Intelligent Remote Sensing for Wetland Mapping and Monitoring)
Show Figures

Figure 1

17 pages, 11436 KB  
Technical Note
Variation in SCM Supply Effects as Reflected by Coupling Relationship with Pycnocline
by Jie Yang, Yunzhao Han, Meng Hou and Lixing Fang
Remote Sens. 2025, 17(19), 3283; https://doi.org/10.3390/rs17193283 - 24 Sep 2025
Viewed by 507
Abstract
The subsurface chlorophyll maximum (SCM) is widely observed in the ocean and is often associated with phytoplankton biomass, where aggregated phytoplankton leads to increased chlorophyll concentrations in the water column. Pycnocline facilitates biomass accumulation by trapping nutrients and providing favorable physical conditions. However, [...] Read more.
The subsurface chlorophyll maximum (SCM) is widely observed in the ocean and is often associated with phytoplankton biomass, where aggregated phytoplankton leads to increased chlorophyll concentrations in the water column. Pycnocline facilitates biomass accumulation by trapping nutrients and providing favorable physical conditions. However, comprehensive studies remain lacking regarding the coupling mechanism between pycnocline and SCM and the extent to which this relationship affects SCM dynamics through biomass accumulation. To investigate the seasonal coupling between the pycnocline and SCM, we established a linear regression model and quantified their relationship using a coupling coefficient, which describes the seasonal transition of SCM in terms of biomass accumulation. The results were validated using BGC-Argo data. Our findings reveal that SCM and the pycnocline consistently exhibit periodic coupling patterns within seasonal cycles, and in the Indian Ocean and the northwestern Pacific, SCM is predominantly biomass-driven during seasons with strong pycnocline coupling (the coupling coefficient ranges between 0.5 and 0.7). In contrast, this coupling weakens significantly in oligotrophic regions (the coupling coefficient remained below 0.3 in more than half of the months studied), where SCM no longer exhibits a clear overlap with peaks in particulate backscattering (BBP). Full article
Show Figures

Figure 1

21 pages, 2319 KB  
Article
Subsurface Banding of Poultry Manure Enhances Photosynthetic Efficiency, Yield, and Nutrient Uptake in Buckwheat
by Sina Fallah, Hossein Abedini Dastgerdi, Hans-Peter Kaul and Aliyeh Salehi
Plants 2025, 14(17), 2700; https://doi.org/10.3390/plants14172700 - 29 Aug 2025
Cited by 4 | Viewed by 977
Abstract
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) [...] Read more.
Manure application may improve plant growth, yield, and ecological sustainability. This study investigates optimized organic fertilizer application methods for enhancing buckwheat (Fagopyrum esculentum) productivity in semi-arid conditions. Treatments include broadcasting (Br) and subsurface banding (Ba) of poultry (PM) and cattle (CM) manure and foliar spraying (S) of manure extracts (1:5 and 1:10 ratios), urea fertilizer (UF), and a control. Subsurface-banded poultry manure (BaPM) maximized chlorophyll b (4.0 µg/mL), carotenoids (2.30 µmol/mL), anthocyanin (0.02 µmol/mL), leaf area index (2.03), seed nitrogen (3.4%), and spikes per plant (17). BaPM achieved the highest seed yield (646 kg/ha), comparable to BrPM, BaCM, and SPM(1:5). The maximum seed phosphorus content (0.43%) was observed in the BaPM, BrPM, and SCM(1:10) treatments. Dry matter peaked under UF (4870 kg/ha) and BaPM (4641 kg/ha). Banding placement improved nutrient uptake by enhancing root zone retention, while foliar poultry extract (1:5) mitigated phosphorus deficiency. These findings demonstrate that integrating certain manure types with targeted application methods—particularly subsurface banding of poultry manure—optimizes nutrient use efficiency, crop performance, and environmental sustainability in buckwheat cultivation. Full article
Show Figures

Figure 1

21 pages, 18678 KB  
Article
Response of Subsurface Chlorophyll Maximum Depth to Evolution of Mesoscale Eddies in Kuroshio–Oyashio Confluence Region
by Ziwei Chuang, Chunling Zhang, Jiahui Fan and Huangxin Yang
J. Mar. Sci. Eng. 2025, 13(1), 24; https://doi.org/10.3390/jmse13010024 - 28 Dec 2024
Viewed by 1514
Abstract
The subsurface chlorophyll maximum depth (SCMD) is an indicator of the spatial activity of marine organisms and changes in the ecological environment. Ubiquitous mesoscale eddies are among the important factors regulating the Kuroshio–Oyashio confluence region. In this study, we use satellite altimeter observations [...] Read more.
The subsurface chlorophyll maximum depth (SCMD) is an indicator of the spatial activity of marine organisms and changes in the ecological environment. Ubiquitous mesoscale eddies are among the important factors regulating the Kuroshio–Oyashio confluence region. In this study, we use satellite altimeter observations and high-resolution reanalysis data to explore seasonal variations in the SCMD and its responses to different types of eddies based on methods of composite averaging and normalization. The results show that variations in the SCMD induced by the evolution of the eddies were prominent in the summer and autumn. The monopoles of the SCMD exhibited internally shallow and externally deep features in the cyclonic eddies (CEs), while the contrary trend was observed in the anticyclonic eddies (ACEs). The SCMD was positively correlated with the intensity of the eddies and sea surface temperature, and was negatively correlated with the depth of the mixed layer. These correlations were more pronounced in the CEs (summer) and ACEs (autumn). Both the CEs and ACEs prompted the westward transport of chlorophyll-a (Chl-A), where ACEs transported it over a longer distance than the CEs. Full article
Show Figures

Figure 1

21 pages, 5093 KB  
Article
Bio-Optical Response of Phytoplankton and Coloured Detrital Matter (CDM) to Coastal Upwelling in the Northwest South China Sea
by Guifen Wang, Wenlong Xu, Shubha Sathyendranath, Wen Zhou and Wenxi Cao
Remote Sens. 2025, 17(1), 44; https://doi.org/10.3390/rs17010044 - 26 Dec 2024
Viewed by 1062
Abstract
To examine the bio-optical response to coastal upwelling, we measured inherent optical properties (IOPs) and biogeochemical parameters simultaneously off Hainan Island in the northwest part of the South China Sea (SCS) during late summer 2013. Bio-optical relationships between IOPs and phytoplankton were used [...] Read more.
To examine the bio-optical response to coastal upwelling, we measured inherent optical properties (IOPs) and biogeochemical parameters simultaneously off Hainan Island in the northwest part of the South China Sea (SCS) during late summer 2013. Bio-optical relationships between IOPs and phytoplankton were used for calculating vertical profiles of the total chlorophyll a concentration (Chl-a) and the absorption by coloured detrital matter (CDM). These bio-optical properties, which showed distinct horizontal and vertical distributions across the continental shelf, were strongly influenced by upwelling processes, as well as the shelf topography. Phytoplankton biomass and CDM absorption in surface waters showed much higher values along the coast, with their spatial distributions related to topographic variability. Vertical distributions of phytoplankton were characterised by a subsurface chlorophyll maximum (SCM) layer. The strongest SCM (Chl-a = 4.22 mg m−3) was observed at 24 m depth in coastal waters near the northeast cape of Hainan Island. The depth of the SCM varied between 16 and 60 m at different stations, appearing to coincide with the isotherm of 22 °C. The SCM depth was inversely correlated with the magnitude of the SCM. Different shapes of Chl-a profiles were observed, which suggested that the vertical distributions of phytoplankton biomass were driven by different environmental factors. Elevated concentrations of CDM were mainly observed near the bottom, which suggest that the benthic nepheloid layer may be an important source of detrital material. The relationship between the absorption coefficient of CDM at 443 nm, aCDM(443), and Chl-a exhibited distinct differences between waters in upper ocean and in bottom layers, with the threshold depth being modulated by shelf topography. Our results highlight the utility of bio-optical observations with high resolution for better understanding the coupling between physical forcing and biogeochemical variability. Full article
Show Figures

Figure 1

20 pages, 18277 KB  
Article
Observations of Optical Properties and Chlorophyll-a Concentration in Qiandao Lake Using Shipborne Lidar
by Xuan Sang, Zhihua Mao, Youzhi Li, Xianliang Zhang, Chang Han, Longwei Zhang and Haiqing Huang
Remote Sens. 2024, 16(24), 4663; https://doi.org/10.3390/rs16244663 - 13 Dec 2024
Cited by 1 | Viewed by 1921
Abstract
Lidar technology is increasingly applied to the inversion of oceanic biological parameters and optical properties based on empirical and semi-empirical bio-optical models. However, these models cannot be directly applied to inland waters due to their complex composition, and research on the biological parameters [...] Read more.
Lidar technology is increasingly applied to the inversion of oceanic biological parameters and optical properties based on empirical and semi-empirical bio-optical models. However, these models cannot be directly applied to inland waters due to their complex composition, and research on the biological parameters and optical properties of inland waters remains limited. In this study, the Fernald method was employed to retrieve the vertical distribution of optical properties in Qiandao Lake for the first time using shipborne lidar data obtained in June 2019. By quantifying the depth-resolved optical contributions of biological components, the vertical distributions of chlorophyll-a concentration were mapped with greater precision. The lidar-estimated optical properties exhibited characteristic spatiotemporal distributions, which were closely related to water quality. At the inflow of Xin’an River, the attenuation and scattering coefficient showed a gradual increase with depth. At the north–south-oriented reservoir area and the outflow of Qiandao Lake, an apparently continuous subsurface layer with the maximum signal occurred at approximately 3.5 m. The vertical distributions of chlorophyll-a profiles were consistently classified as subsurface chlorophyll maxima, with the maximum value of chlorophyll-a concentration fluctuating between 4 and 12 μg/L. The subsurface phytoplankton layer was observed at water depths ranging from 1.5 to 3.5 m, with a thickness of 3 to 6 m. Furthermore, the influences of lidar ratio Sp(z) and reference value bbp(zm) were discussed as significant sources of inversion error in the Fernald method. These results indicate that lidar technology holds great potential for the long-term monitoring of lakes. Full article
(This article belongs to the Special Issue Oceanographic Lidar in the Study of Marine Systems)
Show Figures

Figure 1

24 pages, 6521 KB  
Article
Small-Scale Biophysical Interactions and Dinophysis Blooms: Case Study in a Strongly Stratified Chilean Fjord
by Patricio A. Díaz, Iván Pérez-Santos, Ángela M. Baldrich, Gonzalo Álvarez, Camila Schwerter, Michael Araya, Álvaro Aravena, Bárbara Cantarero, Pamela Carbonell, Manuel Díaz, Humberto Godoy and Beatriz Reguera
J. Mar. Sci. Eng. 2024, 12(10), 1716; https://doi.org/10.3390/jmse12101716 - 29 Sep 2024
Cited by 1 | Viewed by 1592
Abstract
Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTXs) produced by endemic species of Dinophysis, mainly D. acuta and D. acuminata, threaten public health and negatively impact the shellfish industry worldwide. Despite their socioeconomic impact, research on the environmental drivers of DSP [...] Read more.
Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTXs) produced by endemic species of Dinophysis, mainly D. acuta and D. acuminata, threaten public health and negatively impact the shellfish industry worldwide. Despite their socioeconomic impact, research on the environmental drivers of DSP outbreaks in the Chilean fjords is scanty. From 22 to 24 March 2017, high spatial–temporal resolution measurements taken in Puyuhuapi Fjord (Northern Patagonia) illustrated the short-term (hours, days) response of the main phytoplankton functional groups (diatoms and dinoflagellates including toxic Dinophysis species) to changes in water column structure. Results presented here highlight the almost instantaneous coupling between time–depth variation in density gradients, vertical shifts of the subsurface chlorophyll maximum, and its evolution to a buoyancy-driven thin layer (TL) of diatoms just below the pycnocline the first day. A second shallower TL of dinoflagellates, including Dinophysis acuta, was formed on the second day in a low-turbulence lens in the upper part of the pycnocline, co-occurring with the TL of diatoms. Estimates of in situ division rates of Dinophysis showed a moderate growth maximum, which did not coincide with the cell density max. This suggests that increased cell numbers resulted from cell entrainment of off-fjord populations combined with in situ growth. Toxin profiles of the net tow analyses mirrored the dominance of D. acuminata/D. acuta at the beginning/end of the sampling period. This paper provides information about biophysical interactions of phytoplankton, with a focus on Dinophysis species in a strongly stratified Patagonian fjord. Understanding these interactions is crucial to improv predictive models and early warning systems for toxic HABs in stratified systems. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

25 pages, 24325 KB  
Article
The Investigation of the Response Mechanism of SST and Chlorophyll to Super Typhoon “Rey” in the South China Sea
by Shichao Wang, Jun Song, Junru Guo, Yanzhao Fu, Yu Cai and Linhui Wang
Water 2024, 16(4), 603; https://doi.org/10.3390/w16040603 - 18 Feb 2024
Viewed by 2555
Abstract
As one of the most significant disturbance sources in the upper marine environment of the South China Sea, tropical cyclones (typhoons) serve as a typical research subject for investigating the energy transfer process between the ocean and atmosphere. Utilizing satellite remote sensing data [...] Read more.
As one of the most significant disturbance sources in the upper marine environment of the South China Sea, tropical cyclones (typhoons) serve as a typical research subject for investigating the energy transfer process between the ocean and atmosphere. Utilizing satellite remote sensing data and focusing on Typhoon Rey No. 22’s transit event in 2021, this study quantitatively analyzes typhoon-induced energy input through heat pumping and cold suction at both surface and subsurface levels of the ocean. Additionally, it explores the response characteristics and feedback mechanisms of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a) in the South China Sea to typhoon events. The research results show that the SST variation along the typhoon track displayed an asymmetric pattern, with a more pronounced warming on the right side and a cold anomaly lasting for 3–5 days on the left side. The subsurface warm anomaly dominated on the right side, showing a maximum temperature difference of 1.54 °C, whereas Ekman suction-induced upwelling led to cooling effects both at the subsurface and surface level on the left side, resulting in a maximum temperature difference of −3.28 °C. During the typhoon event, there was a significant decrease in sea surface heat flux, reaching 323.36 W/m2, accompanied by corresponding changes in SST due to processes such as upwelling, seawater mixing, and air–sea heat transfer dynamics where anomalies arising from oceanic dynamic processes and exchange through sea surface heat flux contributed equally. Furthermore, strong suction-induced upwelling during the typhoon influenced chlorophyll concentration within the central and western regions of the South China Sea (13.5° N–16.5° N, 111° E–112.5° E), resulting in significant enhancement and reaching its peak value at approximately 0.65 mg/L. The average chlorophyll concentration increased by approximately 0.31 mg/L. Full article
Show Figures

Figure 1

20 pages, 12203 KB  
Article
The Seasonality of Eddy-Induced Chlorophyll-a Anomalies in the Kuroshio Extension System
by Tongyu Wang, Shuwen Zhang, Fajin Chen and Luxing Xiao
Remote Sens. 2023, 15(15), 3865; https://doi.org/10.3390/rs15153865 - 3 Aug 2023
Cited by 3 | Viewed by 2248
Abstract
The Kuroshio Extension (KE) System exhibits highly energetic mesoscale phenomena, but the impact of mesoscale eddies on marine ecosystems and biogeochemical cycling is not well understood. This study utilizes remote sensing and Argo floats to investigate how eddies modify surface and subsurface chlorophyll-a [...] Read more.
The Kuroshio Extension (KE) System exhibits highly energetic mesoscale phenomena, but the impact of mesoscale eddies on marine ecosystems and biogeochemical cycling is not well understood. This study utilizes remote sensing and Argo floats to investigate how eddies modify surface and subsurface chlorophyll-a (Chl-a) concentrations. On average, cyclones (anticyclones) induce positive (negative) surface Chl-a anomalies, particularly in winter. This occurs because cyclones (anticyclones) lift (deepen) isopycnals and nitrate into (out of) the euphotic zone, stimulating (depressing) the growth of phytoplankton. Consequently, cyclones (anticyclones) result in greater (smaller) subsurface Chl-a maximum (SCM), depth-integrated Chl-a, and depth-integrated nitrate. The positive (negative) surface Chl-a anomalies induced by cyclones (anticyclones) are mainly located near (north of) the main axis of the KE. The second and third mode represent monopole Chl-a patterns within eddy centers corresponding to either positive or negative anomalies, depending on the sign of the principal component. Chl-a concentrations in cyclones (anticyclones) above the SCM layer are higher (lower) than the edge values, while those below are lower (higher), regardless of winter variations. The vertical distributions and displacements of Chl-a and SCM depth are associated with eddy pumping. In terms of frequency, negative (positive) Chl-a anomalies account for approximately 26% (18%) of the total cyclones (anticyclones) across all four seasons. The opposite phase suggests that nutrient supply resulting from stratification differences under convective mixing may contribute to negative (positive) Chl-a anomalies in cyclone (anticyclone) cores. Additionally, the opposite phase can also be attributed to eddy stirring, trapping high and low Chl-a, and/or eddy Ekman pumping. Based on OFES outputs, the seasonal variation of nitrate from winter to summer primarily depends on the effect of vertical mixing, indicating that convective mixing processes contribute to an increase (decrease) in nutrients during winter (summer) over the KE. Full article
Show Figures

Figure 1

14 pages, 3724 KB  
Article
Trophic Positions of Sympatric Copepods across the Subpolar Front of the East Sea during Spring: A Stable Isotope Approach
by Dong-Hoon Im and Hae-Lip Suh
Water 2023, 15(3), 416; https://doi.org/10.3390/w15030416 - 19 Jan 2023
Cited by 1 | Viewed by 2720
Abstract
We investigated the trophic relationship between particulate organic matter (POM) and sympatric copepods within the epipelagic zone (~200 m depth) in the East Sea during spring based on stable isotope analysis (SIA). The SIA indicated that interspecific differences in the prey size and [...] Read more.
We investigated the trophic relationship between particulate organic matter (POM) and sympatric copepods within the epipelagic zone (~200 m depth) in the East Sea during spring based on stable isotope analysis (SIA). The SIA indicated that interspecific differences in the prey size and vertical segregation of feeding migration range among copepods may promote niche partitioning among sympatric copepods in each region of the subpolar front (SPF). Additionally, our results showed remarkable differences in the copepod community structure and resource utilization across the SPF. The south region of the East Sea showed higher species richness of copepods than the north region, while copepods that fed mainly on POM in the surface and subsurface chlorophyll maximum layers showed smaller body sizes in the south region. These results revealed that the food chain between primary producers and higher trophic levels was longer in the south region than in the north region. Additionally, δ13C and δ15N values of copepods increased gradually with the body size increase whereas δ15N values in the north region showed the reverse trend. Latter results could be attributed to the consumption of deep-layer POM in small copepods. Therefore, we suggest that northward shifts in the distribution of copepods under global warming may decrease energy efficiency in the pelagic ecosystem of the East Sea. Full article
(This article belongs to the Special Issue Application of Stable Isotopes in Marine Ecosystems)
Show Figures

Figure 1

20 pages, 36987 KB  
Article
Investigating the Effects of Super Typhoon HAGIBIS in the Northwest Pacific Ocean Using Multiple Observational Data
by Jonghyeok Jeon and Takashi Tomita
Remote Sens. 2022, 14(22), 5667; https://doi.org/10.3390/rs14225667 - 9 Nov 2022
Cited by 6 | Viewed by 3984
Abstract
Various multi-source observational platforms have enabled the exploration of ocean dynamics in the Northwest Pacific Ocean (NPO). This study investigated daily oceanic variables in response to the combined effect of the 2019 super typhoon HAGIBIS and the Kuroshio current meander (KCM), which has [...] Read more.
Various multi-source observational platforms have enabled the exploration of ocean dynamics in the Northwest Pacific Ocean (NPO). This study investigated daily oceanic variables in response to the combined effect of the 2019 super typhoon HAGIBIS and the Kuroshio current meander (KCM), which has caused economic, ecological, and climatic changes in the NPO since August 2017. During HAGIBIS, the six-hourly wind speed data estimated a wind stress power (Pw) which strengthened around the right and left semicircles of the typhoon, and an Ekman pumping velocity (EPV) which intensified at the center of the typhoon track. As a result, firstly, the sea temperature (ST) decreased along a boundary with a high EPV and a strong cyclonic eddy area, and the mixed layer depth (MLD) was shallow. Secondly, a low sea salinity (SS) concentration showed another area where heavy rain fell on the left side of the typhoon track. Phytoplankton bloom (PB) occurred with a large concentration of chlorophyll a (0.641 mg/m3) over a wide extent (56,615 km2; above 0.5 mg/m3) after one day of HAGIBIS. An analysis of a favorable environment of the PB’s growth determined the cause of the PB, and a shift of the subsurface chlorophyll maximum layer (SCML; above 0.7 mg/m3) was estimated by comprehensive impact analysis. This study may contribute to understanding different individually-estimated physical and biological mechanisms and predicting the recurrence of ocean anomalies. Full article
(This article belongs to the Special Issue Remote Sensing of the Sea Surface and the Upper Ocean)
Show Figures

Figure 1

16 pages, 4507 KB  
Article
Wood Ash Additive for Performance Improvement of Gelatin-Based Slow-Release Urea Fertilizer
by Eefa Manzoor, Zahid Majeed, Shamyla Nawazish, Wasim Akhtar, Sofia Baig, Ayesha Baig, Syeda Manahil Fatima Bukhari, Qaisar Mahmood, Zainub Mir and Shahida Shaheen
Agriculture 2022, 12(10), 1743; https://doi.org/10.3390/agriculture12101743 - 21 Oct 2022
Cited by 6 | Viewed by 4727
Abstract
Urea is a crucial nutrient for plant growth, but because of its substantial losses due to nitrification, ammonification, and subsurface leaching, there is currently a push to reduce these losses. Urea is frequently uploaded and trapped in gelatin. In this research, the improvement [...] Read more.
Urea is a crucial nutrient for plant growth, but because of its substantial losses due to nitrification, ammonification, and subsurface leaching, there is currently a push to reduce these losses. Urea is frequently uploaded and trapped in gelatin. In this research, the improvement of urea uploading and encapsulation efficiency is investigated using wood ash made from plant biomass (Pinus roxburghii). The 8 g w/v of gelatin was mixed with various concentrations of wood ash (from 4 to 16 g w/w), urea (from 4 to 24 g w/w), and glutaraldehyde (from 0.5 to 3 mL g−1) to prepare various formulations of slow-release fertilizer (SRF). According to this study, adding wood ash to gelatin increases its ability to upload and encapsulate urea. The urea on its surface and the metal in wood ash both considerably contribute to the compositional alterations in gelatin in SRFs, which were demonstrated by IR spectroscopy. Visualization from photographs revealed that the homogenous dispersion of wood ash improved structural compatibility. The water content of the SRF formulation showed that wood ash can reduce water absorption by changing how hydrophobic gelatin is. Wood ash improves the gelatin’s ability to reduce the rapid release of urea over time, according to testing of cumulative urea release from SRF. The optimal combinations for achieving the maximum 53.43% of urea uploading were 2.44 g of urea, 2.47 mL of glutaraldehyde, and 1.50 g of wood ash, according to the Box–Behnken model. The gelatin-based SRF that had been amended with wood ash was applied to the Mentha spicata plant, and the plant’s healthy development and higher chlorophyll content revealed its agronomic potential. This study has a significant contribution to the development of an affordable and more effective wood ash-modified gelatin-based SRF. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

20 pages, 9986 KB  
Article
Seasonal Variability in Chlorophyll and Air-Sea CO2 Flux in the Sri Lanka Dome: Hydrodynamic Implications
by Wentao Ma, Yuntao Wang, Yan Bai, Xiaolin Ma, Yi Yu, Zhiwei Zhang and Jingyuan Xi
Remote Sens. 2022, 14(14), 3239; https://doi.org/10.3390/rs14143239 - 6 Jul 2022
Cited by 8 | Viewed by 4079
Abstract
Multiple upwelling systems develop in the Indian Ocean during the summer monsoon. The Sri Lanka dome (SLD), which occurs in the open ocean off the east coast of Sri Lanka from June to September, is distinct from those near the coast. The SLD [...] Read more.
Multiple upwelling systems develop in the Indian Ocean during the summer monsoon. The Sri Lanka dome (SLD), which occurs in the open ocean off the east coast of Sri Lanka from June to September, is distinct from those near the coast. The SLD is characterized by uplifted thermocline and increased chlorophyll concentration. Mechanisms of the upwelling and its biogeochemical response are not well understood. Here, we explored the dynamics of the chlorophyll and sea-to-air CO2 flux in the SLD using ocean color and altimetry remote sensing data, together with other reanalysis products. We found that the occurrence of high chlorophyll concentration and sea-to-air CO2 flux happens along the pathway of the southwest monsoon current (SMC). The annual cycle of chlorophyll in the SLD has a one-month lag relative to that in the southern coast of Sri Lanka. The positive wind stress curl that forms in the SLD during the summer does not fully explain the seasonal chlorophyll maximum. Transport of the SMC, eddy activity, and associated frontal processes also play an important role in regulating the variability in chlorophyll. In the SLD, upwelled subsurface water has excess dissolved inorganic carbon (DIC) relative to the conventional Redfield ratio between DIC and nutrients; thus, upwelling and sub-mesoscale processes determine this region to be a net carbon source to the atmosphere. Full article
Show Figures

Figure 1

17 pages, 4000 KB  
Article
Characterization of Seasonal Phytoplankton Pigments and Functional Types around Offshore Island in the East/Japan Sea, Based on HPLC Pigment Analysis
by Minji Lee, Yun-Bae Kim, Chan-Hong Park and Seung-Ho Baek
Sustainability 2022, 14(9), 5306; https://doi.org/10.3390/su14095306 - 28 Apr 2022
Cited by 14 | Viewed by 4208
Abstract
In this study, we investigated the seasonal phytoplankton community and phytoplankton functional types (PFTs) in the vicinity of Dokdo Island, located in the East/Japan Sea, in 2019. With strong seasonal winds, the water column was well mixed in winter. In spring and autumn, [...] Read more.
In this study, we investigated the seasonal phytoplankton community and phytoplankton functional types (PFTs) in the vicinity of Dokdo Island, located in the East/Japan Sea, in 2019. With strong seasonal winds, the water column was well mixed in winter. In spring and autumn, the upper mixed layer depth (MLD) was relatively deep, and the Subsurface Chlorophyll Maximum (SCM) formed in the middle layer. Small phytoplankton were dominant in the summer, which is a time of high water temperatures and strong stratification associated with a shallower MLD. Based on CHEMTAX analysis, in spring, the high phytoplankton biomass was mainly derived from cyanobacteria, diatoms, and dinoflagellates. In summer, >73.2% of the surface biomass was comprised of cyanobacteria. In autumn, pelagophytes accounted for the highest proportion of the biomass. The fraction of microphytoplankton (fmicro) was highest in winter and spring, whereas the fraction of nanophytoplankton (fnano) was highest in autumn and summer. A high fraction of picophytoplankton (fpico) was evident in the surface layers in summer. Values for both the photoprotection index (PI) and the ratio of photoprotective carotenoids (PPC) to photosynthetic carotenoids (PSC) indicate that this study area had high primary productivity in 2019. In order to predict long-term changes in marine food webs due to climate change, it is important to evaluate the size and composition of phytoplankton. Full article
Show Figures

Figure 1

Back to TopTop