A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia
Abstract
:1. Introduction
2. Materials and Methods
- Forest;
- Woodland;
- Grassland;
- Spinifex;
- Mallee-heath;
- Shrubland;
- Buttongrass;
- Pine.
- Grassland fuel loads: The state of hindcast fuel loads is characterised based on Köppen climate zones, and these were assumed to be constant throughout the climatology. This introduces an element of uncertainty into the hindcast and climatological datasets, as fuel loads would realistically have varied over the time period. Operationally, fuel loads and states (including curing) are regularly updated by fire agencies using the Fuel State Editor tool.
- Time-since-fire: Employed for all fuel types except pine, grassland, and grassy woodland, these data extend back to 2003 [56]. Pine, grassland, and grassy woodland use direct fuel load values, which are (as above) fixed in the hindcast and updated using observations in operations.
- Generic fuel state: The inputs relied on established models from relevant studies with tailored adjustments and assumptions in some instances.
- Jurisdictional fuel datasets: These, along with associated research documents, informed decisions regarding overstorey sub-types and coverage values [57].
- The BARRA climatology’s ‘observed’ occurrence of extreme FBI on the date of the case study, as the verification comparison;
- The ACCESS-S2 hindcast probability of extreme FBI from the FBI hindcasts initiated 2 and 3 weeks before the case study date. We refer to this as the dynamical prediction and verify it using the same binary categorisation technique described above.
Observed | |||
---|---|---|---|
Yes | No | ||
Forecast | Yes | Hit | False alarm |
No | Miss | Correct negative |
2.1. Canberra Bushfires
2.2. Black Saturday
2.3. Pinery Fire
3. Results
3.1. Canberra Fires, 18 January 2003
3.2. Black Saturday Fires, 7 February 2009
3.3. Pinery Fire, 25 November 2015
4. Discussion
- The finalisation of the climatology in March 2023. The AFDRS is a modular system, designed to be updated and improved upon over time. As weaknesses and limitations are identified in the operation of the system, changes are likely to be made to the fuel models which will not be reflected in the climatology and hindcasts used in our study.
- In some fuel types, adaptions were made to existing fuel state models to attempt to account for the unavailability of an accurate fuel state history. These adaptations did not always have a strong scientific basis and may therefore introduce an element of error into the observed values [55].
5. Conclusions
- Combined analysis involving Integrating ACCESS-S2 and statistical model forecasts with on-the-ground expertise can provide a more comprehensive picture of potential fire danger, enabling nuanced risk assessments;
- Further research into avenues for combining dynamical and statistical forecast strengths, such as Bayesian Model Averaging or potential AI-based approaches, presents the opportunity to develop a single prediction system which explicitly accounts for the statistical relationships between fire danger and climate drivers, while additionally considering the factors captured by the dynamical model;
- Operational integration involving investigating strategies to incorporate the statistical model’s “worst case” scenarios into official outlooks, such as probabilistic forecasts or scenario planning, can help better prepare for extreme events without triggering widespread false alarms;
- Transparent communication involving clearly communicating the limitations and uncertainties of each forecast, the potential consequences of overwarning and underwarning, and the rationale behind risk assessments can maintain public trust and understanding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanowski, P.J.; Whelan, R.J.; Ellis, S. Inquiries following the 2002–2003 Australian bushfires: Common themes and future directions for Australian bushfire mitigation and management. Aust. For. 2005, 68, 76–86. [Google Scholar] [CrossRef]
- Teague, B.; Pascoe, S.; McLeod, R. The 2009 Victorian Bushfires Royal Commission Final Report: Summary; Government Printer for the State of Victoria: Melbourne, Australia, 2010.
- Zimmermann, A.; Pinery Fire Recovery Final Report. South Australia. 2017. Available online: https://dhs.sa.gov.au/__data/assets/pdf_file/0007/57418/2015-Pinery-Fire-Recovery-Report.pdf (accessed on 17 February 2024).
- Hefferman, B.; O’Brien, K.; Fisher, M.J.; Milne, C.; Nash, F.; Sterle, G.; Back, C.; Colbeck, R. The Incidence and Severity of Bushfires across Australia—Chapter 2: Previous Bushfire Inquiries; Senate Printing Unit: Canberra, Australia, 2009. Available online: https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Former_Committees/agric/completed_inquiries/2008-10/bushfires/report/c02 (accessed on 24 February 2024).
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Harris, S.; Mills, G.; Brown, T. Variability and drivers of extreme fire weather in fire-prone areas of south-eastern Australia. Int. J. Wildland Fire 2017, 26, 177–190. [Google Scholar] [CrossRef]
- Storey, M.; Price, O.; Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 2016, 25, 1048–1060. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Cohn, J.; Gill, A.M.; Bedward, M.; Lucas, C. Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. Int. J. Wildland Fire 2010, 18, 932–943. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Gill, A.M.; Stephens, S.L.; Cary, G.J. The worldwide “wildfire” problem. Ecol. Appl. 2013, 23, 438–454. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Calkin, D.E.; Thompson, M.P. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildland Fire 2017, 26, 587–597. [Google Scholar] [CrossRef]
- Penman, T.D.; Cirulis, B.A. Cost effectiveness of fire management strategies in southern Australia. Int. J. Wildland Fire 2020, 29, 427–439. [Google Scholar] [CrossRef]
- Blanchi, R.; Lucas, C.; Leonard, J.; Finkele, K. Meteorological conditions and wildfire-related houseloss in Australia. Int. J. Wildland Fire 2010, 19, 914–926. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C.; Wheeler, M.C.; Hendon, H.H. On the Remote Drivers of Rainfall Variability in Australia. Mon. Weather Rev. 2009, 137, 3233–3253. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hudson, D.; Wheeler, M.C.; Alves, O.; Hendon, H.H.; Pook, M.J.; Risbey, J.S. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dyn. 2014, 43, 1915–1937. [Google Scholar] [CrossRef]
- Marshall, A.G.; Wang, G.M.; Hendon, H.H.; Lin, H. Madden-Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1. Clim. Dyn. 2023, 61, 431–447. [Google Scholar] [CrossRef]
- Marshall, A.G.; Wheeler, M.C.; Cowan, T. Madden-Julian Oscillation Impacts on Australian Temperatures and Extremes. J. Clim. 2023, 36, 335–357. [Google Scholar] [CrossRef]
- Marshall, A.G.; Gregory, P.A.; de Burgh-Day, C.O.; Griffiths, M. Subseasonal drivers of extreme fire weather in Australia and its prediction in ACCESS-S1 during spring and summer. Clim. Dyn. 2021, 58, 523–533. [Google Scholar] [CrossRef]
- Taylor, R.; Marshall, A.G.; Crimp, S.; Cary, G.J.; Harris, S.; Sauvage, S. Associations between Australian climate drivers and extreme weekly fire danger. Int. J. Wildland Fire 2023, 33, WF23060. [Google Scholar] [CrossRef]
- Wedd, R.; Alves, O.; de Burgh-Day, C.; Down, C.; Griffiths, M.; Hendon, H.H.; Hudson, D.; Li, S.; Lim, E.-P.; Marshall, A.G.; et al. ACCESS-S2: The upgraded Bureau of Meteorology multi-week to seasonal prediction system. J. South. Hemisph. Earth Syst. Sci. 2022, 72, 218–242. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Hagmann, R.K.; Hessburg, P.F.; Salter, R.B.; Merschel, A.G.; Reilly, M.J. Contemporary wildfires further degrade resistance and resilience of fire-excluded forests. For. Ecol. Manag. 2022, 506, 119975. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Li Liu, D.; Ji, F.; Niu, X.; Ruan, H.; Shi, L.; Yu, Q. Machine learning-based integration of large-scale climate drivers can improve the forecast of seasonal rainfall probability in Australia. Environ. Res. Lett. 2020, 15, 084051. [Google Scholar] [CrossRef]
- Rasel, H.; Imteaz, M.; Mekanik, F. Investigating the influence of Remote Climate Drivers as the Predictors in Forecasting South Australian spring rainfall. Int. J. Environ. Res. 2016, 10, 1–12. [Google Scholar]
- Furman, J.H.; Linn, R.R. What is FIRETEC (and why should I care)? Fire Manag. Today 2018, 76, 33–36. [Google Scholar]
- Walker, J. PHOENIX Rapidfire Knowledge Base. 2018. Available online: https://firepredictions.atlassian.net/wiki/spaces/viewspacesummary.action?key=PH (accessed on 22 March 2024).
- Spark Operational Features. 2023. Available online: https://www.afac.com.au/docs/default-source/fire-predictions/spark-operational-_-features.pdf?sfvrsn=2 (accessed on 22 March 2024).
- Juliano, T.W.; Lareau, N.; Frediani, M.E.; Shamsaei, K.; Eghdami, M.; Kosiba, K.; Wurman, J.; DeCastro, A.; Kosović, B.; Ebrahimian, H. Toward a Better Understanding of Wildfire Behavior in the Wildland-Urban Interface: A Case Study of the 2021 Marshall Fire. Geophys. Res. Lett. 2023, 50, e2022GL101557. [Google Scholar] [CrossRef]
- Hossain, I.; Rasel, H.M.; Imteaz, M.A.; Mekanik, F. Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: A case study for Western Australia. Meteorol. Atmos. Phys. 2020, 132, 131–141. [Google Scholar] [CrossRef]
- Hossain, I.; Esha, R.; Alam Imteaz, M. An Attempt to Use Non-Linear Regression Modelling Technique in Long-Term Seasonal Rainfall Forecasting for Australian Capital Territory. Geosciences 2018, 8, 282. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M.A. Forecasting Victorian spring rainfall using ENSO and IOD: A comparison of linear multiple regression and nonlinear ANN. In Proceedings of the 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering, Jalarta, Indonesia, 14–15 August 2012; pp. 86–89. [Google Scholar] [CrossRef]
- Rasel, H.; Imteaz, M. Application of Artificial Neural Network for seasonal rainfall forecasting: A case study for South Australia. In Proceedings of the World Congress on Engineering, London, UK, 29 June–1 July 2016; Available online: https://www.iaeng.org/publication/WCE2016/WCE2016_pp130-134.pdf (accessed on 18 January 2024).
- Bagirov, A.M.; Mahmood, A.; Barton, A. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach. Atmos. Res. 2017, 188, 20–29. [Google Scholar] [CrossRef]
- Khastagir, A.; Hossain, I.; Anwar, A.H.M.F. Efficacy of linear multiple regression and artificial neural network for long-term rainfall forecasting in Western Australia. Meteorol. Atmos. Phys. 2022, 134, 69. [Google Scholar] [CrossRef]
- Richman, M.B.; Leslie, L.M. Attribution and Prediction of Maximum Temperature Extremes in SE Australia. Procedia Comput. Sci. 2014, 36, 612–617. [Google Scholar] [CrossRef]
- McKay, R.; Bettio, L.; Wang, W.; Ramchurn, A.; Hope, P. Multi-Linear Regression to Explain Australian Climate Events. In Proceedings of the Bureau of Meteorology Annual R&D Workshop: Towards Seasmless Science and Services, Melbourne, Australia, 7–10 August 2023; Available online: http://www.bom.gov.au/research/workshop/2023/posters/RoseannaMcKay_poster.pdf (accessed on 30 January 2024).
- Tozer, C.R.; Kiem, A.S.; Verdon-Kidd, D.C. Large-scale ocean-atmospheric processes and seasonal rainfall variability in South Australia: Potential for improving seasonal hydroclimatic forecasts. Int. J. Climatol. 2017, 37, 861–877. [Google Scholar] [CrossRef]
- Palmer, T.N. A nonlinear dynamical perspective on climate prediction. J. Clim. 1999, 12, 575–591. [Google Scholar] [CrossRef]
- Rial, J.A.; Pielke, R.A.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; de Noblet-Ducoudré, N.; Prinn, R.; Reynolds, J.F. Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim. Chang. 2004, 65, 11–38. [Google Scholar] [CrossRef]
- Westra, S.; Sharma, A. An upper limit to seasonal rainfall predictability? J. Clim. 2010, 23, 3332–3351. [Google Scholar] [CrossRef]
- Power, S.; Haylock, M.; Colman, R.; Wang, X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 2006, 19, 4755–4771. [Google Scholar] [CrossRef]
- Taylor, R.; Marshall, A.G.; Crimp, S.; Cary, G.J.; Harris, S. Climate Driver Influences on Prediction of the Australian Fire Behaviour Index. Atmosphere 2024, 15, 203. [Google Scholar] [CrossRef]
- Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi, S.; et al. The global wildland–urban interface. Nature 2023, 621, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Sci. Total Environ. 2020, 707, 135592. [Google Scholar] [CrossRef] [PubMed]
- Price, O.; Bradstock, R. The spatial domain of wildfire risk and response in the Wildland Urban Interface in Sydney, Australia. Nat. Hazards Earth Syst. Sci. 2013, 13, 3385–3393. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef]
- Pook, M.; Gibson, T. Atmospheric blocking and storm tracks during SOP-1 of the FROST Project. Aust. Meteorol. Mag. 1999, 48, 51–60. [Google Scholar]
- AFAC. Australian Fire Danger Rating System Frequently Asked Questions (FAQs). Available online: https://www.afac.com.au/initiative/afdrs/afdrs-faqs (accessed on 30 January 2024).
- Cube Management Solutions. Improving Our National Fire Danger Rating System. 2014. Available online: https://www.afac.com.au/docs/default-source/afdrs/nfdrs---concept-document-v1-0-final.pdf?sfvrsn=2 (accessed on 24 November 2023).
- Matthews, S. Fire Behaviour Index Technical Guide. 2022. Available online: https://www.afac.com.au/docs/default-source/afdrs/fire-behaviour-index-technical-guide.pdf?sfvrsn=4&download=true (accessed on 29 February 2024).
- Gregory, P.; Bureau of Meteorology, Docklands, Australia. Your AFDRS hindcast query. Personal communication, 12 December 2023.
- Matthews, S.; NSW Rural Fire Service, Sydney Olympic Park & Nova Systems, 100 William Street, Woolloomooloo 2011, Australia. RE: Enquiries regarding fuel loads in the AFDRS. Personal communication, 7 October 2023.
- Australian Bureau of Meteorology. Bureau of Meteorology Fire Behaviour Model Guides. Available online: https://www.afac.com.au/initiative/afdrs/article/bom-fire-behaviour-model-guides (accessed on 24 November 2023).
- Matthews, S.; Fox-Hughes, P.; Grootemaat, S.; Hollis, J.J.; Kenny, B.J.; Sauvage, S. Australian Fire Danger Rating System: Research Prototype; NSW Rural Fire Service: Lidcombe, Australia, 2019. Available online: https://www.afac.com.au/docs/default-source/afdrs/afdrs_research_prototype_report_2019.pdf?sfvrsn=6 (accessed on 29 February 2024).
- Hudson, D.; Alves, O.; Hendon, H.H.; Lim, E.-P.; Liu, G.; Luo, J.-J.; MacLachlan, C.; Marshall, A.G.; Shi, L.; Wang, G. ACCESS-S1 the new Bureau of Meteorology multi-week to seasonal prediction system. J. South. Hemisph. Earth Syst. Sci. 2017, 67, 132–159. [Google Scholar] [CrossRef]
- Collaboration for Australian Weather and Climate Research. Forecast Verification Issues, Methods and FAQ. In Proceedings of the 7th International Verification Methods Workshop, Berlin, Germany, 3–10 May 2015; Available online: https://www.cawcr.gov.au/projects/verification/ (accessed on 10 January 2024).
- Bureau of Meteorology. About the Long Range Forecasts: Accuracy. Available online: http://www.bom.gov.au/climate/ahead/about/index.shtml#tabs=Accuracy (accessed on 8 January 2024).
- Camilleri, P.; Healy, C.; Macdonald, E.; Nicholls, S.; Sykes, J.; Winkworth, G.; Woodward, M. Recovery from bushfires: The experience of the 2003 Canberra bushfires three years after. Australas. J. Paramed. 2010, 8, 1–15. [Google Scholar] [CrossRef]
- McRae, R.H.; Sharples, J.J.; Wilkes, S.R.; Walker, A. An Australian pyro-tornadogenesis event. Nat. Hazards 2013, 65, 1801–1811. [Google Scholar] [CrossRef]
- Fromm, M.; Tupper, A.; Rosenfeld, D.; Servranckx, R.; McRae, R. Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Taylor, J.; Webb, R. Meteorological aspects of the January 2003 south-eastern Australia bushfire outbreak. Aust. For. 2005, 68, 94–103. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T.; Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Engel, C.B.; Lane, T.P.; Reeder, M.J.; Rezny, M. The meteorology of Black Saturday. Q. J. R. Meteorol. Soc. 2013, 139, 585–599. [Google Scholar] [CrossRef]
- Fox, J.; Runnalls, R. Operational Debrief Report 2008/09 Fire Season; Victorian Government: Melbourne, Australia, 2009.
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Remembering Black Saturday: The Extraordinary Weather behind Victoria’s 2009 Bushfires. Available online: https://media.bom.gov.au/social/blog/2025/remembering-black-saturday-the-extraordinary-weather-behind-victorias-2009-bushfires/ (accessed on 8 January 2024).
- Burrows, N. Lessons and Insights from Significant Bushfires in Australia and Overseas. Informing the 2018 Queensland Bushfires Review; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2019.
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Forestry and Timber Bureau: Canberra, Australia, 1967.
- Noble, I.; Gill, A.; Bary, G. McArthur’s fire-danger meters expressed as equations. Austral Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Parliament of Victoria. 2009 Victorian Bushfires Royal Commission Interim Report; Government Printer for the State of Victoria: Victoria, Australia, 2009. Available online: http://royalcommission.vic.gov.au/Commission-Reports/Interim-Report/Chapters/Information.html (accessed on 29 February 2024).
- Bureau of Meteorology. Australian Rainfall during El Niño and La Niña events. Available online: http://www.bom.gov.au/climate/history/enso/ (accessed on 14 December 2023).
- Bureau of Meteorology. Monthly Weather Review Australia November 2015. 2015. Available online: http://www.bom.gov.au/climate/mwr/aus/mwr-aus-201511.pdf (accessed on 9 January 2024).
- Noetic Solutions. Findings of the Project Pinery Review including the Lessons and Action Plan; South Australian Country Fire Service: Deakin West, Australia, 2016. Available online: https://safecom-files-v8.s3.amazonaws.com/current/docs/south_australian_country_fire_service_project_pinery_noetic_report.pdf (accessed on 9 January 2024).
- Hendon, H.H.; Thompson, D.W.J.; Wheeler, M.C. Australian Rainfall and Surface Temperature Variations Associated with the Southern Hemisphere Annular Mode. J. Clim. 2007, 20, 2452–2467. [Google Scholar] [CrossRef]
- Pook, M.J.; Risbey, J.S.; McIntosh, P.C.; Ummenhofer, C.C.; Marshall, A.G.; Meyers, G.A. The Seasonal Cycle of Blocking and Associated Physical Mechanisms in the Australian Region and Relationship with Rainfall. Mon. Weather Rev. 2013, 141, 4534–4553. [Google Scholar] [CrossRef]
- Marshall, A.; Hudson, D.; Hendon, H.; Pook, M.; Alves, O.; Wheeler, M. Simulation and prediction of blocking in the Australian region and its influence on intra-seasonal rainfall in POAMA-2. Clim. Dyn. 2013, 42, 3271–3288. [Google Scholar] [CrossRef]
- Dowdy, A.J. Climatological Variability of Fire Weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Harris, S.; Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 2019, 14, e0222328. [Google Scholar] [CrossRef]
- Lucas, C.; Hennessy, K.; Mills, G.; Bathols, J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2007.
- Verdon, D.C.; Kiem, A.S.; Franks, S.W. Multi-decadal variability of forest fire risk—Eastern Australia. Int. J. Wildland Fire 2004, 13, 165–171. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.F. People, El Niño southern oscillation and fire in Australia: Fire regimes and climate controls in hummock grasslands. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150343. [Google Scholar] [CrossRef]
- Burrows, N.D.; Burbidge, A.A.; Fuller, P.J.; Behn, G. Evidence of altered fire regimes in the Western Desert region of Australia. Conserv. Sci. West. Aust. 2006, 5, 14. [Google Scholar]
- Harris, S.; Nicholls, N.; Tapper, N.; Mills, G. The sensitivity of fire activity to interannual climate variability in Victoria, Australia. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 146–160. [Google Scholar] [CrossRef]
- Burrows, N. Fuels, Weather and Behaviour of the Cascade Fire (Esperance Fire# 6) 15–17 November 2015; Science and Conservation Division Department of Parks and Wildlife: Perth, Australia, 2015.
- Government of South Australia Office for Infrastructure. 2015/16 Fire Danger Season and Pinery Fire Review. 2016. Available online: https://knowledge.aidr.org.au/media/4096/2015-2016-fire-danger-season-pinery-fire-review.pdf (accessed on 18 January 2024).
- Jones, D.A.; Trewin, B.C. On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol. 2000, 20, 697–719. [Google Scholar] [CrossRef]
- Cowan, T.; Wheeler, M.; Marshall, A.G. The combined influence of the Madden-Julian Oscillation and El Niño Southern Oscillation on Australian rainfall. J. Clim. 2023, 36, 313–334. [Google Scholar] [CrossRef]
- Bushfire and Natural Hazards CRC. Northern Australia Seasonal Bushfire Outlook 2015. 2015. Available online: https://www.afac.com.au/docs/default-source/fire-and-hazard-notes/hn007.pdf?sfvrsn=14&download=false (accessed on 11 January 2024).
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Slater, L.; Arnal, L.; Boucher, M.-A.; Chang, A.Y.-Y.; Moulds, S.; Murphy, C.; Nearing, G.; Shalev, G.; Shen, C.; Speight, L. Hybrid forecasting: Using statistics and machine learning to integrate predictions from dynamical models. Hydrol. Earth Syst. Sci. Discuss. 2022, preprint. [Google Scholar] [CrossRef]
- Sina, L.B.; Secco, C.A.; Blazevic, M.; Nazemi, K. Hybrid Forecasting Methods—A Systematic Review. Electronics 2023, 12, 2019. [Google Scholar] [CrossRef]
- Slater, L.J.; Arnal, L.; Boucher, M.A.; Chang, A.Y.Y.; Moulds, S.; Murphy, C.; Nearing, G.; Shalev, G.; Shen, C.; Speight, L.; et al. Hybrid forecasting: Blending climate predictions with AI models. Hydrol. Earth Syst. Sci. 2023, 27, 1865–1889. [Google Scholar] [CrossRef]
- Schepen, A.; Wang, Q.J. Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia. Water Resour. Res. 2015, 51, 1797–1812. [Google Scholar] [CrossRef]
- Clement, S.; Fenner School of Environment & Society, The Australian National University, Canberra 2601, Australia. Thanks for your query yesterday. Personal Communication, 20 March 2024.
- Benger, N.; Gregory, P.; Fox-Hughes, P. Interpretation of seasonal fire outlooks. In Proceedings of the AFAC23 Conference, Brisbane, Australia, 22–24 August 2023; Available online: https://www.afacconference.com.au/conference-program-v1/interpretation-of-seasonal-fire-outlooks (accessed on 24 November 2023).
- Fox-Hughes, P.; Benger, N.; Gregory, P. AFAC Conference: Report: Progress towards a new national seasonal fire outlook. Aust. J. Emerg. Manag. 2022, 37, 59–62. [Google Scholar]
- Su, C.-H.; Eizenberg, N. FAQ for BARRA. Government Document of Bureau of Meteorology. 2019. Available online: http://www.bom.gov.au/research/projects/reanalysis/FAQ_BARRA_July_2019.pdf (accessed on 24 November 2023).
- McLeod, R. Inquiry into the Operational Response to the January 2003 Bushfires in the ACT. 2003. Available online: https://www.cmtedd.act.gov.au/__data/assets/pdf_file/0008/113939/McLeodInquiry.pdf (accessed on 10 January 2024).
- Doogan, M. The Canberra Firestorm: Inquests and Inquiry into Four Deaths and Four Fires between 8 and 18 January 2003. 2006. Available online: https://www.courts.act.gov.au/__data/assets/pdf_file/0003/967521/the_canberra_firestorm_vol_ii.pdf (accessed on 10 January 2024).
- Finance and Public Administration References Committee. Lessons to Be Learned in Relation to the Australian Bushfire Season 2019–20. 2021. Available online: https://parlinfo.aph.gov.au/parlInfo/download/committees/reportsen/024627/toc_pdf/LessonstobelearnedinrelationtotheAustralianbushfireseason2019-20-FinalReport.pdf;fileType=application%2Fpdf (accessed on 24 November 2023).
- Inspector-General for Emergency Management. Inquiry into the 2019–2020 Victorian Fire Season—Phase 1 Report. 2020. Available online: https://files.igem.vic.gov.au/2021-03/Inquiry%20into%20the%202019%2020%20Victorian%20Fire%20Season.pdf (accessed on 29 February 2024).
- ACT Multi Hazard Advisory Council. Report on ACT Bushfire Management since 2003. 2023. Available online: https://www.esa.act.gov.au/sites/default/files/2023-01/Report%20-%20ACT%20Multi-Hazard%20Advisory%20Council%20-%20Report%20on%20ACT%20Bushfire%20Management%202022_0.PDF (accessed on 29 February 2024).
- Allen, D.; Brown, I.; Darlington, D.; Dovey, S.; Gellie, N.; Holme, L.; Jones, W.; Luscombe, G.; Shepherd, T.; Shields, B.; et al. Reducing the Costs and Impacts of Bushfires; Independent Bushfire Group: Sydney, Australia, 2020; Available online: https://emergencyleadersforclimateaction.org.au/wp-content/uploads/2020/08/reducing-costs-impacts-bushfires-independent-bushfire-group-full-report.pdf (accessed on 24 November 2023).
- Cowan, J.; Australian Broadcasting Commission. Firefighting choppers cost millions on stand-by. 2010. Available online: https://www.abc.net.au/news/2010-04-19/firefighting-choppers-cost-millions-on-stand-by/401846 (accessed on 27 February 2024).
- Mackie, B. Warning Fatigue: Insights from the Australian Bushfire Context. Ph.D. Thesis, University of Canterbury, Canterbury, UK, 31 March 2014. [Google Scholar]
- Dowdy, A.J. Seamless climate change projections and seasonal predictions for bushfires in Australia. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 120–138. [Google Scholar] [CrossRef]
- Cai, W.; van Rensch, P.; Cowan, T.; Hendon, H.H. Teleconnection Pathways of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall. J. Clim. 2011, 24, 3910–3923. [Google Scholar] [CrossRef]
- Chung, C.; Boschat, G.; Taschetto, A.; Narsey, S.; McGregor, S.; Santoso, A.; Delage, F. Evaluation of seasonal teleconnections to remote drivers of Australian rainfall in CMIP5 and CMIP6 models. J. South. Hemisph. Earth Syst. Sci. 2023, 73, 219–261. [Google Scholar] [CrossRef]
Driver | Driver Name | Index | Reference Study |
---|---|---|---|
MJO | Madden Julian Oscillation | Real-time Multivariate MJO series 1 and 2 | Wheeler & Hendon, 2004 [48] |
ENSO | El Nino Southern Oscillation | NINO-3.4 | Trenberth, 1997 [49] |
IOD | Indian Ocean Dipole | Dipole Mode Index | Saji & Yamagata, 2003 [50] |
SAM | Southern Annular Mode | Antarctic Oscillation Index | Gong & Wang, 1999 [51] |
Split-Flow Blocking | Blocking Index | Pook & Gibson, 1999 [52] | |
STRH | Sub-tropical Ridge High | STRH Index | Marshall et al., 2014 [16] |
Dynamical Model | Statistical Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Total | Observed | Total | ||||||
Yes | No | Yes | No | ||||||
Forecast | Yes | 22,368 | 42,030 | 64,398 | Forecast | Yes | 46,807 | 89,720 | 136,527 |
No | 28,317 | 177,712 | 206,029 | No | 4103 | 131,977 | 136,080 | ||
Total | 50,685 | 219,742 | 270,427 | Total | 50,910 | 221,697 | 272,607 | ||
Accuracy | 0.74 | Accuracy | 0.66 | ||||||
Probability of detection | 0.28 | Probability of detection | 0.85 | ||||||
False alarm ratio | 0.65 | False alarm ratio | 0.66 |
Dynamical Model | Statistical Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Total | Observed | Total | ||||||
Yes | No | Yes | No | ||||||
Forecast | Yes | 61,938 | 68,186 | 130,124 | Forecast | Yes | 62,339 | 48,661 | 111,000 |
No | 23,426 | 116,877 | 140,303 | No | 23,669 | 137,938 | 161,607 | ||
Total | 85,364 | 185,063 | 270,427 | Total | 86,008 | 186,599 | 272,607 | ||
Accuracy | 0.66 | Accuracy | 0.73 | ||||||
Probability of detection | 0.57 | Probability of detection | 0.57 | ||||||
False alarm ratio | 0.52 | False alarm ratio | 0.44 |
Dynamical Model | Statistical Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Total | Observed | Total | ||||||
Yes | No | Yes | No | ||||||
Forecast | Yes | 15,336 | 38,208 | 53,544 | Forecast | Yes | 36,382 | 117,054 | 153,436 |
No | 23,529 | 194,415 | 217,944 | No | 2639 | 117,596 | 120,235 | ||
Total | 38,865 | 232,623 | 271,488 | Total | 39,021 | 234,650 | 273,671 | ||
Accuracy | 0.77 | Accuracy | 0.56 | ||||||
Probability of Detection | 0.25 | Probability of Detection | 0.87 | ||||||
False Alarm Ratio | 0.71 | False Alarm Ratio | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, R.; Marshall, A.G.; Crimp, S.; Cary, G.J.; Harris, S. A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia. Atmosphere 2024, 15, 470. https://doi.org/10.3390/atmos15040470
Taylor R, Marshall AG, Crimp S, Cary GJ, Harris S. A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia. Atmosphere. 2024; 15(4):470. https://doi.org/10.3390/atmos15040470
Chicago/Turabian StyleTaylor, Rachel, Andrew G. Marshall, Steven Crimp, Geoffrey J. Cary, and Sarah Harris. 2024. "A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia" Atmosphere 15, no. 4: 470. https://doi.org/10.3390/atmos15040470
APA StyleTaylor, R., Marshall, A. G., Crimp, S., Cary, G. J., & Harris, S. (2024). A Statistical Forecasting Model for Extremes of the Fire Behaviour Index in Australia. Atmosphere, 15(4), 470. https://doi.org/10.3390/atmos15040470