Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific
Abstract
:1. Introduction
- (i)
- Local oceanic processes that contribute to MHWs encompass enhanced horizontal heat advection [19], weakened boundary currents [20], and favorable mesoscale eddies [21,22]. Notably, horizontal upper ocean heat convergence is often responsible for the start of most MHWs [23]. The warm water forcing via anomalous ocean circulation was the predominant oceanic pattern during MHWs [21]. Furthermore, persistent MHWs are more intense and frequent in tropical eastern and western boundary currents [16,22,24].
- (ii)
- Numerous prominent and impactful MHWs have been linked to atmospheric forcing, which brings anomalously strong heat fluxes from the atmosphere into the ocean. Examples include the 2012 MHW in the Northwest Atlantic [25], the 2015/16 summer MHW around tropical Australia [26], the 2017–2018 Tasman Sea MHW [27], the 2019–2020 Northeast Pacific MHW [28], and the 2020 Great Barrier Reef and Coral Sea MHW [12]. Notably, air–sea heat fluxes drove the majority of MHWs in the Tasman Sea from 1993 to 2021 [29,30]. These events tend to occur during summer or in tropical regions, particularly in the eastern South Pacific [23,26,31,32,33].
- (iii)
- Climate variations also play a pivotal role in modulating the occurrence of MHWs. It is noteworthy that the El Niño-Southern Oscillation (ENSO), the largest global driver of MHWs, can amplify the intensity, duration, and spatial extent of MHWs on interannual and shorter timescales [34,35]. Two-thirds of recorded MHWs occurring in the tropical Pacific are associated with El Niño events. Warm SSTs in the eastern equatorial Pacific and anomalous changes in the Indian Ocean Dipole (IOD) during El Niño could further facilitate MHW occurrence [22,36]. On longer timescales, the Pacific Decadal Oscillation has been found to modulate the frequency and intensity of El Niño events, thereby influencing the tropical MHWs [37].
2. Materials and Methods
2.1. Metrics of MHW Events
2.2. Upper-Ocean Temperature Budget Analysis
3. Results
3.1. Main Features of Metrics in MHWs: High-Predictive vs. Low-Predictive
3.2. Influencing Factors of Sub-Seasonal Forecast Skills of Extreme MHWs: Tropical Background SST and Process in the Mixed Layer Heat Budget
3.2.1. ENSO Forcing
3.2.2. Ocean Mixed-Layer Heat Budget
4. Discussion
4.1. Spatial-Temporal Analysis of Extreme Marine Heatwave (MHW) Events That Occurred in the Central–Eastern Tropical Pacific
4.2. Influencing Factors of Sub-Seasonal Forecast Skills of Extreme MHWs: Tropical Background SST
4.3. Influencing Factors of Sub-Seasonal Forecast Skills of Extreme MHWs: Process in the Mixed Layer Heat Budget
4.4. Limitations and Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Cavole, L.M.; Demko, A.M.; Diner, R.E.; Giddings, A.; Koester, I.; Pagniello, C.M.; Paulsen, M.L.; Ramirez-Valdez, A.; Schwenck, S.M.; Yen, N.K.; et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 2016, 29, 273–285. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.; Liu, Q.; Huang, G.; Hu, K.; Li, X. Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980. Nat. Commun. 2023, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, R.; Dai, P.; Cai, R.; Tan, H. Diverse marine heatwave intensity trends in the marginal seas of China. Theor. Appl. Clim. 2024, 155, 5237–5250. [Google Scholar] [CrossRef]
- Scannell, H.A.; Johnson, G.C.; Thompson, L.; Lyman, J.M.; Riser, S.C. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2020, 47, e2020GL090548. [Google Scholar] [CrossRef]
- Tan, H.-J.; Cai, R.-S.; Wu, R.-G. Summer marine heatwaves in the South China Sea: Trend, variability and possible causes. Adv. Clim. Change Res. 2022, 13, 323–332. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, F.; Zhu, J.; Chen, X. Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades. Adv. Atmos. Sci. 2022, 39, 1579–1587. [Google Scholar] [CrossRef]
- Benthuysen, J.A.; Smith, G.A.; Spillman, C.M.; Steinberg, C.R. Subseasonal prediction of the 2020 Great Barrier Reef and Coral Sea marine heatwave. Environ. Res. Lett. 2021, 16, 124050. [Google Scholar] [CrossRef]
- Hu, S.; Li, S.; Zhang, Y.; Guan, C.; Du, Y.; Feng, M.; Ando, K.; Wang, F.; Schiller, A.; Hu, D. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 2021, 16, 104024. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Amaya, D.; Becker, E.; Bograd, S.J.; Brodie, S.; Hazen, E.L.; Buil, M.P.; Tommasi, D. Global seasonal forecasts of marine heatwaves. Nature 2022, 604, 486–490. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Gupta, A.S.; Oliver, E.C.J.; Hobday, A.J.; Benthuysen, J.A.; Scannell, H.A.; Smale, D.A.; Wernberg, T. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 2020, 1, 482–493. [Google Scholar] [CrossRef]
- Oliver, E.C.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Gupta, A.S. Marine heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.; Burger, F.A.; Griffies, S.M.; Frölicher, T.L. Local drivers of marine heatwaves: A global analysis with an earth system model. Front. Clim. 2022, 4, 847995. [Google Scholar] [CrossRef]
- Song, S.-Y.; Yeh, S.-W.; Kim, H.; Holbrook, N.J. Arctic warming contributes to increase in Northeast Pacific marine heatwave days over the past decades. Commun. Earth Environ. 2023, 4, 25. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef]
- Benthuysen, J.; Feng, M.; Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 2014, 91, 232–246. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.J.; Perkins-Kirkpatrick, S.; Kruger, A.; Smit, A.J. Smit. Predominant atmospheric and oceanic patterns during coastal marine heatwaves. Front. Mar. Sci. 2017, 4, 323. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Scannell, H.A.; Gupta, A.S.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.J.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J.; et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Feng, M.; Bindoff, N.L.; Phillips, H.E. Local drivers of extreme upper ocean marine heatwaves assessed using a global ocean circulation model. Front. Clim. 2022, 4, 788390. [Google Scholar] [CrossRef]
- Elzahaby, Y.; Schaeffer, A.; Roughan, M.; Delaux, S. Oceanic circulation drives the deepest and longest marine heatwaves in the East Australian Current system. Geophys. Res. Lett. 2021, 48, e2021GL094785. [Google Scholar] [CrossRef]
- Chen, K.; Gawarkiewicz, G.G.; Lentz, S.J.; Bane, J.M. Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 2014, 119, 218–227. [Google Scholar] [CrossRef]
- Benthuysen, J.A.; Oliver, E.C.J.; Feng, M.; Marshall, A.G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 2018, 123, 1301–1326. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; King, A.D.; Cougnon, E.; Grose, M.R.; Oliver, E.C.J.; Holbrook, N.; Lewis, S.C.; Pourasghar, F. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 2019, 100, S105–S110. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, J.; Liu, Q.; Chen, H.; Li, C. A persistent and intense marine heatwave in the Northeast Pacific during 2019–2020. Geophys. Res. Lett. 2021, 48, e2021GL093239. [Google Scholar] [CrossRef]
- Gregory, C.H.; Holbrook, N.J.; Marshall, A.G.; Spillman, C.M. Atmospheric Drivers of Tasman Sea Marine Heatwaves. J. Clim. 2023, 36, 5197–5214. [Google Scholar] [CrossRef]
- Li, Z.; Holbrook, N.J.; Zhang, X.; Oliver, E.C.J.; Cougnon, E.A. Remote forcing of Tasman Sea marine heatwaves. J. Clim. 2020, 33, 5337–5354. [Google Scholar] [CrossRef]
- Echevin, V.; Colas, F.; Espinoza-Morriberon, D.; Vasquez, L.; Anculle, T.; Gutierrez, D. Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador. Front. Mar. Sci. 2018, 5, 367. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.J.; Chen, K. Drivers of marine heatwaves in the Northwest Atlantic: The role of air–sea interaction during onset and decline. Front. Mar. Sci. 2021, 8, 627970. [Google Scholar] [CrossRef]
- Carrasco, D.; Pizarro, O.; Jacques-Coper, M.; Narváez, D.A. Main drivers of marine heat waves in the eastern South Pacific. Front. Mar. Sci. 2023, 10, 1129276. [Google Scholar] [CrossRef]
- Barriopedro, D.; García-Herrera, R.; Ordóñez, C.; Miralles, D.G.; Salcedo-Sanz, S. Heat waves: Physical understanding and scientific challenges. Rev. Geophys. 2023, 61, e2022RG000780. [Google Scholar] [CrossRef]
- Misra, R.; Sérazin, G.; Meissner, K.J.; Gupta, A.S. Projected changes to Australian marine heatwaves. Geophys. Res. Lett. 2021, 48, e2020GL091323. [Google Scholar] [CrossRef]
- Jacox, M.G. Marine heatwaves in a changing climate. Nature 2019, 571, 485–487. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Hobday, A.J.; Spillman, C.M.; Eveson, J.P.; Hartog, J.R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 2016, 25, 45–56. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Stock, C.A.; Hervieux, G. On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Clim. Dyn. 2019, 53, 7519–7533. [Google Scholar] [CrossRef]
- Jacox, M.G.; Tommasi, D.; Alexander, M.A.; Hervieux, G.; Stock, C.A. Predicting the evolution of the 2014–2016 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 2019, 6, 497. [Google Scholar] [CrossRef]
- Giamalaki, K.; Beaulieu, C.; Prochaska, J.X. Assessing predictability of marine heatwaves with random forests. Geophys. Res. Lett. 2022, 49, e2022GL099069. [Google Scholar] [CrossRef]
- de Boisséson, E.; Balmaseda, M.A. Predictability of marine heatwaves: Assessment based on the ECMWF seasonal forecast system. Ocean Sci. 2024, 20, 265–278. [Google Scholar] [CrossRef]
- Gupta, A.S.; Ryan, S.; Hernaman, V. Advances in marine heatwave interactions. Front. Clim. 2023, 5, 1177781. [Google Scholar] [CrossRef]
- Luo, J.-J.; Masson, S.; Behera, S.; Yamagata, T. Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Clim. 2007, 20, 2178–2190. [Google Scholar] [CrossRef]
- Luo, J.; Behera, S.; Masumoto, Y.; Sakuma, H.; Yamagata, T. Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Luo, J.-J.; Masson, S.; Behera, S.K.; Yamagata, T. Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Clim. 2008, 21, 84–93. [Google Scholar] [CrossRef]
- Peng, K.; Luo, J.-J.; Liu, Y. Prediction of Seasonal Tropical Cyclone Activity in the NUIST-CFS1.0 Forecast System. Adv. Atmos. Sci. 2023, 40, 1309–1325. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Luo, J.J.; Zhang, Y.; Doi, T.; Yamagata, T. Improved MJO prediction using a multi-member subseasonal to seasonal forecast system of NUIST (NUIST CFS 1.1). Preprints 2023, 202307013. [Google Scholar] [CrossRef]
- Lin, L.; Yu, Y.; Lu, C.; Luo, J.; Chen, L.; Ma, J.; Guan, Z.; Wu, J. Are the extreme marine heatwave events in the central-eastern tropical Pacific predictable 30–60 days in advance by NUIST CFS1.1 model? Atmos. Res. 2023, 289, 106744. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Luo, J.-J. The Forecast Skills and Predictability Sources of Marine Heatwaves in the NUIST-CFS1.0 Hindcasts. Adv. Atmos. Sci. 2024, 41, 1589–1600. [Google Scholar] [CrossRef]
- Gupta, H.; Sil, S. Assessment of GHRSST and OISST Datasets in Identification of Marine Heat-Waves and Heat-Spikes. IEEE Geosci. Remote Sens. 2024, 21, 1501705. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Wang, F.; Lv, M. Weak Mesoscale Variability in the Optimum Interpolation Sea Surface Temperature (OISST)-AVHRR-Only Version 2 Data before 2007. Remote Sens. 2022, 14, 409. [Google Scholar] [CrossRef]
- Gupta, A.S.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Oliver, E.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Feng, M.; Holbrook, N.J.; et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef]
- Plecha, S.M.; Soares, P.M.M.; Silva-Fernandes, S.M.; Cabos, W. On the uncertainty of future projections of marine heatwave events in the North Atlantic Ocean. Clim. Dyn. 2021, 56, 2027–2056. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef]
- de Boisseson, E. Monitoring marine heatwaves in CMEMS ocean analysis systems. In Proceedings of the 22nd EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 19468. [Google Scholar] [CrossRef]
- Li, Z.; Wu, G.; Xu, C.; Zhu, X.-H.; Long, Y. Summer marine heatwaves in the tropical Indian Ocean associated with an unseasonable positive Indian Ocean Dipole event 2012. Front. Mar. Sci. 2024, 11, 1425813. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Y.; Zhang, S.; Wu, L.; Chang, P.; Cai, W.; Zscheischler, J.; Leung, L.R.; Small, J.; Danabasoglu, G.; et al. Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat. Clim. Change 2022, 12, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Y.; Luo, J.-J.; Jiang, X. Assessing the Role of Air–Sea Coupling in Predicting Madden–Julian Oscillation with an Atmosphere–Ocean Coupled Model. J. Clim. 2021, 34, 9647–9663. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.J.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Wu, J.; Ren, H.L.; Zhang, S.; Liu, Y.; Liu, X. Evaluation and predictability analysis of seasonal prediction by BCC second-generation climate system model. Chin. J. Atmos. Sci. 2017, 41, 1300–1315. [Google Scholar]
- Liu, L.; Bai, H.; Feng, G.; Gong, Z.; Zhou, B. Evaluation and correction of sub-seasonal dynamic model forecast of precipitation in eastern China. Clim. Dyn. 2023, 61, 4643–4659. [Google Scholar] [CrossRef]
- Stevenson, J.W.; Niiler, P.P. Upper ocean heat budget during the hawaii-to-tahiti shuttle experiment. J. Phys. Oceanogr. 1983, 13, 1894–1907. [Google Scholar] [CrossRef]
- Jin, D.; Guan, Z.; Huo, L.; Wang, X. Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China. Clim. Dyn. 2017, 49, 3075–3090. [Google Scholar] [CrossRef]
- Foltz, G.R.; Grodsky, S.A.; Carton, J.A.; McPhaden, M.J. Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Du, Y.; Qu, T.; Meyers, G.; Masumoto, Y.; Sasaki, H. Seasonal heat budget in the mixed layer of the southeastern tropical Indian Ocean in a high-resolution ocean general circulation model. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Haijun, Y.; Qinyu, L.; Xujing, J. On the upper oceanic heat budget in the south china sea:Annual cycle. Adv. Atmos. Sci. 1999, 16, 619–629. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Y.; Guan, Z.; Wang, X. Dominant coupling mode of SST in maritime continental region and East Asian summer monsoon circulation. J. Geophys. Res.-Atmos. 2022, 127, e2022JD036739. [Google Scholar] [CrossRef]
- Swenson, M.S.; Hansen, D.V. Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr. 1999, 29, 69–81. [Google Scholar] [CrossRef]
- Peter, A.; Le Hénaff, M.; du Penhoat, Y.; Menkes, C.E.; Marin, F.; Vialard, J.; Caniaux, G.; Lazar, A. A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Siedlecki, S.; Chen, K.; Kwon, Y.-O.; Brodie, S.; Ortiz, I.; Tommasi, D.; Widlansky, M.J.; Barrie, D.; et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 2020, 183, 102307. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y.; Xiang, B. Northern Hemisphere summer monsoon intensified by mega-ElNiño/Southern Oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Administration. El Niño/La Niña Event Discrimination Method: QX/T 370; China Standard Press: Beijing, China, 2017. [Google Scholar]
- Ren, H.-L.; Jin, F.-F. Niño indices for two types of ENSO. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Zhao, J. Intensified Mega-ENSO has increased the proportion of intense tropical cyclones over the western Northwest Pacific since the late 1970s. Geophys. Res. Lett. 2017, 44, 11–959. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hobday, A.J. Vertical structures of marine heatwaves. Nat. Commun. 2023, 14, 6483. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Roughan, M.; Hemming, M. Interactions between cold cyclonic eddies and a western boundary current modulate marine heatwaves. Commun. Earth Environ. 2023, 4, 380. [Google Scholar] [CrossRef]
- Köhn, E.E.; Vogt, M.; Münnich, M.; Gruber, N. On the vertical structure and propagation of marine heatwaves in the Eastern Pacific. J. Geophys. Res.-Oceans 2024, 129, e2023JC020063. [Google Scholar] [CrossRef]
- Johnson, E.S.; Mc Phaden, M.J. Structure of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr. 1993, 23, 608–625. [Google Scholar] [CrossRef]
- Kessler, W.S.; McPhaden, M.J.; Weickmann, K.M. Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res. Oceans 1995, 100, 10613–10631. [Google Scholar] [CrossRef]
- Wang, W.; McPhaden, M.J. The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr. 2000, 30, 2989–3008. [Google Scholar] [CrossRef]
- Zhang, C. Intraseasonal perturbations in sea surface temperatures of the equatorial eastern Pacific and their association with the Madden–Julian oscillation. J. Clim. 2001, 14, 1309–1322. [Google Scholar] [CrossRef]
- McPhaden, M.J. Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Clim. 2002, 15, 2632–2647. [Google Scholar] [CrossRef]
- Amaya, D.J.; Alexander, M.A.; Scott, J.D.; Jacox, M.G. An evaluation of high-resolution ocean reanalyses in the California current system. Prog. Oceanogr. 2023, 210, 102951. [Google Scholar] [CrossRef]
- Schmeisser, L.; Bond, N.A.; Siedlecki, S.A.; Ackerman, T.P. The role of clouds and surface heat fluxes in the maintenance of the 2013–2016 Northeast Pacific marine heatwave. J. Geophys. Res. Atmos. 2019, 124, 10772–10783. [Google Scholar] [CrossRef]
- de Souza, J.M.A.C.; Couto, P.; Soutelino, R.; Roughan, M. Evaluation of four global ocean reanalysis products for New Zealand waters–A guide for regional ocean modelling. N. Z. J. Mar. Freshw. Res. 2021, 55, 132–155. [Google Scholar] [CrossRef]
- Asfaw, T.G.; Luo, J.-J. Seasonal Prediction of Summer Precipitation over East Africa Using NUIST-CFS1.0. Adv. Atmos. Sci. 2022, 39, 355–372. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Luo, J.; Chen, S. Impact of tropical Atlantic SST anomaly on ENSO in the NUIST-CFS1.0 Hindcasts. Int. J. Climatol. 2022, 42, 6055–6071. [Google Scholar] [CrossRef]
- Tang, S.; Luo, J.-J.; He, J.; Wu, J.; Zhou, Y.; Ying, W. Toward understanding the extreme floods over Yangtze River valley in June–July 2020: Role of Tropical Oceans. Adv. Atmos. Sci. 2021, 38, 2023–2039. [Google Scholar] [CrossRef]
- Ying, W.; Yan, H.; Luo, J.-J. Seasonal predictions of summer precipitation in the middle-lower reaches of the Yangtze River with global and regional models based on NUIST-CFS1.0. Adv. Atmos. Sci. 2022, 39, 1561–1578. [Google Scholar] [CrossRef]
Type | Name | Implication | Units |
---|---|---|---|
Metrics of MHW | PS>1 (PS>2, PS>3) | Proportion of region in MHW conditions with moderate (strong, severe) warming. | % |
IS>1 (IS>2, IS>3) | Spatial integral of SST anomalies over area with largest contiguous MHW with moderate (strong, severe) warming that intersects the region. | °C Mkm2 | |
DS>1 (DS>2, DS>3) | Total days of each grid reaching the standard of moderate (strong, severe) warming in the region. | - |
MHW Period | Duration (days) | During El Niño | During Peak El Niño | El Niño Type | Within El Niño Key Area | ||
---|---|---|---|---|---|---|---|
High-predictive MHWs | MHW#1 | 1 June 2015–15 February 2016 | 260 | √ | √ | Super Eastern | √ |
MHW#2 | 15 September 1982–1 March 1983 | 167 | √ | √ | Super Eastern | √ | |
Moderate-predictive MHWs | MHW#3 | 18 September 1997–13 February 1998 | 148 | √ | √ | Super Eastern | √ |
MHW#4 | 1 July 1997–18 February 1998 | 233 | √ | √ | Super Eastern | √ | |
MHW#5 | 1 June 1997–10 September 1997 | 128 | √ | √ | Super Eastern | × | |
Low-predictive MHWs | MHW#6 | 1 November 2015–5 February 2016 | 97 | √ | √ | Super Eastern | × |
MHW#7 | 27 December 2015–14 July 2016 | 170 | Partly | Partly | Super Eastern | × |
MHW#1 | OBS | 0.937 | 0.314 | 1.243 | −0.620 | 1.373 | 1.501 | 0.951 | −1.079 |
EN | 0.844 | 0.460 | 0.642 | −0.258 | 1.187 | 1.032 | 0.661 | −0.506 | |
MHW#2 | OBS | 0.181 | −0.034 | 0.218 | −0.003 | 0.537 | 0.495 | 0.054 | −0.012 |
EN | 0.001 | −0.015 | 0.079 | −0.063 | 0.744 | 0.731 | 0.157 | −0.144 | |
MHW#6 | OBS | 0.519 | 0.662 | −0.296 | 0.153 | 0.411 | 0.244 | 0.159 | 0.008 |
EN | 0.150 | 0.006 | 0.173 | −0.029 | 0.744 | 0.804 | 0.429 | −0.489 | |
MHW#7 | OBS | −1.531 | 0.157 | −5.810 | 4.122 | 1.253 | 1.108 | 1.427 | −1.282 |
EN | −0.293 | −0.089 | −0.135 | −0.069 | 0.117 | −0.131 | 0.156 | 0.092 |
MHW#1 | OBS | 0.592 | 0.304 | 0.620 | −0.332 | 0.889 | 0.790 | 0.738 | −0.639 |
EN | 0.532 | 0.272 | 0.538 | −0.278 | 0.817 | 0.847 | 0.319 | −0.349 | |
MHW#2 | OBS | 0.392 | 0.180 | 0.557 | −0.345 | 0.745 | 0.677 | 0.083 | −0.015 |
EN | 0.236 | 0.245 | −0.013 | 0.004 | 1.018 | 0.968 | 0.286 | −0.236 | |
MHW#6 | OBS | 0.414 | 0.544 | −0.127 | −0.003 | 0.457 | 0.297 | 0.194 | −0.034 |
EN | 0.141 | 0.225 | 0.066 | −0.150 | 0.816 | 0.877 | 0.470 | −0.531 | |
MHW#7 | OBS | −0.147 | 0.049 | −1.012 | 0.816 | 0.242 | 0.151 | 0.227 | −0.136 |
EN | −0.307 | −0.081 | −0.152 | −0.074 | 0.139 | −0.135 | 0.184 | 0.090 |
MHW#1 | OBS | 0.458 | 0.396 | 0.446 | −0.384 | 0.336 | 0.346 | 0.422 | −0.432 |
EN | 0.223 | 0.176 | 0.207 | −0.160 | 0.640 | 0.503 | 0.155 | −0.018 | |
MHW#6 | OBS | 0.662 | 0.307 | −0.384 | 0.739 | 0.226 | 0.782 | 0.230 | −0.786 |
EN | −0.414 | −0.233 | −0.241 | 0.060 | 1.749 | 1.779 | 0.693 | −0.723 | |
MHW#7 | OBS | 2.644 | 1.554 | 2.370 | −1.280 | 0.078 | 1.510 | −0.931 | −0.501 |
EN | −0.136 | −0.013 | −0.079 | −0.044 | 0.379 | 0.053 | 0.212 | 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Yu, Y.; Lu, C.; Liu, G.; Wu, J.; Luo, J. Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific. Remote Sens. 2025, 17, 810. https://doi.org/10.3390/rs17050810
Lin L, Yu Y, Lu C, Liu G, Wu J, Luo J. Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific. Remote Sensing. 2025; 17(5):810. https://doi.org/10.3390/rs17050810
Chicago/Turabian StyleLin, Lin, Yueyue Yu, Chuhan Lu, Guotao Liu, Jiye Wu, and Jingjia Luo. 2025. "Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific" Remote Sensing 17, no. 5: 810. https://doi.org/10.3390/rs17050810
APA StyleLin, L., Yu, Y., Lu, C., Liu, G., Wu, J., & Luo, J. (2025). Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific. Remote Sensing, 17(5), 810. https://doi.org/10.3390/rs17050810