Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = subseasonal prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3164 KiB  
Article
Using the Debiased Brier Skill Score to Evaluate S2S Tropical Cyclone Forecasting
by Yuanben Li, Xiaochun Wang, Bingke Zhao, Ming Ying, Yimin Liu and Frederic Vitart
J. Mar. Sci. Eng. 2025, 13(6), 1035; https://doi.org/10.3390/jmse13061035 - 24 May 2025
Viewed by 515
Abstract
To evaluate tropical cyclone forecasting on synoptic timescale, tracking and intensity are used. On subseasonal to seasonal (S2S) timescale, what aspects of tropical cyclones should be predicted and how to evaluate forecasting skills still remain open questions. Following our previous work, which proposed [...] Read more.
To evaluate tropical cyclone forecasting on synoptic timescale, tracking and intensity are used. On subseasonal to seasonal (S2S) timescale, what aspects of tropical cyclones should be predicted and how to evaluate forecasting skills still remain open questions. Following our previous work, which proposed using daily tropical cyclone probability (DTCP) as a measure of tropical cyclone activity and the debiased Brier skill score (DBSS) to evaluate tropical cyclone forecasting on S2S timescale, the present research investigates the influence of several factors that may influence the use of DTCP and the DBSS framework. These factors are the forecast time window, tropical cyclone influence radius, evaluation region, forecast sample, and how the Brier score for the reference climate forecast is computed. The influence of these factors is discussed based on the output of the S2S prediction project database and comparison of the DBSS when the above factors are changed individually. Changes in the forecast time window, evaluation region, and tropical cyclone influence radius can change the DTCP. The larger the tropical cyclone influence radius and the longer the forecast time window, the larger the DTCP will be. However, the spatially averaged DBSS changes very little. Using estimated Brier score for reference climate forecast can cause variation due to limited forecast samples. It is recommended to use the theoretical value of the Brier score for reference climate forecasting, instead of its estimation. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Coastal Hazard Risks)
Show Figures

Figure 1

26 pages, 4827 KiB  
Article
Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific
by Lin Lin, Yueyue Yu, Chuhan Lu, Guotao Liu, Jiye Wu and Jingjia Luo
Remote Sens. 2025, 17(5), 810; https://doi.org/10.3390/rs17050810 - 25 Feb 2025
Viewed by 795
Abstract
Seven extreme marine heatwave (MHW) events that occurred in the central–eastern tropical Pacific over the past four decades are divided into high-(MHW#1 and #2), moderate-(MHW#3–5), and low-predictive (MHW#6 and #7) categories based on the accuracy of the 30–60d forecast by the Nanjing University [...] Read more.
Seven extreme marine heatwave (MHW) events that occurred in the central–eastern tropical Pacific over the past four decades are divided into high-(MHW#1 and #2), moderate-(MHW#3–5), and low-predictive (MHW#6 and #7) categories based on the accuracy of the 30–60d forecast by the Nanjing University of Information Science and Technology Climate Forecast System (NUIST CFS1.1). By focusing on high- and low-predictive MHWs, we found that metrics indicative of strong and severe warming (S > 2 and S > 3, where S is MHW severity index) pose greater challenges for accurate forecasting, with the biggest disparity observed for S > 2. All events are intertwined with the El Niño–Southern Oscillation (ENSO), yet a robust ENSO forecast does not guarantee a good MHW forecast. Heat budget analysis within the surface mixed layer during the rapid warming periods revealed that the moderate and severe warming in MHW#1, #2, #6 are primarily caused by heat convergence due to advection (Adv), whereas MHW#7 is mainly driven by air–sea heat flux into the sea surface (Q). The NUIST CFS1.1 model better captures Adv than Q. High-predictive events exhibit a greater contribution from Adv, especially the zonal component associated with the zonal gradient of sea surface temperature anomalies, which may explain their higher sub-seasonal forecast skills. Full article
Show Figures

Figure 1

26 pages, 7006 KiB  
Article
Relation Between Major Climatic Indices and Subseasonal Precipitation in Rio Grande do Sul State, Brazil
by Angela Maria de Arruda, Luana Nunes Centeno and André Becker Nunes
Meteorology 2025, 4(1), 5; https://doi.org/10.3390/meteorology4010005 - 19 Feb 2025
Viewed by 1373
Abstract
This study analyzed the correlation between climate indices—El Niño–Southern Oscillation (NINO34), Southern Oscillation Index (SOI), Antarctic Oscillation (AOC), Sea Surface Temperature in the southwestern Atlantic (ISSTRG2 + RG3), South Atlantic Subtropical High (SASH), Pacific Decadal Oscillation (PDO), and Madden–Julian Oscillation (MJO)—and precipitation in [...] Read more.
This study analyzed the correlation between climate indices—El Niño–Southern Oscillation (NINO34), Southern Oscillation Index (SOI), Antarctic Oscillation (AOC), Sea Surface Temperature in the southwestern Atlantic (ISSTRG2 + RG3), South Atlantic Subtropical High (SASH), Pacific Decadal Oscillation (PDO), and Madden–Julian Oscillation (MJO)—and precipitation in Rio Grande do Sul (RS) during 45-day subseasonal periods from 2006 to 2022. Precipitation data from 670 rain gauges were categorized into three clusters: cluster 1, located in western RS, displayed the lowest precipitation variation; cluster 2, in eastern RS, exhibited the greatest variability; and cluster 3, situated in northern RS. ENSO demonstrated the strongest positive correlation with precipitation during spring in clusters 1 and 3 (0.65–0.79), while PDO also correlated positively, especially in summer and spring. AOC exhibited negative correlations, most pronounced in spring. Significant inter-index correlations were identified, including a high positive correlation between SASH and AOC (0.7) and a high negative correlation between NINO34 and SOI (−0.73). Within clusters, NINO34 and PDO showed low positive correlations with precipitation (0.24–0.32), while SOI demonstrated low negative correlations (−0.21 to −0.30). Seasonal analysis revealed that NINO34 influenced summer and spring precipitation, correlating with above-average rainfall during El Niño events. SASH and PDO also showed positive correlations with summer and spring rainfall, with PDO’s positive phase associated with a 25% increase in precipitation. These findings provide valuable insights into the complex interactions between global climatic indices and regional precipitation patterns, enhancing the understanding of subseasonal climate variability in RS and supporting the development of more accurate climate prediction models for the region. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

21 pages, 5512 KiB  
Article
Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains
by Carlos M. Carrillo and Francisco Muñoz-Arriola
Atmosphere 2024, 15(7), 858; https://doi.org/10.3390/atmos15070858 - 20 Jul 2024
Viewed by 1330
Abstract
This study leverages the relationships between the Great Plains low-level jet (GP-LLJ) and the circumglobal teleconnection (CGT) to assess the enhancement of 30-day rainfall forecast in the Northern Great Plains (NGP). The assessment of 30-day simulated precipitation using the Climate Forecast System (CFS) [...] Read more.
This study leverages the relationships between the Great Plains low-level jet (GP-LLJ) and the circumglobal teleconnection (CGT) to assess the enhancement of 30-day rainfall forecast in the Northern Great Plains (NGP). The assessment of 30-day simulated precipitation using the Climate Forecast System (CFS) is contrasted with the North American Regional Reanalysis, searching for sources of precipitation predictability associated with extended wet and drought events. We analyze the 30-day sources of precipitation predictability using (1) the characterization of dominant statistical modes of variability of 900 mb winds associated with the GP-LLJ, (2) the large-scale atmospheric patterns based on 200 mb geopotential height (HGT), and (3) the use of GP-LLJ and CGT conditional probability distributions using a continuous correlation threshold approach to identify when and where the forecast of NGP precipitation occurs. Two factors contributing to the predictability of precipitation in the NGP are documented. We found that the association between GP-LLJ and CGT occurs at two different scales—the interdiurnal and the sub-seasonal, respectively. The CFS reforecast suggests that the ability to forecast sub-seasonal precipitation improves in response to the enhanced simulation of the GP-LLJ and CGT. Using these modes of climate variability could improve predictive frameworks for water resources management, governance, and water supply for agriculture. Full article
(This article belongs to the Special Issue Prediction and Modeling of Extreme Weather Events)
Show Figures

Figure 1

14 pages, 6425 KiB  
Article
Characteristics of the East Asian Summer Monsoon Using GK2A Satellite Data
by Jieun Wie, Jae-Young Byon and Byung-Kwon Moon
Atmosphere 2024, 15(5), 543; https://doi.org/10.3390/atmos15050543 - 28 Apr 2024
Cited by 1 | Viewed by 2074
Abstract
In East Asia, where concentrated summer precipitation often leads to climate disasters, understanding the factors that cause such extreme rainfall is crucial for effective forecasting and preparedness. The western North Pacific subtropical high (WNPSH) is a key driver of summer precipitation variability, and [...] Read more.
In East Asia, where concentrated summer precipitation often leads to climate disasters, understanding the factors that cause such extreme rainfall is crucial for effective forecasting and preparedness. The western North Pacific subtropical high (WNPSH) is a key driver of summer precipitation variability, and therefore, its monitoring is critical to predicting the wet or dry periods during the East Asian summer monsoon. Using the Geo-KOMPSAT 2A (GK2A) satellite cloud amount data and ERA5 reanalysis data during the years 2020–2023, this study identified three leading empirical orthogonal function (EOF) modes and investigated the associated WNPSH variability at synoptic and subseasonal scales. The analysis includes a linear regression of meteorological fields onto the principal component (PC) time series. All three modes play a role in the spatiotemporal variability of the WNPSH, exhibiting lead–lag relationships. In particular, the second mode is responsible for its northwestward shift and intensification. As the WNPSH moves northwestward, the position of the monsoon rain band also shifts, and its intensity is modulated mainly by the moisture transport along the WNPSH boundary. Our results highlight the potential of high-resolution, real-time data from the GK2A satellite to elucidate WNPSH variability and its impact on the East Asian summer monsoon. By addressing the variability of the WNSPH using GK2A data, we pave the way for the development of a real-time monitoring framework with GK2A, which will improve our predictability and readiness for extreme weather events in East Asia. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 4690 KiB  
Article
A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia
by Rachel Taylor, Andrew G. Marshall, Steven Crimp, Geoffrey J. Cary and Sarah Harris
Atmosphere 2024, 15(4), 470; https://doi.org/10.3390/atmos15040470 - 10 Apr 2024
Cited by 2 | Viewed by 2663 | Correction
Abstract
The increasing frequency and duration of severe fire events in Australia further necessitate accurate and timely forecasting to mitigate their consequences. This study evaluated the performance of two distinct approaches to forecasting extreme fire danger at two- to three-week lead times for the [...] Read more.
The increasing frequency and duration of severe fire events in Australia further necessitate accurate and timely forecasting to mitigate their consequences. This study evaluated the performance of two distinct approaches to forecasting extreme fire danger at two- to three-week lead times for the period 2003 to 2017: the official Australian climate simulation dynamical model and a statistical model based on climate drivers. We employed linear logistic regression to develop the statistical model, assessing the influence of individual climate drivers using single linear regression. The performance of both models was evaluated through case studies of three significant extreme fire events in Australia: the Canberra (2003), Black Saturday (2009), and Pinery (2015) fires. The results revealed that ACCESS-S2 generally underestimated the spatial extent of all three extreme FBI events, but with accuracy scores ranging from 0.66 to 0.86 across the case studies. Conversely, the statistical model tended to overpredict the area affected by extreme FBI, with high false alarm ratios between 0.44 and 0.66. However, the statistical model demonstrated higher probability of detection scores, ranging from 0.57 to 0.87 compared with 0.03 to 0.57 for the dynamic model. These findings highlight the complementary strengths and limitations of both forecasting approaches. Integrating dynamical and statistical models with transparent communication of their uncertainties could potentially improve accuracy and reduce false alarms. This can be achieved through hybrid forecasting, combined with visual inspection and comparison between the statistical and dynamical forecasts. Hybrid forecasting also has the potential to increase forecast lead times to up to several months, ultimately aiding in decision-making and resource allocation for fire management. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts)
Show Figures

Figure 1

40 pages, 23230 KiB  
Article
Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean
by Dimitris Mitropoulos, Ioannis Pytharoulis, Prodromos Zanis and Christina Anagnostopoulou
Atmosphere 2024, 15(4), 442; https://doi.org/10.3390/atmos15040442 - 2 Apr 2024
Cited by 1 | Viewed by 2316
Abstract
Greece and the surrounding areas experienced an early warm spell with characteristics of a typical summer Mediterranean heatwave in mid-May 2020. The maximum 2 m temperature at Kalamata (southern Greece) reached 40 °C on 16 May and at Aydin (Turkey), it was 42.6 [...] Read more.
Greece and the surrounding areas experienced an early warm spell with characteristics of a typical summer Mediterranean heatwave in mid-May 2020. The maximum 2 m temperature at Kalamata (southern Greece) reached 40 °C on 16 May and at Aydin (Turkey), it was 42.6 °C on 17 May. There was a 10-standard deviation positive temperature anomaly (relative to the 1975–2005 climatology) at 850 hPa, with a southwesterly flow and warm advection over Greece and western Turkey from 11 to 20 May. At 500 hPa, a ridge was located over the Eastern Mediterranean, resulting in subsidence. The aims of this study were (a) to investigate the prevailing synoptic conditions during this event in order to document its occurrence and (b) to assess whether this out-of-season heatwave was predictable on subseasonal timescales. The subseasonal predictability is not a well-researched scientific topic in the Eastern Mediterranean Sea. The ensemble global forecasts from six international meteorological centres (European Centre for Medium-Range Weather Forecasts—ECMWF, United Kingdom Met Office—UKMO, China Meteorological Administration—CMA, Korea Meteorological Administration—KMA, National Centers for Environmental Prediction—NCEP and Hydrometeorological Centre of Russia—HMCR) and limited area forecasts using the Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF) forced by Climate Forecast System version 2 (CFSv.2; NCEP) forecasts were evaluated for lead times ranging from two to six weeks using statistical scores. WRF was integrated using two telescoping nests covering Europe, the Mediterranean basin and large part of the Atlantic Ocean, with a grid spacing of 25 km, and Greece–western Turkey at 5 km. The results showed that there were some accurate forecasts initiated two weeks before the event’s onset. There was no systematic benefit from the increase of the WRF model’s resolution from 25 km to 5 km for forecasting the 850 hPa temperature, but regarding the prediction of maximum air temperature near the surface, the high resolution (5 km) nest of WRF produced a marginally better performance than the coarser resolution domain (25 km). Full article
(This article belongs to the Special Issue Numerical Weather Prediction Models and Ensemble Prediction Systems)
Show Figures

Figure 1

19 pages, 5045 KiB  
Article
Climate Driver Influences on Prediction of the Australian Fire Behaviour Index
by Rachel Taylor, Andrew G. Marshall, Steven Crimp, Geoffrey J. Cary and Sarah Harris
Atmosphere 2024, 15(2), 203; https://doi.org/10.3390/atmos15020203 - 5 Feb 2024
Cited by 3 | Viewed by 1808
Abstract
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this [...] Read more.
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this study evaluates the skill with which episodes of extreme fire danger in Australia can be predicted from the activity of large-scale climate driver patterns. An extremal dependence index for extreme events is used to depict the historical predictive skill of the Australian Bureau of Meteorology’s subseasonal climate prediction system in replicating known relationships between the probability of top-decile fire danger and climate driver states at a lead time of 2–3 weeks. Results demonstrate that the El Niño Southern Oscillation, Southern Annular Mode, persistent modes of atmospheric blocking, Indian Ocean Dipole and Madden-Julian Oscillation are all key for contributing to predictability of fire danger forecasts in different regions during critical fire danger periods. Northwest Australia is found to be particularly predictable, with the highest mean index differences (>0.50) when certain climate drivers are active, compared with the climatological index mean. This integrated approach offers a valuable resource for decision-making in fire-prone regions, providing greater confidence to users relying on fire danger outlooks for key management decisions, such as those involved in the sectors of national park and forest estate management, agriculture, emergency services, health and energy. Furthermore, the results highlight strengths and weaknesses in both the Australian Fire Danger Rating System and the operational climate model, contributing additional information for improving and refining future iterations of these systems. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts)
Show Figures

Figure 1

25 pages, 15521 KiB  
Article
Daily-Scale Prediction of Arctic Sea Ice Concentration Based on Recurrent Neural Network Models
by Juanjuan Feng, Jia Li, Wenjie Zhong, Junhui Wu, Zhiqiang Li, Lingshuai Kong and Lei Guo
J. Mar. Sci. Eng. 2023, 11(12), 2319; https://doi.org/10.3390/jmse11122319 - 7 Dec 2023
Cited by 3 | Viewed by 2297
Abstract
Arctic sea ice prediction is of great practical significance in facilitating Arctic route planning, optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep learning models have been developed for sea ice prediction, they predominantly operate at the [...] Read more.
Arctic sea ice prediction is of great practical significance in facilitating Arctic route planning, optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep learning models have been developed for sea ice prediction, they predominantly operate at the seasonal or sub-seasonal scale, often focusing on localized areas, and few cater to full-region daily-scale prediction. This study introduces the use of spatiotemporal sequence data prediction models, namely, the convolutional LSTM (ConvLSTM) and predictive recurrent neural network (PredRNN), for the prediction of sea ice concentration (SIC). Our analysis reveals that, when solely utilizing SIC historical data as the input, the ConvLSTM model outperforms the PredRNN model in SIC prediction. To enhance the models’ capacity to capture spatiotemporal relationships between multiple variables, we expanded the range of input data types to form the ConvLSTM-multi and PredRNN-multi models. Experimental findings demonstrate that the prediction accuracy of the four models significantly surpasses the CMIP6 model in three prospective climate scenarios (SSP126, SSP245, and SSP585). Of the four models, the ConvLSTM-multi model excels in assimilating the influence of reanalysis data on sea ice within the sea ice edge region, thus exhibiting superior performance than the PredRNN-multi model in predicting daily Arctic SIC over the subsequent 10 days. Furthermore, sensitivity tests on various model parameters highlight the substantial impact of sea surface temperature and prediction date on the accuracy of daily sea ice prediction, and meteorological and oceanographic parameters primarily affect the prediction accuracy of the thin-ice region at the edge of the sea ice. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

21 pages, 11653 KiB  
Article
Data-Driven Global Subseasonal Forecast for Intraseasonal Oscillation Components
by Yichen Shen, Chuhan Lu, Yihan Wang, Dingan Huang and Fei Xin
Atmosphere 2023, 14(11), 1682; https://doi.org/10.3390/atmos14111682 - 13 Nov 2023
Viewed by 1805
Abstract
As a challenge in the construction of a “seamless forecast” system, improving the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase, [...] Read more.
As a challenge in the construction of a “seamless forecast” system, improving the prediction skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase, the prediction skill for high-frequency components will decrease, as the lead time is already far beyond the predictability. Meanwhile, intraseasonal low-frequency components are essential to the change in general circulation on subseasonal timescales. In this paper, the Global Subseasonal Forecast Model (GSFM v1.0) first extracted the intraseasonal oscillation (ISO) components of atmospheric signals and used an improved deep-learning model (SE-ResNet) to train and predict the ISO components of geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850). The results show that the 10–30 day prediction performance of the SE-ResNet model is better than that of the model trained directly with original data. Compared with other models/methods, this model has a good ability to depict the subseasonal evolution of the ISO components of Z500 and T850. In particular, although the prediction results from the Climate Forecast System Version 2 have better performance through 10 days, the SE-ResNet model is substantially superior to CFSv2 through 10–30 days, especially in the middle and high latitudes. The SE-ResNet model also has a better effect in predicting planetary waves with wavenumbers of 3–8. Thus, the application of data-driven subseasonal forecasts of atmospheric ISO components may shed light on improving the skill of seasonal forecasts. Full article
Show Figures

Figure 1

12 pages, 3785 KiB  
Article
Evaluation of Subseasonal Precipitation Simulations for the Sao Francisco River Basin, Brazil
by Nicole C. R. Ferreira, Sin C. Chou and Claudine Dereczynski
Climate 2023, 11(11), 213; https://doi.org/10.3390/cli11110213 - 28 Oct 2023
Viewed by 2175
Abstract
Water conflicts have been a significant issue in Brazil, especially in the Sao Francisco River basin. Subseasonal forecasts, up to a 60-day forecast range, can provide information to support decision-makers in managing water resources in the river basin, especially before drought events. This [...] Read more.
Water conflicts have been a significant issue in Brazil, especially in the Sao Francisco River basin. Subseasonal forecasts, up to a 60-day forecast range, can provide information to support decision-makers in managing water resources in the river basin, especially before drought events. This report aims to evaluate 5-year mean subseasonal simulations generated by the Eta regional model for the period from 2011 to 2016 and assess the usefulness of this information to support decision-making in water resource conflicts in the Sao Francisco River basin. The capability of the Eta model to reproduce the drought events that occurred between the years 2011 and 2016 was compared against the Climate Prediction Center Morphing (CMORPH) precipitation data. Two sets of 60-day simulations were produced: one started in September (SO) and the other in January (JF) of each year. These months were chosen to evaluate the model’s capability to reproduce the onset and the middle of the rainy seasons in central Brazil, where the upper Sao Francisco River is located. The SO simulations reproduced the observed spatial distribution of precipitation but underestimated the amounts. Precipitation errors exhibited large variability across the subbasins. The JF simulations also reproduced the observed precipitation distribution but overestimated it in the upper and lower subbasins. The JF simulations better captured the interannual variability in precipitation. The 60-day simulations were discretized into six 10-day accumulations to assess the intramonthly variability. They showed that the simulations captured the onset of the rainy season and the small periods of rainy months that occurred in these severe drought years. This research is a critical step to indicate subbasins where the model simulation needs to be improved and provide initial information to support water allocation in the region. Full article
Show Figures

Figure 1

22 pages, 5715 KiB  
Article
Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin
by Yunyun Li, Yi Huang, Jingjing Fan, Hongxue Zhang, Yanchun Li, Xuemei Wang and Qian Deng
Atmosphere 2023, 14(11), 1599; https://doi.org/10.3390/atmos14111599 - 26 Oct 2023
Cited by 2 | Viewed by 2056
Abstract
The primary innovation of this study lies in the development of an integrated modeling framework that combines downscaled climate projections, land-use-change simulations, and copula-based risk analysis. This framework allows for the assessment of localized sub-seasonal and seasonal drought hazards under future scenarios. The [...] Read more.
The primary innovation of this study lies in the development of an integrated modeling framework that combines downscaled climate projections, land-use-change simulations, and copula-based risk analysis. This framework allows for the assessment of localized sub-seasonal and seasonal drought hazards under future scenarios. The BCC-CSM1-1 climate model projections from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset are utilized to represent the future climate for 2025–2060 under RCP 4.5 and 8.5 scenarios. The CA-Markov model is employed to predict future land-use-change distributions. The climate–land use–drought modeling nexus enables the generation of refined spatio-temporal projections of meteorological and hydrological drought risks in the Yellow River Basin (YRB) in the future period of 2025–2060. The results highlight the increased vulnerability of the upper YRB to sub-seasonal meteorological droughts, as well as the heightened sub-seasonal hydrological drought risks in the Loess Plateau. Furthermore, downstream areas experience escalated seasonal hydrological drought exposure due to urbanization. By providing actionable insights into localized future drought patterns, this integrated assessment approach advances preparedness and climate adaptation strategies. The findings of the study enhance our understanding of potential changes in this integral system under the combined pressures of global climate change and land use shifts. Full article
(This article belongs to the Special Issue Joint Disasters of High Temperature and Drought)
Show Figures

Figure 1

22 pages, 5910 KiB  
Article
Simulating Heavy Rainfall Associated with Tropical Cyclones and Atmospheric Disturbances in Thailand Using the Coupled WRF-ROMS Model—Sensitivity Analysis of Microphysics and Cumulus Parameterization Schemes
by Kritanai Torsri, Apiwat Faikrua, Pattarapoom Peangta, Rati Sawangwattanaphaibun, Jakrapop Akaranee and Kanoksri Sarinnapakorn
Atmosphere 2023, 14(10), 1574; https://doi.org/10.3390/atmos14101574 - 17 Oct 2023
Cited by 1 | Viewed by 2756
Abstract
Predicting heavy rainfall events associated with Tropical Cyclones (TCs) and atmospheric disturbances in Thailand remains challenging. This study introduces a novel approach to enhance forecasting precision by utilizing the coupled Weather Research and Forecasting (WRF) and Regional Oceanic Model (ROMS), known as WRF-ROMS. [...] Read more.
Predicting heavy rainfall events associated with Tropical Cyclones (TCs) and atmospheric disturbances in Thailand remains challenging. This study introduces a novel approach to enhance forecasting precision by utilizing the coupled Weather Research and Forecasting (WRF) and Regional Oceanic Model (ROMS), known as WRF-ROMS. We aim to identify the optimal combination of microphysics (MP) and cumulus (CU) parameterization schemes. Three CU schemes, namely, Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (G3), and Kain-Fritsch (KF), along with three MP schemes, namely, Eta (ETA), Purdue Lin (LIN), and WRF Single-moment 3-class (WSM3), are selected for the sensitivity analysis. Seven instances of heavy (35.1–90.0 mm) to violent (>90.1 mm) rainfall in Thailand, occurring in 2020 and associated with tropical storms and atmospheric disturbances, are simulated using all possible combinations of the chosen physics schemes. The simulated rain intensities are compared against observations from the National Hydroinformatics Data Center. Performance was assessed using the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) metrics. While the models performed well for light (0.1–10.0 mm) to moderate (10.1–35.0 mm) rainfall, forecasting heavy rainfall remained challenging. Certain parameter combinations showed promise, like BMJ and KF with LIN microphysics, but challenges persisted. Analyzing density distribution of daily rainfall, we found effective parameterizations for different sub-regions. Our findings emphasize the importance of tailored parameterizations for accurate rainfall prediction in Thailand. This customization can benefit water resource management, flood control, and disaster preparedness. Further research should expand datasets, focusing on significant heavy rainfall events and considering climate factors, for example, the Madden-Julian Oscillation (MJO) for extended-range forecasts, potentially contributing to sub-seasonal and seasonal (S2S) predictions. Full article
(This article belongs to the Special Issue Prediction and Modeling of Extreme Weather Events)
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales
by Giuseppe Giunta, Alessandro Ceppi and Raffaele Salerno
Forecasting 2023, 5(4), 600-615; https://doi.org/10.3390/forecast5040033 - 13 Oct 2023
Viewed by 2775
Abstract
Earth system predictions, from sub-seasonal to seasonal timescales, remain a challenging task, and the representation of predictability sources on seasonal timescales is a complex work. Nonetheless, advances in technology and science have been making continuous progress in seasonal forecasting. In a previous paper, [...] Read more.
Earth system predictions, from sub-seasonal to seasonal timescales, remain a challenging task, and the representation of predictability sources on seasonal timescales is a complex work. Nonetheless, advances in technology and science have been making continuous progress in seasonal forecasting. In a previous paper, a performance for temperature prediction by a modelling system named e-kmf® was carried out in comparison with observations and climatology for a year of data; a low level of predictability in the sub-seasonal range, particularly in the second month, was observed over the Italian peninsula. Therefore, in this study, we focus our investigations specifically on the performance between the fifth and the eighth week of temperature forecasts over six years of simulations (2012–2018) to investigate the capability of the weather model to better reproduce the behavior of temperatures in the second month of the forecast. Although some differences in seasons are present, results have globally shown how temperature predictions have the potential to be quite skillful, with an average skill score of about 68%, with climatology used as reference; additionally, an overall anomaly correlation coefficient equal to 0.51 was shown, providing useful information for applications in planning, sales, and supply of natural energy resources. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

6 pages, 1443 KiB  
Proceeding Paper
Subseasonal-to-Seasonal Predictability Assessment of an Early Heat Wave in the Eastern Mediterranean in May 2020
by Dimitris Mitropoulos, Ioannis Pytharoulis, Prodromos Zanis and Christina Anagnostopoulou
Environ. Sci. Proc. 2023, 26(1), 42; https://doi.org/10.3390/environsciproc2023026042 - 24 Aug 2023
Cited by 2 | Viewed by 1062
Abstract
Greece experienced an unusual heat wave in mid-May 2020, since it was observed earlier than the common Mediterranean heat wave period. On May 16th, the maximum air temperature at Kalamata (southern Greece) was 40 °C, and at Aydin (western Turkey) it was 41.6 [...] Read more.
Greece experienced an unusual heat wave in mid-May 2020, since it was observed earlier than the common Mediterranean heat wave period. On May 16th, the maximum air temperature at Kalamata (southern Greece) was 40 °C, and at Aydin (western Turkey) it was 41.6 °C. There was a significantly high climatological anomaly (ref: 1979–2009) relating to temperature at 850 hPa over Greece and Turkey from May 12 to May 20. The aim of this study was to evaluate how well this extreme event can be predicted at subseasonal timescales, since it is not a well-researched scientific topic by weather forecasters in the Eastern Mediterranean. Global forecasts from six meteorological centers (ECMWF, UKMO, NCEP, CMA, KMA, HMCR) and WRF simulations produced via CFS (NCEP) analyses and forecasts were examined for lead times ranging from 2 to 6 weeks ahead. The results show that skillful forecasts started 2.5 weeks before the event’s onset. Full article
Show Figures

Figure 1

Back to TopTop