An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales
Abstract
:1. Introduction and Context of Application
2. The Area of Study
3. Model and Data Analysis
3.1. The Kassandra Meteo Forecast Model
3.2. Observations and Climatology
3.3. Methodology of the Benchmark Analysis
4. Results and Discussion
Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Madden Julian Oscillation | MJO |
mean absolute error | MAE |
eni-kassandra meteo forecast® | e-kmf® |
Climate Forecast System—National Centers for Environmental Prediction | CFS-NCEP |
Weather Research and Forecasting—Advanced Research WRF | WRF-ARW |
global forecasting system | GFS |
grid-point statistical interpolation | GSI |
global data assimilation system | GDAS |
sea surface temperature | SST |
planetary boundary layer | PBL |
local ensemble prediction system | LEPS |
surface synoptic observations | SYNOP |
meteorological aerodrome report | METAR |
observation period | OP |
anomaly correlation coefficient | ACC |
limited area models | LAMs |
December–January–February | DJF |
March–April–May | MAM |
June–July–August | JJA |
September–October–November | SON |
self-organizing map | SOM |
References
- Clements, J.; Ray, A.; Anderson, G. The Value of Climate Services across Economic and Public Sectors: A Review of Relevant Literature; United States Agency for International Development (USAID): Washington, DC, USA, 2013.
- Frei, T. Economic and social benefits of meteorology and climatology in Switzerland. Meteorol. Appl. 2010, 17, 39–44. [Google Scholar] [CrossRef]
- Freebairn, J.; Zillman, J. Economic benefits of meteorological services. Meteorol. Appl. 2002, 9, 33–44. [Google Scholar] [CrossRef]
- Bruno Soares, M.; Daly, M.; Dessai, S. Assessing the value of seasonal climate forecasts for decision-making. WIREs Clim. Chang. 2018, 9, e523. [Google Scholar] [CrossRef]
- Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M. Real-time drought forecasting system for irrigation management. Hydrol. Earth Syst. Sci. 2014, 18, 3353–3366. [Google Scholar] [CrossRef]
- Meehl, G.A.; Lukas, R.; Kiladis, G.N.; Wheeler, M.; Matthews, A.; Weickmann, K.M. A conceptual framework for time and space scale interactions in the climate system. Clim. Dyn. 2001, 17, 753–775. [Google Scholar] [CrossRef]
- Hurrell, J.; Meehl, G.A.; Bader, D.; Delworth, T.L.; Kirtman, B.; Wielicki, B. A unified modeling approach to climate system prediction. Bull. Am. Meteorol. Soc. 2009, 90, 1819–1832. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; Garcia-Serrano, J.; Lienert, F.; Biescas, A.P.; Rodrigues, L.R.L. Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 245–268. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. Anderson DLT Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. WMO Bull. 2012, 61, 23–28. [Google Scholar]
- Ramos, M.H.; Mathevet, T.; Thielen, T.; Pappenberger, F. Communicating uncertainty in hydro-meteorological forecasts: Mission impossible? Meteorol. Appl. 2010, 17, 223–235. [Google Scholar] [CrossRef]
- WMO. Guidelines on Communicating Forecast Uncertainty; Technical Document PWS-18 WMO/TD 1422; WMO: Geneva, Switzerland, 2008; 25p. [Google Scholar]
- Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M. Benchmark analysis of forecasted seasonal temperature over different climatic areas. Geosci. Lett. 2015, 2, 9. [Google Scholar] [CrossRef]
- Giunta, G.; Vernazza, R.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M. Hourly weather forecasts for gas turbine power generation. Meteorol. Z. 2017, 26, 307–317. [Google Scholar] [CrossRef]
- Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M. Effects of model horizontal grid resolution on short- and medium-term daily temperature forecasts for energy consumption application in European cities. Adv. Meteorol. 2019, 2019, 1561697. [Google Scholar] [CrossRef]
- Giunta, G.; Ceppi, A.; Salerno, R. Local-scale weather forecasts over a complex terrain in an early warning framework: Performance analysis for the Val d’Agri (southern Italy) case study. Adv. Meteorol. 2022, 2022, 2179246. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wei, N.; Chen, X.; Xie, H.; Wang, J. Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Nat. Gas. Sci. Eng. 2021, 90, 103930. [Google Scholar] [CrossRef]
- Hoskins, B. The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Q. J. R. Meteorol. Soc. 2013, 139, 573–584. [Google Scholar] [CrossRef]
- WMO. Seamless Prediction of the Earth System: From minutes to months. In Proceedings of the World Weather Open Science Conference, Montréal, QC, Canada, 16–21 August 2014; World Meteorological Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Dutton, J.A.; James, R.P.; Ross, J.D. Calibration and combination of dynamical seasonal forecasts to enhance the value of predicted probabilities for managing risk. Clim. Dyn. 2013, 40, 3089–3105. [Google Scholar] [CrossRef]
- Dutton, J.A.; James, R.P.; Ross, J.D. Bridging the Gap between Seasonal Forecasts and Decisions to Act; American Meteorological Society: Phoenix, AZ, USA, 2015. [Google Scholar]
- He, S.; Li, X.; DelSole, T.; Ravikumar, P.; Banerjee, A. Sub-Seasonal Climate Forecasting via Machine Learning: Challenges, Analysis, and Advances. Proc. AAAI Conf. Artif. Intell. 2021, 35, 169–177. [Google Scholar] [CrossRef]
- Mouatadid, S.; Orenstein, P.; Flaspohler, G.; Oprescu, M.; Cohen, J.; Wang, F.; Knight, S.; Geogdzhayeva, M.; Levang, S.; Fraenkel, E.; et al. SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking. arXiv 2022, arXiv:2109.10399v2. [Google Scholar]
- Trenary, L.; DelSole, T. Skillful statistical prediction of subseasonal temperature by training on dynamical model data. Environ. Data Sci. 2023, 2, E7. [Google Scholar] [CrossRef]
- van Straaten, C.; Whan, K.; Coumou, D.; van den Hurk, B.; Schmeits, M. Using Explainable Machine Learning Forecasts to Discover Subseasonal Drivers of High Summer Temperatures in Western and Central Europe. Mon. Weather Rev. 2022, 150, 1115–1134. [Google Scholar] [CrossRef]
- Giunta, G.; Salerno, R. Short-Long Term Temperature Forecasting Method and System for Production Management and Sale of Energy Resources. Patent Granted EP2859389B1, 11 June 2013. [Google Scholar]
- Radinovic, D. Mediterranean Cyclones and Their Influence on the Weather and Climate; PSMP Report Series No. 24; WMO: Geneva, Switzerland, 1987; 131p. [Google Scholar]
- Kikuchi, Y. The Influence of Orography and Land-Sea Distribution on Winter Circulations. Pap. Meteor. Geophys. 1979, 30, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Saez, J.; Zorita, E. Analysis of wintertime atmospheric moisture transport and its variability over the Mediterranean basin in the NCEP-Reanalyses. Clim. Res. 2003, 23, 195–215. [Google Scholar] [CrossRef]
- Fink, A.H.; Brücher, T.; Krüger, A.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. The 2003 European summer heatwaves and drought—Synoptic diagnosis and impacts. Weather 2004, 59, 209–216. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: New York, NY, USA, 2006. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. (Eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Wiley: New York, NY, USA, 2003. [Google Scholar]
- WWRP/WGNE Joint Working Group on Forecast Verification Research. Forecast Verification Issue, Methods, and FAQ. Available online: https://www.cawcr.gov.au/projects/verification/ (accessed on 15 November 2022).
- Goddard, L.; Mason, S.J.; Zebiak, S.E.; Ropelewski, C.F.; Basher, R.; Cane, M.A. Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol. 2001, 21, 1111–1152. [Google Scholar] [CrossRef]
- Mason, S.J.; Goddard, L.; Graham, N.E.; Yulaeva, E.; Sun, L.; Arkin, P.A. The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Am. Meteorol. Soc. 1999, 80, 1853–1873. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC and the breeding method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Dalcher, A.; Kalnay, E.; Hoffman, R.N. Medium range lagged average forecasts. Mon. Weather Rev. 1988, 116, 402–416. [Google Scholar] [CrossRef]
- Reichler, T.J.; Roads, J.O. Time-space distribution of long-range atmospheric predictability. J. Atmos. Sci. 2004, 61, 249–263. [Google Scholar] [CrossRef]
- Reichler, T.J.; Roads, J.O. The role of boundary and initial conditions for dynamical seasonal predictability. Nonlinear Process Geophys. 2003, 10, 211–232. [Google Scholar] [CrossRef]
- Lim, K.S.S.; Hong, S.Y. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Hong, S.Y.; Choi, J.; Chang, E.C.; Park, H.; Kim, Y.J. Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Weather Forecast. 2008, 23, 523–531. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Park, S. A new moist turbulence parameterization in the Community Atmosphere Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Pleim, J.E. A simple, efficient solution of flux-profile relationships in the atmospheric surface layer. J. Appl. Meteorol. Climatol. 2006, 45, 341–347. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The parameterization of surface fluxes in large scale models under free convection. Q. J. R. Meteorol. Soc. 1994, 121, 255–270. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2003, 43, 170–181. [Google Scholar] [CrossRef]
- Han, J.; Pan, H.-L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Niu, G.-Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Noilan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteorol. 1995, 34, 16–32. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006; p. 438. ISBN 9780080460796. [Google Scholar]
- Palmer, T.; Hagedorn, R. (Eds.) Predictability of Weather and Climate; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bertolani, L.; Dipierro, G.; Salerno, R. Self-Organizing Maps: Application to NWP Models Verification. In Proceedings of the First Conference of the Italian Association for Atmospheric Sciences and Meteorology, Bologna, Italy, 10–13 September 2018; Available online: https://www.researchgate.net/publication/327860455_SELF-ORGANIZING_MAPS_AN_APPLICATION_TO_NWP_MODELS_VERIFICATION (accessed on 15 November 2022).
North | Center | South | ||||||
---|---|---|---|---|---|---|---|---|
Clima | e-kmf® | Clima | e-kmf® | Clima | e-kmf® | |||
2012 | 1.68 | 0.85 | 1.78 | 0.91 | 1.39 | 0.60 | ||
2013 | 1.18 | 0.77 | 1.19 | 0.83 | 0.98 | 0.54 | ||
2014 | 1.81 | 1.03 | 1.67 | 1.00 | 1.21 | 0.77 | ||
2015 | 1.45 | 0.76 | 1.37 | 0.65 | 0.94 | 0.46 | ||
2016 | 1.05 | 0.57 | 1.15 | 0.65 | 0.76 | 0.44 | ||
2017 | 1.60 | 0.70 | 1.56 | 0.71 | 1.00 | 0.51 | ||
2018 | 1.62 | 0.84 | 1.71 | 0.63 | 0.94 | 0.30 |
SSclim 2012–2018 | North | Center | South |
---|---|---|---|
DJF | 0.61 | 0.55 | 0.61 |
MAM | 0.69 | 0.74 | 0.74 |
JJA | 0.81 | 0.82 | 0.85 |
SON | 0.55 | 0.54 | 0.61 |
Year | 0.67 | 0.66 | 0.70 |
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Total | ||
---|---|---|---|---|---|---|---|---|---|
Winter | stable | 52 | 42 | 52 | 44 | 55 | 64 | 44 | 353 |
unstable | 39 | 48 | 38 | 46 | 36 | 26 | 46 | 279 | |
Spring | stable | 42 | 34 | 31 | 53 | 36 | 42 | 28 | 266 |
unstable | 50 | 58 | 32 | 39 | 56 | 50 | 64 | 349 | |
Summer | stable | 37 | 46 | 37 | 55 | 47 | 57 | 46 | 325 |
unstable | 55 | 46 | 55 | 37 | 45 | 35 | 46 | 319 | |
Autumn | Stable | 43 | 44 | 54 | 39 | 50 | 48 | 49 | 327 |
unstable | 48 | 47 | 37 | 52 | 41 | 43 | 42 | 310 |
ACC 2012–2018 | North | Center | South |
---|---|---|---|
DJF | 0.86 | 0.63 | 0.83 |
MAM | 0.56 | 0.45 | 0.67 |
JJA | 0.36 | 0.38 | 0.55 |
SON | 0.29 | 0.18 | 0.37 |
Year | 0.52 | 0.41 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giunta, G.; Ceppi, A.; Salerno, R. An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales. Forecasting 2023, 5, 600-615. https://doi.org/10.3390/forecast5040033
Giunta G, Ceppi A, Salerno R. An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales. Forecasting. 2023; 5(4):600-615. https://doi.org/10.3390/forecast5040033
Chicago/Turabian StyleGiunta, Giuseppe, Alessandro Ceppi, and Raffaele Salerno. 2023. "An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales" Forecasting 5, no. 4: 600-615. https://doi.org/10.3390/forecast5040033