A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors
Abstract
:1. Introduction
2. FBG Technology
- Difficulty to communicate via radio in inaccessible areas, thus requiring installation of repeaters;
- Necessity to install control units locally for processing and sending signals for each strain gauge station;
- Electrical signal attenuation over long-distance transmission;
- Sensor damages due to the high magnetic fields generated by pigging tools.
- Reflected light, used as a signal carrier through the optical cable, is resilient to harsh environments;
- Complexity of monitoring system architecture is reduced since optical cables may embed several gratings, simultaneously interrogated by a single acquisition unit with multiplexing capability.
- Minimal attenuation of the optical signal along the measurement chain;
- Immunity to electromagnetic interference.
3. Geometrically Exact 3D Beam Model and Variational Form for Assigned Strains
3.1. Rotation Tensor
3.2. Variations of Rotation and Curvature Tensors with Respect to the Rotation Vector
3.3. Kinematics of the 3D Beam Structural Model
3.4. The Beam Model in Case of Measured Strains
3.4.1. From Measured Point-Wise Axial Strains to Generalized Strains
3.4.2. Stress Check
3.5. Strain Energy Variations
4. Finite Element Model and Solution of the Nonlinear Discrete Equations
4.1. The Beam Finite Element
4.2. A Specialized Incremental-Iterative Solution
Solution in Condensed Form
4.3. Numerical Validation in Large Deformation Benchmarks
4.3.1. Curved Cantilever Beam under Shear Load
4.3.2. Ring under Torsion
5. Experimental Setup
- -
- section E
- -
- section D
- -
- section F
- -
- section B
- -
- section A
- -
- section Z
6. Experimental and Numerical Results
Comparison between Predicted and Measured Displacements on the Prototype Test Bench
- label of the markers used to read the actual displacements: C1, C2, C3, C4, C5;
- the position X (mm) of each marker rod along the pipeline axis;
- the displacement Y (mm) measured by each marker rod in the thrust direction;
- the displacement Y (mm) at the marker rod position predicted by the numerical model based on the strain measurements;
- the relative error percentage calculated as .
7. Web Application for Real-Time Monitoring and Alarm Management
- remote management of the pipelines;
- smart monitor of pipeline health status based on acquired measures.
- Account management that allows the administrator to define permissions and access levels to the web application (i.e., system manager, user, etc.);
- Multiple pipeline configurations and geo-referencing properties;
- Pipeline monitoring;
- Sensors configuration and deployment;
- Anomalous conditions detection and alarms generation;
- Sensor data monitoring;
- Finite element analysis for the displacement reconstruction.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Shi, G.; Hao, S.; Wang, Q. Oil Pipeline Safety Monitoring Method based on Vibration Signal Analysis and Recognition. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, 19–21 May 2009; Volume 3, pp. 200–206. [Google Scholar] [CrossRef]
- Aba, E.N.; Olugboji, O.A.; Nasir, A.; Olutoye, M.A.; Adedipe, O. Petroleum pipeline monitoring using an internet of things (IoT) platform. SN Appl. Sci. 2021, 3, 180. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Fu, Q. Study on Fiber Bragg Grating Monitoring Technology for Oil and Gas Pipelines Crossing the Landslide. In Proceedings of the 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2019; pp. 57–61. [Google Scholar] [CrossRef]
- Li, H.N.; Li, D.S.; Song, G.B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Jinachandran, S.; Li, H.; Xi, J.; Prusty, B.G.; Semenova, Y.; Farrell, G.; Rajan, G. Fabrication and Characterization of a Magnetized Metal-Encapsulated FBG Sensor for Structural Health Monitoring. IEEE Sens. J. 2018, 18, 8739–8746. [Google Scholar] [CrossRef] [Green Version]
- Muraca, E.; Giambartolomei, T.; Colloca, R.; Ferrini, F.; Farinelli, P. Monitoring System of the Landfall Microtunnel by Bragg Technology. In Proceedings of the OMC Med Energy Conference and Exhibition, Ravenna, Italy, 28–30 September 2021. OMC-2021-050. [Google Scholar]
- Vasseghi, A.; Haghshenas, E.; Soroushian, A.; Rakhshandeh, M. Failure analysis of a natural gas pipeline subjected to landslide. Eng. Fail. Anal. 2021, 119, 105009. [Google Scholar] [CrossRef]
- Jia, Z.; Ren, L.; Li, H.; Sun, W. Pipeline Leak Localization Based on FBG Hoop Strain Sensors Combined with BP Neural Network. Appl. Sci. 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Qiu, J.; Fan, H.; Zhang, Q.; Hu, Z.; Wang, J.; Chen, J. Fiber Bragg Grating Sensors-Based In Situ Monitoring and Safety Assessment of Loess Tunnel. J. Sens. 2016, 2016, 8658290. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Chen, X.; Yu, H. Real-time monitoring method of pipeline deformation based on Internet of things. In Proceedings of the 2019 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing, China, 28–30 November 2019; pp. 114–118. [Google Scholar] [CrossRef]
- Simo, J.; Vu-Quoc, L. A three-dimensional finite-strain rod model. part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 1986, 58, 79–116. [Google Scholar] [CrossRef]
- Magisano, D.; Leonetti, L.; Garcea, G. How to improve efficiency and robustness of the Newton method in geometrically non-linear structural problem discretized via displacement-based finite elements. Comput. Methods Appl. Mech. Eng. 2017, 313, 986–1005. [Google Scholar] [CrossRef]
- Todd, M.D.; Stull, C.J.; Dickerson, M. A Local Material Basis Solution Approach to Reconstructing the Three-Dimensional Displacement of Rod-Like Structures From Strain Measurements. J. Appl. Mech. 2013, 80, 041028. [Google Scholar] [CrossRef]
- Chadha, M.; Todd, M.D. A Generalized Approach for Reconstructing the Three-Dimensional Shape of Slender Structures Including the Effects of Curvature, Shear, Torsion, and Elongation. J. Appl. Mech. 2017, 84, 041003. [Google Scholar] [CrossRef] [Green Version]
- Ritto-Correa, M.; Camotim, D. On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner-Simo beam theory. Int. J. Numer. Methods Eng. 2002, 55, 1005–1032. [Google Scholar] [CrossRef]
- Magisano, D.; Leonetti, L.; Madeo, A.; Garcea, G. A large rotation finite element analysis of 3D beams by incremental rotation vector and exact strain measure with all the desirable features. Comput. Methods Appl. Mech. Eng. 2020, 361, 112811. [Google Scholar] [CrossRef]
- Cardona, A.; Geradin, M. A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 1988, 26, 2403–2438. [Google Scholar] [CrossRef]
- Ibrahimbegovic, A. On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 1997, 149, 49–71. [Google Scholar] [CrossRef]
- Marino, E.; Kiendl, J.; De Lorenzis, L. Isogeometric collocation for implicit dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Eng. 2019, 356, 548–570. [Google Scholar] [CrossRef]
- Greco, L.; Cuomo, M. An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 2016, 298, 325–349. [Google Scholar] [CrossRef]
- Argyris, J. An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 1982, 32, 85–155. [Google Scholar] [CrossRef]
- Ibrahimbegović, A.; Frey, F.; Kožar, I. Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int. J. Numer. Methods Eng. 1995, 38, 3653–3673. [Google Scholar] [CrossRef]
- Gonçalves, R.; Ritto-Corrêa, M. On the modelling of simple supports in geometrically exact thin-walled beam finite elements using a rotation vector parametrization of finite rotations. Thin-Walled Struct. 2022, 172, 108922. [Google Scholar] [CrossRef]
- Ibrahimbegović, A.; Frey, F. Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II. Computational aspects. Comput. Methods Appl. Mech. Eng. 1994, 118, 285–308. [Google Scholar] [CrossRef]
- Magisano, D.; Leonetti, L.; Garcea, G. Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements. Int. J. Numer. Methods Eng. 2017, 109, 1237–1262. [Google Scholar] [CrossRef]
- Jelenić, G.; Crisfield, M. Geometrically exact 3D beam theory: Implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 1999, 171, 141–171. [Google Scholar] [CrossRef]
- Ibrahimbegovic, A.; Taylor, R.L. On the role of frame-invariance in structural mechanics models at finite rotations. Comput. Methods Appl. Mech. Eng. 2002, 191, 5159–5176. [Google Scholar] [CrossRef]
- Gagliardi, G.; Lupia, M.; Cario, G.; Tedesco, F.; Cicchello Gaccio, F.; Lo Scudo, F.; Casavola, A. Advanced Adaptive Street Lighting Systems for Smart Cities. Smart Cities 2020, 3, 1495–1512. [Google Scholar] [CrossRef]
- Han, B.; Wang, Z.; Zhao, H.; Jing, H.; Wu, Z. Strain-based design for buried pipelines subjected to landslides. Pet. Sci. 2012, 9, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, S.; Chen, S.; Wu, Z.; Wang, R.; Duo, Y. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides. Pet. Sci. 2017, 14, 579–585. [Google Scholar] [CrossRef] [Green Version]
Test 1 () | Test 2 () | |
---|---|---|
225 | 150 | |
405 | 395 | |
770 | 1205 | |
−900 | −963 | |
807 | 1297 | |
1308 | 1425 | |
369 | 440 | |
−17 | 37 | |
−497 | −452 | |
−8 | 6 | |
−145 | −151 | |
−46 | −30 | |
352 | 483 | |
222 | 140 | |
530 | 715 | |
483 | 239 | |
484 | 242 | |
470 | 224 |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
X (m) | 24 | 28.5 | 33.3 | 38.3 | 42 |
Y (mm) meas. | 24 | 144 | 209 | 97 | 6 |
Y (mm) pred. | 0 | 143 | 244 | 133 | 0 |
rel. error (%) | - | −1 | 17 | 37 | - |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
X (m) | 24 | 28.5 | 33.3 | 38.3 | 42 |
Y (mm) meas. | 28 | 157 | 241 | 115 | 9 |
Y (mm) pred. | 0 | 155 | 270 | 162 | 0 |
rel. error (%) | - | −1 | 12 | 41 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magisano, D.; Mastroianni, M.; Leonetti, L.; Madeo, A.; Garcea, G.; Gagliardi, G.; Casavola, A.; Vecchio, G.; Ferrini, F.; Pierro, A.; et al. A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors. Appl. Sci. 2022, 12, 7510. https://doi.org/10.3390/app12157510
Magisano D, Mastroianni M, Leonetti L, Madeo A, Garcea G, Gagliardi G, Casavola A, Vecchio G, Ferrini F, Pierro A, et al. A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors. Applied Sciences. 2022; 12(15):7510. https://doi.org/10.3390/app12157510
Chicago/Turabian StyleMagisano, Domenico, Marisa Mastroianni, Leonardo Leonetti, Antonio Madeo, Giovanni Garcea, Gianfranco Gagliardi, Alessandro Casavola, Giuseppe Vecchio, Francesco Ferrini, Alessio Pierro, and et al. 2022. "A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors" Applied Sciences 12, no. 15: 7510. https://doi.org/10.3390/app12157510
APA StyleMagisano, D., Mastroianni, M., Leonetti, L., Madeo, A., Garcea, G., Gagliardi, G., Casavola, A., Vecchio, G., Ferrini, F., Pierro, A., Colloca, R., & Muraca, E. (2022). A Finite Element Model for Monitoring the Displacement of Pipelines in Landslide Regions by Discrete FBG Strain Sensors. Applied Sciences, 12(15), 7510. https://doi.org/10.3390/app12157510