Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = stretching wedge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6597 KiB  
Article
Advancing Renewable Energy Systems: A Numerical Approach to Investigate Nanofluidics’ Role in Engineering Involving Physical Quantities
by Muhammad Abdul Basit, Muhammad Imran, Tayyiba Anwar-Ul-Haq, Chang-Feng Yan, Daniel Breaz, Luminita-Ioana Cotîrlă and Alin Danciu
Nanomaterials 2025, 15(4), 261; https://doi.org/10.3390/nano15040261 - 10 Feb 2025
Cited by 4 | Viewed by 923
Abstract
Nanofluids, with their enhanced thermal properties, provide innovative solutions for improving heat transfer efficiency in renewable energy systems. This study investigates a numerical simulation of bioconvective flow and heat transfer in a Williamson nanofluid over a stretching wedge, incorporating the effects of chemical [...] Read more.
Nanofluids, with their enhanced thermal properties, provide innovative solutions for improving heat transfer efficiency in renewable energy systems. This study investigates a numerical simulation of bioconvective flow and heat transfer in a Williamson nanofluid over a stretching wedge, incorporating the effects of chemical reactions and hydrogen diffusion. The system also includes motile microorganisms, which induce bioconvection, a phenomenon where microorganisms’ collective motion creates a convective flow that enhances mass and heat transport processes. This mechanism is crucial for improving the distribution of nanoparticles and maintaining the stability of the nanofluid. The unique rheological behavior of Williamson fluid, extensively utilized in hydrometallurgical and chemical processing industries, significantly influences thermal and mass transport characteristics. The governing nonlinear partial differential equations (PDEs), derived from conservation laws and boundary conditions, are converted into dimensionless ordinary differential equations (ODEs) using similarity transformations. MATLAB’s bvp4c solver is employed to numerically analyze these equations. The outcomes highlight the complex interplay between fluid parameters and flow characteristics. An increase in the Williamson nanofluid parameters leads to a reduction in fluid velocity, with solutions observed for the skin friction coefficient. Higher thermophoresis and Williamson nanofluid parameters elevate the fluid temperature, enhancing heat transfer efficiency. Conversely, a larger Schmidt number boosts fluid concentration, while stronger chemical reaction effects reduce it. These results are generated by fixing parametric values as 0.1<ϖ<1.5, 0.1<Nr<3.0, 0.2<Pr<0.5, 0.1<Sc<0.4, and 0.1<Pe<1.5. This work provides valuable insights into the dynamics of Williamson nanofluids and their potential for thermal management in renewable energy systems. The combined impact of bioconvection, chemical reactions, and advanced rheological properties underscores the suitability of these nanofluids for applications in solar thermal, geothermal, and other energy technologies requiring precise heat and mass transfer control. This paper is also focused on their applications in solar thermal collectors, geothermal systems, and thermal energy storage, highlighting advanced experimental and computational approaches to address key challenges in renewable energy technologies. Full article
(This article belongs to the Special Issue Thermal Challenges in Renewable Energy: Nanofluidic Solutions)
Show Figures

Figure 1

22 pages, 2812 KiB  
Review
Echocardiography in the Assessment of Heart Failure Patients
by Frank L. Dini, Matteo Cameli, Andrea Stefanini, Hatem Soliman Aboumarie, Matteo Lisi, Per Lindqvist and Michael Y. Henein
Diagnostics 2024, 14(23), 2730; https://doi.org/10.3390/diagnostics14232730 - 4 Dec 2024
Cited by 5 | Viewed by 5022
Abstract
Doppler echocardiography is the corner-stone of non-invasive investigation of patients with a clinical diagnosis of heart failure. It provides an accurate and quantitative assessment of cardiac structure and function. Furthermore, spectral Doppler measurement is an invaluable technique for estimating intracardiac pressures with their [...] Read more.
Doppler echocardiography is the corner-stone of non-invasive investigation of patients with a clinical diagnosis of heart failure. It provides an accurate and quantitative assessment of cardiac structure and function. Furthermore, spectral Doppler measurement is an invaluable technique for estimating intracardiac pressures with their crucial value in the optimum management of heart failure patients, irrespective of ejection fraction. Speckle tracking echocardiography stretches the unique application of echocardiography to analyze the myocardial deformation function which has proved very accurate in detecting ischemia, dyssynchrony, subclinical dysfunction and also in estimating pulmonary capillary wedge pressures. The role of longitudinal myocardial left atrial deformation dynamics has recently emerged as a valuable tool for assessing left ventricular diastolic dysfunction in patients with cardiac diseases regardless of their ejection fraction. Finally, the extent of myocardial deformation has been shown to correlate with the severity of myocardial fibrosis, a common finding in patients with heart failure. Full article
Show Figures

Figure 1

16 pages, 5567 KiB  
Article
Mixing and Thermal Transport Behavior in a Pin or Non-Pin Extruder Equipped with a Field Synergy Elongation Screw
by Yancai Sun, Shilong Wang, Shizheng Huang, Wei Pan, Yan He and Ranran Jian
Polymers 2024, 16(13), 1793; https://doi.org/10.3390/polym16131793 - 25 Jun 2024
Cited by 1 | Viewed by 1858
Abstract
The ductile forming process of a polymer in a standard screw extruder and pin-barrel extruder, equipped with or without a field synergy elongation screw, was investigated by the finite element method. In order to assess the mixing and heat transfer capabilities of screws, [...] Read more.
The ductile forming process of a polymer in a standard screw extruder and pin-barrel extruder, equipped with or without a field synergy elongation screw, was investigated by the finite element method. In order to assess the mixing and heat transfer capabilities of screws, characteristic parameters such as the mixing efficiency, segregation scale, and temperature distribution of different structures were analyzed and compared. The results indicated that the flow pattern of the polymer melt in the extruder was significantly influenced by the screw structure and was improved by the newly designed field synergy screw configuration, which brought a desirable elongational flow to enhance the radial convection. This was attributed to the unique radial wedge-shaped repeated convergence region of the field synergy elongation screw, increasing the synergistic effect between the velocity field, velocity gradient field, and temperature gradient field and thus improving the heat transfer and mixing efficiency. After adding barrel pins, the flow was forced to split, resulting in a more significant stretching effect on the melt. The field synergy effect in the pin mixed region was strengthened, which further increased the heat and mass transfer efficiency of the screw. However, increasing barrel pins could also lead to undesired temperature fluctuation and flow resistance, which have a negative impact on the melt uniformity. This study offers an important reference for optimizing screw structure to obtain strong mixing and heat transfer performances. Full article
Show Figures

Figure 1

15 pages, 3676 KiB  
Article
Mechanochemical Recycling of Flexible Polyurethane Foam Scraps for Quantitative Replacement of Polyol Using Wedge-Block-Reinforced Extruder
by Lei Guo, Fu Wang, Hailin Chai, Gongxu Liu, Xingao Jian, Jinyang Zhao, Kexin Liu, Haichao Liu, Tiewei Liu, Xiangping Zhang, Yongshuai Wang and Fumin Liu
Polymers 2024, 16(12), 1633; https://doi.org/10.3390/polym16121633 - 9 Jun 2024
Viewed by 2236
Abstract
Recycling flexible polyurethane foam (F-PUF) scraps is difficult due to the material’s high cross-linking structure. In this work, a wedge-block-reinforced extruder with a considerable enhanced shear extrusion and stretching area between the rotating screw and the stationary wedge blocks was utilized to recycle [...] Read more.
Recycling flexible polyurethane foam (F-PUF) scraps is difficult due to the material’s high cross-linking structure. In this work, a wedge-block-reinforced extruder with a considerable enhanced shear extrusion and stretching area between the rotating screw and the stationary wedge blocks was utilized to recycle F-PUF scraps into powder containing surface-active hydroxyl groups. The powder was then utilized for the quantitative replacement of polyol in the foaming process. Characterizations showed that the continuous shear extrusion and stretching during the extrusion process reduced the volume mean diameter (VMD) of the F-PUF powder obtained by extruding it three times at room temperature to reach 54 μm. The -OH number (OHN) of the powder prepared by extruding it three times reached 19.51 mgKOH/g due to the mechanochemical effect of the powdering method. The F-PUF containing recycled powder used to quantitively replace 10 wt.% polyol was similar in microstructure and chemical structure to the original F-PUF, with a compression set of 2%, indentation load deflection of 21.3 lbf, resilience of 43.4%, air permeability of 815.7 L/m2·s, tensile strength of 73.0 Kpa, and tear strength of 2.3 N/cm, indicating that the recycling method has potential for industrial applications. Full article
Show Figures

Figure 1

22 pages, 4960 KiB  
Article
Water Resource Management of Salalah Plain Aquifer Using a Sustainable Approach
by Mahaad Issa Shammas
Sustainability 2024, 16(9), 3670; https://doi.org/10.3390/su16093670 - 27 Apr 2024
Cited by 1 | Viewed by 2111
Abstract
A sustainable approach is proposed for managing the effects of salinity ingression in Salalah coastal aquifer, Oman. This paper aims to analyze and compare the groundwater levels and salinity of the aquifer from 1993 to 2027, considering both predictive and actual transient scenarios. [...] Read more.
A sustainable approach is proposed for managing the effects of salinity ingression in Salalah coastal aquifer, Oman. This paper aims to analyze and compare the groundwater levels and salinity of the aquifer from 1993 to 2027, considering both predictive and actual transient scenarios. Two novel scenarios were proposed, established, and examined in this study to bring back the aquifer to steady-state condition. The first scenario entails ceasing groundwater pumping from both Salalah and Saada wellfields, while compensating for the groundwater supply from these sources with surplus desalinated water. This scenario is projected to occur during the predictive period spanning from 2023 to 2027, denoted Scenario A. The second scenario is business as usual and involves continuing pumping from both wellfields during the same predictive period, denoted Scenario B. A numerical model for 3D flow simulation and advective transport modeling showed that on the eastern side of the Salalah coastal aquifer, the extent of seawater intrusion (SWI) was identified stretching from the shoreline to a distance of 1800 m, 1200 m, 0 m, and 600 m, in years 2011, 2014, 2018, and 2022 under the transient period, whereas SWI was delineated in land up to 0 m and 700 m in the predictive year 2027 under Scenarios A and B, respectively. In the western side of Salalah coastal aquifer, SWI was delineated in land up to 2000 m, 1700 m, 0 m, and 800 m, in years 2011, 2014, 2018, and 2022 under the transient period, whereas SWI was delineated in land up to 0 m and 750 m in the predictive year 2027 under Scenarios A and B, respectively. This study claims that Scenario A effectively pushed the seawater interface back to the coastline, projecting its reach to the shoreline (0 m) by 2027. In contrast, in baseline Scenario B, the wedge of saline intrusion in the Salalah coastal aquifer was delineated from the shoreline, up to 800 m inland, which accounted for continuation of pumping from both wellfields during the predictive period. The study concludes that Scenario A has the capability to efficiently reduce the impact of saline inflows from the coast, while Scenario B results in a more pronounced impact of salinity intrusion. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

26 pages, 12128 KiB  
Article
Cubic Chemical Autocatalysis and Oblique Magneto Dipole Effectiveness on Cross Nanofluid Flow via a Symmetric Stretchable Wedge
by Nor Ain Azeany Mohd Nasir, Tanveer Sajid, Wasim Jamshed, Gilder Cieza Altamirano, Mohamed R. Eid and Fayza Abdel Aziz ElSeabee
Symmetry 2023, 15(6), 1145; https://doi.org/10.3390/sym15061145 - 24 May 2023
Cited by 14 | Viewed by 2028
Abstract
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model [...] Read more.
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model along with its chemical processes via auto catalysts, inclined magnetic field phenomena, heat generation, Brownian movement, and thermophoresis phenomena over a symmetric shrinking (stretching) wedge. The transport of heat via nonuniform heat sources/sinks, the impact of thermophoretic diffusion, and Brownian motion are considered. The Buongiorno nanofluid model is used to investigate the impact of nanofluids on fluid flow. Modeled PDEs are transformed into ODEs by utilizing similarity variables and handling dimensionless ODEs numerically with the adoption of MATLAB’s developed bvp4c technique. This software performs a finite difference method that uses the collocation method with a three-stage LobattoIIIA strategy. Obtained outcomes are strictly for the case of a symmetric wedge. The velocity field lessens due to amplification in the magneto field variable. Fluid temperature is amplified through the enhancement of Brownian diffusion and the concentration field improves under magnification in a homogeneous reaction effect. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

19 pages, 7929 KiB  
Article
Thermal Onsets of Viscous Dissipation for Radiative Mixed Convective Flow of Jeffery Nanofluid across a Wedge
by Yogesh Dadhich, Nazek Alessa, Reema Jain, Abdul Razak Kaladgi, Karuppusamy Loganathan and V. Radhika Devi
Symmetry 2023, 15(2), 385; https://doi.org/10.3390/sym15020385 - 1 Feb 2023
Cited by 6 | Viewed by 2054
Abstract
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading [...] Read more.
The current analysis discusses Jeffery nanofluid’s thermally radiative flow with convection over a stretching wedge. It takes into account the Brownian movement and thermophoresis of the Buongiorno nanofluid model. The guiding partial differential equations (PDEs) are modified by introducing the symmetry variables, leading to non-dimensional ordinary differential equations (ODEs). To solve the generated ODEs, the MATLAB function bvp4c is implemented. Examined are the impacts of different flow variables on the rate of transmission of heat transfer (HT), temperature, mass, velocity, and nanoparticle concentration (NC). It has been noted that the velocity and mass transfer were increased by the pressure gradient factor. Additionally, the thermal boundary layer (TBL) and nanoparticle concentration are reduced by the mixed convection (MC) factor. In order to validate the present research, the derived numerical results were compared to previous findings from the literature while taking into account the specific circumstances. It was found that there was good agreement in both sets of data. Full article
(This article belongs to the Special Issue Recent Advances in Conjugate Heat Transfer)
Show Figures

Figure 1

18 pages, 1088 KiB  
Article
Unsteady Water-Based Ternary Hybrid Nanofluids on Wedges by Bioconvection and Wall Stretching Velocity: Thermal Analysis and Scrutinization of Small and Larger Magnitudes of the Thermal Conductivity of Nanoparticles
by Isaac Lare Animasaun, Qasem M. Al-Mdallal, Umair Khan and Ali Saleh Alshomrani
Mathematics 2022, 10(22), 4309; https://doi.org/10.3390/math10224309 - 17 Nov 2022
Cited by 46 | Viewed by 2564
Abstract
The uniqueness of nanofluids in the field of thermal analysis and engineering is associated with their thermal conductivity and thermodynamics. The dynamics of water made up of (i) single-walled carbon nanotubes with larger magnitudes of thermal conductivity of different shapes (i.e., platelet, cylindrical, [...] Read more.
The uniqueness of nanofluids in the field of thermal analysis and engineering is associated with their thermal conductivity and thermodynamics. The dynamics of water made up of (i) single-walled carbon nanotubes with larger magnitudes of thermal conductivity of different shapes (i.e., platelet, cylindrical, and spherical) and (ii) moderately small magnitudes of thermal conductivity (i.e., platelet magnesium oxide, cylindrical aluminum oxide, spherical silicon dioxide) were explored in order to address some scientific questions. In continuation of the exploration and usefulness of ternary hybrid nanofluid in hydrodynamics and geothermal systems, nothing is known on the comparative analysis between the two dynamics outlined above due to the bioconvection of static wedges and wedges with stretching at the wall. Reliable and valid numerical solutions of the governing equation that models the transport phenomena mentioned above are presented in this report. The heat transfer through the wall increased with the wall stretching velocity at a smaller rate of 0.52 and a higher rate of 0.59 when the larger and smaller thermal conductivity of nanoparticles were used, respectively. Larger or smaller magnitudes of the thermal conductivity of nanoparticles were used; the wall stretching velocity had no significant effects on the mass transfer rate but the distribution of the gyrotactic microorganism was strongly affected. Increasing the stretching at the wedge’s wall in the same direction as the transport phenomenon is suitable for decreasing the distribution of temperature owing to the higher velocity of ternary hybrid nanofluids either parallel or perpendicular to the wedge. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

10 pages, 4911 KiB  
Article
Treatment of Radial Nerve Palsy in Paediatric Humeral Shaft Fractures—STROBE-Compliant Investigation
by Łukasz Wiktor and Ryszard Tomaszewski
Medicina 2022, 58(11), 1571; https://doi.org/10.3390/medicina58111571 - 31 Oct 2022
Cited by 4 | Viewed by 5532
Abstract
Background and Objectives: Due to the rarity of radial nerve palsy in humeral shaft fractures in the paediatric population and the lack of data in the literature, the purpose of our study was to report the treatment results of six children who [...] Read more.
Background and Objectives: Due to the rarity of radial nerve palsy in humeral shaft fractures in the paediatric population and the lack of data in the literature, the purpose of our study was to report the treatment results of six children who sustained a radial nerve injury following a humeral shaft fracture. Materials and Methods: We treated six paediatric patients with radial nerve palsy caused by a humeral shaft fracture in our department from January 2011 to June 2022. The study group consisted of four boys and one girl aged 8.6 to 17.2 (average 13.6). The mean follow-up was 18.4 months. To present our results, we have used the STROBE protocol designed for retrospective observational studies. Results: We diagnosed two open and four closed humeral shaft fractures. Two simple transverse AO 12A3c; one simple oblique AO 12A2c; two simple spiral AO 12A1b/AO 12A1c and one intact wedge AO 12B2c were recognized. The humeral shaft was affected in the distal third five times and in the middle third one time. In our study group, we found two cases of neurotmesis; two entrapped nerves within the fracture; one stretched nerve over the bone fragments and one case of neuropraxia. We found restitution of the motor function in all cases. For all patients, extensor muscle strength was assessed on the grade M4 according to the BMRC scale (except for a patient with neuropraxia—M5). The differences in patients concerned the incomplete extension at the radiocarpal and metacarpophalangeal (MCP) joints. Conclusions: In our small case series, humeral shaft fractures complicated with radial nerve palsy are always challenging medical issues. In paediatric patients, we highly recommend an US examination where it is possible to be carried out to improve the system of decision making. Expectant observation with no nerve exploration is reasonable only in close fractures caused by low-energy trauma. Early surgical nerve exploration related with fracture stabilisation is highly recommended in fractures after high-energy trauma, especially in open fractures and where symptoms of nerve palsy appear at any stage of conservative treatment. Full article
Show Figures

Figure 1

21 pages, 3062 KiB  
Article
A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors
by Domenico Magisano, Marisa Mastroianni, Leonardo Leonetti, Antonio Madeo, Giovanni Garcea, Gianfranco Gagliardi, Alessandro Casavola, Giuseppe Vecchio, Francesco Ferrini, Alessio Pierro, Roberta Colloca and Emanuel Muraca
Appl. Sci. 2022, 12(15), 7510; https://doi.org/10.3390/app12157510 - 26 Jul 2022
Cited by 4 | Viewed by 2028
Abstract
This study investigates a system for monitoring displacements of underground pipelines in landslide-prone regions. This information is an important alarm indicator, not only to prevent the failure of the line itself but also to mitigate the direct consequences of landslides on buildings and [...] Read more.
This study investigates a system for monitoring displacements of underground pipelines in landslide-prone regions. This information is an important alarm indicator, not only to prevent the failure of the line itself but also to mitigate the direct consequences of landslides on buildings and infrastructures in the affected area. Specifically, a numerical processing tool coupled with a data acquisition system is proposed. The starting point is the measurement of axial strain at three points of discrete sections of the pipeline by Fiber Bragg grating sensors, used to approximate the trend of mean axial strain and bending curvatures along the pipe axis. A finite element analysis based on a 3D geometrically exact beam model is developed for computing the deformed configuration corresponding to the input strain field. After assigning the boundary conditions, a mixed iterative scheme is used for a quick solution to the nonlinear problem. Firstly, the tool is validated theoretically with benchmarks on beam-like structures undergoing large deflections. Then, experimental results are produced on a monitored pipe buried in a wedge of land subject to an artificial slide. The overall sensor-modeling system, with zero displacements far from the landslide as a boundary condition, provides a satisfactory displacement trend with a mean error of about 18% with just three effective monitored sections in the affected pipe stretch of 18 m. The acquisition and processing tool is implemented in a web application as a real-time alarm system. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 9180 KiB  
Article
Modified “Rockfall Hazard Rating System for Pakistan (RHRSP)”: An Application for Hazard and Risk Assessment along the Karakoram Highway, Northwest Pakistan
by Javed Iqbal Tanoli, Ningsheng Chen, Ihsan Ullah, Muhammad Qasim, Sajid Ali, Qasim ur Rehman, Umbreen Umber and Ishtiaq Ahmed Khan Jadoon
Appl. Sci. 2022, 12(8), 3778; https://doi.org/10.3390/app12083778 - 8 Apr 2022
Cited by 10 | Viewed by 4312
Abstract
Rockfall is a natural mountain hazard posing a severe threat to people, infrastructure, and vehicles along the transportation corridors. In this research, the standard Rockfall Hazard Rating System (RHRS) is slightly modified for the mountainous terrains of Pakistan through the quantification of animal [...] Read more.
Rockfall is a natural mountain hazard posing a severe threat to people, infrastructure, and vehicles along the transportation corridors. In this research, the standard Rockfall Hazard Rating System (RHRS) is slightly modified for the mountainous terrains of Pakistan through the quantification of animal activity along the highways. In the modified Rockfall Hazard and Rating System for Pakistan (RHRSP), animal activity is scored based on permanent and random animal tracks, shallow and higher altitudes, and shoulder width. The model is applied along the Karakoram Highway (KKH), which traverses a suture between Besham and Dasu (≈78 km), for Rockfall hazard and risk assessment mapping. An inventory of rockfalls, topples, and debris slides is compiled at 30 stations. Results show that rockfalls are mostly of the wedge and topple type failures. Fifty-seven percent of the area falls under the very-high to high hazard zone, 18% under moderate hazard, and 25% covers the low to very low hazard zone. Sixty-seven percent of the stretch is at very-high to high risk, distributed from Dubair to Dasu. The main reason for this risk is associated with narrow road width and limited shoulder width for vehicles. The RHRSP model is also applicable for other highways with the same geological and morphological settings. Full article
(This article belongs to the Special Issue Advances in Engineering Geology of Rocks and Rock Masses)
Show Figures

Figure 1

36 pages, 14596 KiB  
Article
Basic Role of Extrusion Processes in the Late Cenozoic Evolution of the Western and Central Mediterranean Belts
by Marcello Viti, Enzo Mantovani, Daniele Babbucci, Caterina Tamburelli, Marcello Caggiati and Alberto Riva
Geosciences 2021, 11(12), 499; https://doi.org/10.3390/geosciences11120499 - 7 Dec 2021
Cited by 12 | Viewed by 4950
Abstract
Tectonic activity in the Mediterranean area (involving migrations of old orogenic belts, formation of basins and building of orogenic systems) has been determined by the convergence of the confining plates (Nubia, Arabia and Eurasia). Such convergence has been mainly accommodated by the consumption [...] Read more.
Tectonic activity in the Mediterranean area (involving migrations of old orogenic belts, formation of basins and building of orogenic systems) has been determined by the convergence of the confining plates (Nubia, Arabia and Eurasia). Such convergence has been mainly accommodated by the consumption of oceanic and thinned continental domains, triggered by the lateral escapes of orogenic wedges. Here, we argue that the implications of the above basic concepts can allow plausible explanations for the very complex time-space distribution of tectonic processes in the study area, with particular regard to the development of Trench-Arc-Back Arc systems. In the late Oligocene and lower–middle Miocene, the consumption of the eastern Alpine Tethys oceanic domain was caused by the eastward to SE ward migration/bending of the Alpine–Iberian belt, driven by the Nubia–Eurasia convergence. The crustal stretching that developed in the wake of that migrating Arc led to formation of the Balearic basin, whereas accretionary activity along the trench zone formed the Apennine belt. Since the collision of the Anatolian–Aegean–Pelagonian system (extruding westward in response to the indentation of the Arabian promontory) with the Nubia-Adriatic continental domain, around the late Miocene–early Pliocene, the tectonic setting in the central Mediterranean area underwent a major reorganization, aimed at activating a less resisted shortening pattern, which led to the consumption of the remnant oceanic and thinned continental domains in the central Mediterranean area. Full article
(This article belongs to the Special Issue Evolution of Modern and Ancient Orogenic Belts)
Show Figures

Figure 1

18 pages, 1559 KiB  
Article
Cherenkov Gravitational Radiation during the Radiation Era
by Yi-Zen Chu and Yen-Wei Liu
Universe 2021, 7(11), 437; https://doi.org/10.3390/universe7110437 - 15 Nov 2021
Cited by 1 | Viewed by 2143
Abstract
Cherenkov radiation may occur whenever the source is moving faster than the waves it generates. In a radiation dominated universe, with equation-of-state w=1/3, we have recently shown that the Bardeen scalar-metric perturbations contribute to the linearized Weyl tensor [...] Read more.
Cherenkov radiation may occur whenever the source is moving faster than the waves it generates. In a radiation dominated universe, with equation-of-state w=1/3, we have recently shown that the Bardeen scalar-metric perturbations contribute to the linearized Weyl tensor in such a manner that its wavefront propagates at acoustic speed w=1/3. In this work, we explicitly compute the shape of the Bardeen Cherenkov cone and wedge generated respectively by a supersonic point mass (approximating a primordial black hole) and a straight Nambu-Goto wire (approximating a cosmic string) moving perpendicular to its length. When the black hole or cosmic string is moving at ultra-relativistic speeds, we also calculate explicitly the sudden surge of scalar-metric induced tidal forces on a pair of test particles due to the passing Cherenkov shock wave. These forces can stretch or compress, depending on the orientation of the masses relative to the shock front’s normal. Full article
(This article belongs to the Special Issue Gravitational Radiation in Cosmological Spacetimes)
Show Figures

Figure 1

16 pages, 6853 KiB  
Article
Deformation Characteristics in a Stretch-Based Dimensional Correction Method for Open, Thin-Walled Extrusions
by Xianyan Zhou, Torgeir Welo, Jun Ma and Sigmund A. Tronvoll
Metals 2021, 11(11), 1786; https://doi.org/10.3390/met11111786 - 5 Nov 2021
Cited by 3 | Viewed by 2160
Abstract
Dimensional accuracy of incoming components is crucial for automated welding and assembly in mass volume production. However, thin-walled extrusions made to industrial standards show severe dimensional variations, including gap opening, sidewall inclination, local convexity, and so on. Thus, one major challenge is to [...] Read more.
Dimensional accuracy of incoming components is crucial for automated welding and assembly in mass volume production. However, thin-walled extrusions made to industrial standards show severe dimensional variations, including gap opening, sidewall inclination, local convexity, and so on. Thus, one major challenge is to provide a low-cost correction method to improve the dimensional accuracy at a level demanded by automated assembly and/or product fit-up. A novel correction method called transverse stretch and local bending (TSLB) has recently been developed, enabling one to efficiently correct the dimensional deviations in thin-walled, U-channel profiles at a low cost. However, the lack of in-depth understanding of the underlying mechanism makes it challenging to efficiently optimise and control the process. In this study, the feasibility of this new technique was experimentally validated by four groups of TSLB tests with different profile dimensions, showing a dimensional accuracy improvement of about 92% compared with the as-received parts. The evolution of the critical dimensional characteristics, including gap opening and bottom convexity, is analysed numerically throughout four stages consisting of inserting, releasing, calibration, and springback. It is found that the inserting stage greatly reduces the dimensional deviations in a pure bending state, while the calibration stages further minimise the deviations in the bending and transverse stretching combined state. In addition, the wedge angle of the tool is found to be critical to the dimensional accuracy improvement. The low wedge angle facilitates the correction of sidewall inclination and gap opening, while the high wedge angle contributes to mitigating bottom convexity. The overall outcome of this study enhances the fundamental understanding of the effects of in-process stretching and local-bending on the dimensional capabilities of U-channel extrusions. This can ultimately generate guidelines that will lead to new application areas of aluminium extrusions in highly competitive marketplaces. Full article
(This article belongs to the Special Issue Forming of Aluminium Alloys)
Show Figures

Figure 1

18 pages, 1783 KiB  
Article
Finite Element Study for Magnetohydrodynamic (MHD) Tangent Hyperbolic Nanofluid Flow over a Faster/Slower Stretching Wedge with Activation Energy
by Bagh Ali, Rizwan Ali Naqvi, Amna Mariam, Liaqat Ali and Omar M. Aldossary
Mathematics 2021, 9(1), 25; https://doi.org/10.3390/math9010025 - 24 Dec 2020
Cited by 49 | Viewed by 3167
Abstract
The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation [...] Read more.
The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation into the ordinary differential form, which is solved numerically by the finite element method and coded in Matlab script. Parametric computations are made for faster stretch and slowly stretch to the surface of the wedge. The progressing value of parameter A (unsteadiness), material law index ϵ, and wedge angle reduce the flow velocity. The temperature in the boundary layer region rises directly with exceeding values of thermophoresis parameter Nt, Hartman number, Brownian motion parameter Nb, ϵ, Biot number Bi and radiation parameter Rd. The volume fraction of nanoparticles rises with activation energy parameter EE, but it receded against chemical reaction parameter Ω, and Lewis number Le. The reliability and validity of the current numerical solution are ascertained by establishing convergence criteria and agreement with existing specific solutions. Full article
Show Figures

Figure 1

Back to TopTop