Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = stress-relaxation tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2543 KB  
Article
Experimental Study on the Time Response of the Microstructure of a Bentonite Suspension
by Hozman Butaybi-Mohamed, Pablo Fatuarte-Gutiérrez, David Gómez-Landero-López, Nicolás Reyes-Clemente, Juan I. Ros-Ruiz and Francisco J. Rubio-Hernández
Fluids 2025, 10(10), 257; https://doi.org/10.3390/fluids10100257 - 28 Sep 2025
Viewed by 152
Abstract
To obtain deeper information on the role played by microstructure evolution with time of particle suspensions specifically used in drilling processes, two representative time scales of a bentonite suspension were proposed. On one hand, a thixotropic time, which represents how fast the microstructure [...] Read more.
To obtain deeper information on the role played by microstructure evolution with time of particle suspensions specifically used in drilling processes, two representative time scales of a bentonite suspension were proposed. On one hand, a thixotropic time, which represents how fast the microstructure of the suspensions reaches equilibrium between build-up and break-down under shear, was obtained from hysteresis loop tests. On the other hand, a representative relaxation time, which refers to the time it takes to dissipate the stresses developed in the microstructure returning to the original free-stress state after some disturbance of the microstructure, was obtained from frequency sweep tests in the linear viscoelastic region using the Generalized Maxwell Model. The ratio of the relaxation time to the thixotropic time, named the thixo-elastic parameter, was lower than unity. Therefore, bentonite suspensions reach an equilibrium state resulting from equality of break and build processes after a long time of rest, while returning very fast to their original free-stress state, enabling the microstructure to rebuild mainly through a thixotropic phenomenon, which was almost not affected by internal stresses, and which facilitates the entrapping of rock cuttings generated during drilling processes. Full article
(This article belongs to the Special Issue IBERHEO 2024—Iberian Rheology)
Show Figures

Figure 1

52 pages, 6335 KB  
Article
On Sampling-Times-Independent Identification of Relaxation Time and Frequency Spectra Models of Viscoelastic Materials Using Stress Relaxation Experiment Data
by Anna Stankiewicz, Sławomir Juściński and Marzena Błażewicz-Woźniak
Materials 2025, 18(18), 4403; https://doi.org/10.3390/ma18184403 - 21 Sep 2025
Viewed by 233
Abstract
Viscoelastic relaxation time and frequency spectra are useful for describing, analyzing, comparing, and improving the mechanical properties of materials. The spectra are typically obtained using the stress or oscillatory shear measurements. Over the last 80 years, dozens of mathematical models and algorithms were [...] Read more.
Viscoelastic relaxation time and frequency spectra are useful for describing, analyzing, comparing, and improving the mechanical properties of materials. The spectra are typically obtained using the stress or oscillatory shear measurements. Over the last 80 years, dozens of mathematical models and algorithms were proposed to identify relaxation spectra models using different analytical and numerical tools. Some models and identification algorithms are intended for specific materials, while others are general and can be applied for an arbitrary rheological material. The identified relaxation spectrum model always depends on the identification method applied and on the specific measurements used in the identification process. The stress relaxation experiment data consist of the sampling times used in the experiment and the noise-corrupted relaxation modulus measurements. The aim of this paper is to build a model of the spectrum that asymptotically does not depend on the sampling times used in the experiment as the number of measurements tends to infinity. Broad model classes, determined by a finite series of various basis functions, are assumed for the relaxation spectra approximation. Both orthogonal series expansions based on the Legendre, Laguerre, and Chebyshev functions and non-orthogonal basis functions, like power exponential and modified Bessel functions of the second kind, are considered. It is proved that, even when the true spectrum description is entirely unfamiliar, the approximate sampling-times-independent spectra optimal models can be determined using modulus measurements for appropriately randomly selected sampling times. The recovered spectra models are strongly consistent estimates of the desirable models corresponding to the relaxation modulus models, being optimal for the deterministic integral weighted square error. A complete identification algorithm leading to the relaxation spectra models is presented that requires solving a sequence of weighted least-squares relaxation modulus approximation problems and a random selection of the sampling times. The problems of relaxation spectra identification are ill-posed; solution stability is ensured by applying Tikhonov regularization. Stochastic convergence analysis is conducted and the convergence with an exponential rate is demonstrated. Simulation studies are presented for the Kohlrausch–Williams–Watts spectrum with short relaxation times, the uni- and double-mode Gauss-like spectra with intermediate relaxation times, and the Baumgaertel–Schausberger–Winter spectrum with long relaxation times. Models using spectrum expansions on different basis series are applied. These studies have shown that sampling times randomization provides the sequence of the optimal spectra models that asymptotically converge to sampling-times-independent models. The noise robustness of the identified model was shown both by analytical analysis and numerical studies. Full article
Show Figures

Figure 1

15 pages, 2316 KB  
Article
Dynamic Behavior of Corrugated Cardboard Edge Damaged by Vibration Input Environments
by Seungjoon Kim, Yeonjin Jang, Wanseung Kim, Changjin Lee and Junhong Park
Materials 2025, 18(18), 4364; https://doi.org/10.3390/ma18184364 - 18 Sep 2025
Viewed by 320
Abstract
This study investigates the dynamic performance and degradation behavior of corrugated cardboard used as protective packaging for home appliances subjected to random vibrations during transportation. Simulated vibration tests were conducted on fully packaged refrigerators to assess the mechanical response of cardboard and expanded [...] Read more.
This study investigates the dynamic performance and degradation behavior of corrugated cardboard used as protective packaging for home appliances subjected to random vibrations during transportation. Simulated vibration tests were conducted on fully packaged refrigerators to assess the mechanical response of cardboard and expanded polystyrene (EPS) supports under prolonged vibration excitation. Relaxation tests were performed to characterize time-dependent stress decay in the absence of vibration, while cantilever beam experiments quantified dynamic stiffness degradation during vibration exposure. The vibration-induced damage was evaluated by monitoring the decrease in support stiffness over time, revealing a distinct exponential reduction that correlated with increasing excitation levels. Statistical load count analyses, based on auto-spectral methods and Basquin’s power law, were used to model fatigue behavior and predict service life. The findings demonstrated that corrugated cardboard exhibited comparable performance to EPS in maintaining support stiffness while offering the advantage of environmental sustainability. These results provide quantitative evidence supporting the use of cardboard as an effective and eco-friendly alternative to polymer-based packaging materials, contributing to the development of optimized packaging solutions with enhanced vibration durability. Full article
Show Figures

Figure 1

14 pages, 2551 KB  
Article
Tissue-like Fracture Toughness and Stress–Relaxation Ability in PVA-Agar-Based Hydrogels for Biomedical Applications
by Ismael Lamas, Bhuvana L. Chandrashekar, Claudia C. Biguetti and Mohammad R. Islam
Gels 2025, 11(9), 747; https://doi.org/10.3390/gels11090747 - 17 Sep 2025
Viewed by 481
Abstract
Soft tissues exhibit remarkable stretchability, fracture toughness, and stress–relaxation ability. They possess a large water content to support cellular processes. Mimicking such a combination of mechanical and physical properties in hydrogels is important for tissue engineering applications but remains challenging. This work aims [...] Read more.
Soft tissues exhibit remarkable stretchability, fracture toughness, and stress–relaxation ability. They possess a large water content to support cellular processes. Mimicking such a combination of mechanical and physical properties in hydrogels is important for tissue engineering applications but remains challenging. This work aims to develop a hydrogel that can combine excellent mechanical properties with cellular viability. The research focused on polyvinyl alcohol (PVA)/agar double-network (DN) hydrogels, fabricated by thermal gelation and freeze–thawing methods. Their mechanical properties were characterized through tension, compression, fracture, and stress–relaxation tests, and their cellular viability was measured through cytotoxicity tests. The results show that the PVA/agar DN gels are highly stretchable (>200%) and compressible (>30%) while containing high water content. The incorporation of agar by 6 wt% improved the fracture toughness of hydrogels from 1 to 1.76 kJ/m2. The degree of stress–relaxation, a key indicator of gel viscoelastic properties, improved by roughly 170% with an increase in agar content from 0 to 6 wt%. Cytotoxicity analysis showed that the gels, being physically cross-linked, were able to promote cellular proliferation. This work shows that tough and viscoelastic PVA/agar DN gels are suitable for soft tissue engineering applications, especially cartilage repair. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

14 pages, 1317 KB  
Article
New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial
by Ilias Ntoumas, Nikolas Antoniou, Christoforos D. Giannaki, Fotini Papanikolaou, Aggelos Pappas, Efthimios Dardiotis, Christina Karatzaferi and Giorgos K. Sakkas
Healthcare 2025, 13(18), 2291; https://doi.org/10.3390/healthcare13182291 - 12 Sep 2025
Viewed by 709
Abstract
Background/Objectives: Modern technology is transforming the field of massage, enhancing relaxation and wellness through innovative devices. The aim of the present study was to examine the effect of various massage protocols available using an automatic electric massage chair (AEMC) prior to daytime [...] Read more.
Background/Objectives: Modern technology is transforming the field of massage, enhancing relaxation and wellness through innovative devices. The aim of the present study was to examine the effect of various massage protocols available using an automatic electric massage chair (AEMC) prior to daytime napping on relaxation and indices of sleep quality. Methods: This study is a randomized, single-blind, placebo-controlled, four arm, interventional clinical trial. A total of 12 healthy individuals (21.8 ± 2.2 years, 6 F/6 M) were randomly assigned to four different groups: (1) the control (CON) session involving a 30 min rest on an automatic switch-off massage chair, (2) the easy-sleep (ES) massage session designed to promote sleep, (3) the fatigue-recovery (FR) massage session designed to reduce muscle fatigue, and (4) the worker-mode (WM) massage session designed to promote muscle relaxation. During the four sessions, participants sat in the massage chair for 30 min, followed immediately by an additional 30 min period of lying down on a standard double bed. Brain activity was monitored using a polysomnography EEG system, while validated tests and questionnaires assessed vitals and the state of relaxation. Results: The ES massage significantly reduced muscle tone by 12% and heart rate by 22% (p = 0.008 and p = 0.007, respectively). Additionally, it increased subjective sleepiness by 4.5% and sleep efficiency by 5.7% compared to the results for the control condition (p ≤ 0.005). Conclusions: It is evident that the use of an AEMC can reduce tension and improve feelings of relaxation. The easy-sleep program seems to be a promising non-pharmacological approach for enhancing relaxation and promoting daytime sleep, acting as a non-pharmacological tool to reduce stress, improve sleep quality, and promote workplace well-being. The trial was registered as NCT06784700. Full article
Show Figures

Figure 1

16 pages, 2410 KB  
Article
Constitutive Model Based on Stress Relaxation for Composite Modified Double-Base Propellants and Master Curve of Relaxation Modulus
by Yao Li, Jinsheng Xu, Changsheng Zhou, Xiong Chen and Xiumin Yang
Aerospace 2025, 12(9), 817; https://doi.org/10.3390/aerospace12090817 - 10 Sep 2025
Viewed by 353
Abstract
This study investigates the constitutive model and relaxation modulus master curve of composite modified double-base (CMDB) propellants through uniaxial constant-rate tensile tests and stress relaxation tests. The experimental observations demonstrate that CMDB propellants exhibit pronounced strain-rate dependence and temperature dependence. Specifically, the yield [...] Read more.
This study investigates the constitutive model and relaxation modulus master curve of composite modified double-base (CMDB) propellants through uniaxial constant-rate tensile tests and stress relaxation tests. The experimental observations demonstrate that CMDB propellants exhibit pronounced strain-rate dependence and temperature dependence. Specifically, the yield stress and fracture strength of the propellant increase with increasing strain rate and decrease with increasing temperature. Conversely, the fracture strain increases with increasing temperature. The stress–strain curves of CMDB propellants display marked nonlinearity, attributed to progressive damage accumulation. The relaxation modulus increases significantly with decreasing temperature. Utilizing the time-temperature superposition principle, we constructed a master curve model for the relaxation modulus of CMDB propellants across varying temperatures. Furthermore, based on the observed stress relaxation behavior, a nonlinear constitutive model for CMDB propellants was developed. Theoretical predictions derived from this model show good agreement with experimental data. This model effectively captures the characteristic stress softening and damage evolution in CMDB propellants, thereby providing a theoretical foundation for assessing its mechanical performance and predicting its service life. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 807 KB  
Article
Behavioral Assessment of Equine Relaxation Following Manual Therapy: A Pilot Study
by Yavuzkan Paksoy, Kerem Ural, Hasan Erdoğan, Songül Erdoğan and Serdar Paşa
Vet. Sci. 2025, 12(9), 865; https://doi.org/10.3390/vetsci12090865 - 5 Sep 2025
Viewed by 849
Abstract
The aim of this pilot study was to evaluate the relaxation, stress reduction and behavioral changes observed after manual therapy applied to horses exposed to racing and physical training stimulus. This descriptive approach is aimed at veterinary clinicians to evaluate the therapy process [...] Read more.
The aim of this pilot study was to evaluate the relaxation, stress reduction and behavioral changes observed after manual therapy applied to horses exposed to racing and physical training stimulus. This descriptive approach is aimed at veterinary clinicians to evaluate the therapy process more effectively with behavioral feedback. For this purpose, the study was conducted in two different equestrian clubs in Adana (Adana Mediterranean and Suvari Equestrian Clubs) between 2023 and 2024. A total of 32 racehorses (16 Thoroughbred, 16 Arabian; 16 female, 16 male) of different ages, genders and breeds were included in the study. Five minutes of manual therapy was applied for each of 7 different muscle groups. After the massage, behavioral observations were made for 10 min by moving 2 m away from the animals, and no separate baseline assessment was performed prior to the intervention. The application was carried out by a veterinarian with 15 years of experience. Importantly, no separate baseline assessment or control group was performed, and only behavioral responses were evaluated, which represents a major limitation of this pilot study. Among the observed behaviors in all horses, blinking, muscle twitching, respiratory changes, lip relaxation, licking and chewing were recorded for all horses. Relaxation signs such as head dropping (78.1%), yawning (34.4%), and ears falling to the side (62.5%) were frequently observed. Behaviors such as the appearance of the third eyelid (3.1%), grunting (12.5%) and sneezing (15.6%) were observed at a low percentage. Individual variables such as gender and breed did not have a statistically significant effect on the percentage of behavior (Chi-square test, p > 0.05). In conclusion, these preliminary findings suggest that manual therapy applications might be effective in reducing stress by triggering relaxation behaviors in riding horses, as these behaviors have been previously reported in the literature as reliable indicators of relaxation. Evaluation of behavioral responses after massage could be an important tool in determining physiotherapeutic effects. The fact that the application is performed by experienced people is an important factor that increases the success of the therapy and shows that manual therapy provides relaxation regardless of individual differences. Future controlled studies integrating physiological stress biomarkers are warranted to confirm these observations. Full article
Show Figures

Figure 1

17 pages, 2754 KB  
Article
Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
by Anna V. Vlasova, Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov and Sergey O. Ilyin
Polymers 2025, 17(17), 2297; https://doi.org/10.3390/polym17172297 - 25 Aug 2025
Viewed by 825
Abstract
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary [...] Read more.
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary blends free of solvents and byproducts, which serve for reversible adhesive bonding. The ratio between individual polymer components differing in molecular weight affected the rheological, relaxation, and adhesion properties of the constituted adhesive blends, allowing for their tuning. The viscosity and viscoelasticity of the adhesives were studied using rotational rheometry, while their adhesive bonds with steel were examined by probe tack and shear lap tests at different temperatures. The adhesive bond durability at shear and pull-off detachments depended on the adhesive composition, temperature, and contact time under pressure. The double differentiation of the continuous relaxation spectra of the adhesives enabled the accurate determination of their characteristic relaxation times, which controlled the durability of the adhesive bonds. A universal linear correlation between the reduced failure time of adhesive bonds and their reduced formation time enabled the prediction of their durability with high precision (Pearson correlation coefficient = 0.958, p-value < 0.001) over at least a four-order-of-magnitude time range. The reduction in the formation/failure times of adhesive bonds was most accurately achieved using the longest relaxation time of the adhesives, associated with their highest-molecular-weight polyisobutylene component. Thus, the highest-molecular-weight polymer played a dominant role in adhesive performance, determining both the stress relaxation during the formation of adhesive bonds and their durability under applied load. In turn, this finding enables the prediction and improvement of adhesive bond durability by increasing the bond formation time (a durability rise by up to 10–100 times) and extending the adhesive’s longest relaxation time through elevating the molecular weight or proportion of its highest-molecular-weight component (a durability rise by 100–350%). Full article
Show Figures

Figure 1

25 pages, 15459 KB  
Article
Effect of Fiber Type on the Thermomechanical Performance of High-Density Polyethylene (HDPE) Composites with Continuous Reinforcement
by José Luis Colón Quintana, Scott Tomlinson and Roberto A. Lopez-Anido
J. Compos. Sci. 2025, 9(8), 450; https://doi.org/10.3390/jcs9080450 - 20 Aug 2025
Viewed by 1034
Abstract
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or [...] Read more.
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or limited thermal conditions, this work examines continuous fiber architectures under five operational environments derived from Army Regulation 70-38, reflecting realistic defense-relevant extremes. Differential scanning calorimetry (DSC) was used to identify melting transitions for GF/HDPE and UHMWPE/HDPE, which guided the selection of test conditions for thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). TMA revealed anisotropic thermal expansion consistent with fiber orientation, while DMA, via strain sweep, temperature ramp, frequency sweep, and stress relaxation, quantified their temperature- and time-dependent viscoelastic behavior. The frequency-dependent storage modulus highlighted multiple resonant modes, and stress relaxation data were fitted with high accuracy (R2 > 0.99) to viscoelastic models, yielding model parameters that can be used for predictive simulations of time-dependent material behavior. A comparative analysis between the two material systems showed that UHMWPE/HDPE offers enhanced unidirectional stiffness and better low-temperature performance. At the same time, GF/HDPE exhibits lower thermal expansion, better transverse stiffness, and greater stability at elevated temperatures. These differences highlight the impact of fiber type on thermal and mechanical responses, informing material selection for applications that require directional load-bearing or dimensional control under thermal cycling. By integrating thermal and viscoelastic characterization across realistic operational profiles, this study provides a foundational dataset for the application of continuous fiber thermoplastic tapes in structural components exposed to harsh thermal and mechanical conditions. Full article
Show Figures

Figure 1

24 pages, 3837 KB  
Article
Modeling Viscoelastic Behavior of HDPE Pipes Subjected to a Diametral Load Using the Standard Linear Solid Model
by David Paniagua-Lovera, Rafael B. Carmona-Paredes and Eduardo A. Rodal-Canales
Modelling 2025, 6(3), 80; https://doi.org/10.3390/modelling6030080 - 13 Aug 2025
Viewed by 605
Abstract
This paper presents the study of the viscoelastic behavior of high-density polyethylene (HDPE) ASTM 4710 pipes under diametral loads. The experimental procedure consists of applying a displacement ramp followed by a stress relaxation stage on six ring specimens extracted from pipes with varying [...] Read more.
This paper presents the study of the viscoelastic behavior of high-density polyethylene (HDPE) ASTM 4710 pipes under diametral loads. The experimental procedure consists of applying a displacement ramp followed by a stress relaxation stage on six ring specimens extracted from pipes with varying thickness-to-diameter ratios. The proposed methodology combines the Standard Linear Solid Model (SLSM) with beam theory, introduces adjustment equations for estimating SLSM parameters, and discusses the influence of residual stresses induced during pipe manufacturing and cooling. Finally, the paper shows the validation of the modeling approach based on the results of the mechanical response of an independent test case. Full article
Show Figures

Figure 1

18 pages, 2752 KB  
Article
Primary Dysmenorrhea Induced Using Diethylstilbestrol and Oxytocin Induces Impaired Uterine Reactivity in Virgin Female Wistar Rats
by Francisco Fernandes Lacerda-Júnior, Petruska Pessoa da Silva Souza, Paula Benvindo Ferreira, Anderson Fellyp Avelino Diniz, Bárbara Cavalcanti Barros, Maria da Conceição Correia Silva, Adriano Francisco Alves, Alexandre Sérgio Silva and Bagnólia Araújo da Silva
Pharmaceuticals 2025, 18(8), 1191; https://doi.org/10.3390/ph18081191 - 13 Aug 2025
Viewed by 702
Abstract
Background/Objectives: Primary dysmenorrhea (DysP) is a prevalent gynecological condition characterized by painful uterine contractions. However, the underlying mechanism of action of dysmenorrhea has not been fully elucidated. This study aimed to standardize an animal model of dysmenorrhea using diethylstilbestrol and oxytocin to mimic [...] Read more.
Background/Objectives: Primary dysmenorrhea (DysP) is a prevalent gynecological condition characterized by painful uterine contractions. However, the underlying mechanism of action of dysmenorrhea has not been fully elucidated. This study aimed to standardize an animal model of dysmenorrhea using diethylstilbestrol and oxytocin to mimic pathophysiological mechanisms in female Wistar rats. Methods: For the induction of dysmenorrhea, diethylstilbestrol (s.c.) and oxytocin (i.p.) were used. Results: The model effectively reproduced hypercontractility and impaired uterine relaxation. The in vivo evaluations demonstrated increased pain responses (DysP group = 119 ± 6.9; control group CG = 3.0 ± 1.0), which were partially attenuated by standard medications (scopolamine/dipyrone and ibuprofen). In vitro assays revealed greater contractile reactivity when compared to that in the control group, in the DysP group, using oxytocin (pEC50 = 3.6 ± 0.2 and Emax = 145.1 ± 8.7; CG (pEC50 = 3.1 ± 0.1 and Emax = 100%); KCl (DysP pEC50 = 2.2 ± 0.1 and Emax = 164 ± 8.0); CG (pEC50 = 1.8 ± 0.1) and PGF (DysP pEC50 = 7.4 ± 0.2 and Emax = 127.3 ± 15.6); CG (pEC50 = 6.2 ± 0.1)), while the relaxation responses to isoprenaline and nifedipine were decreased compared to those in the CG. The model promoted an imbalance in oxidative stress by increasing malondialdehyde (MDA) levels and reducing the total antioxidant capacity (TAC) in the uterine tissue. Conclusions: These findings suggest that the new virgin rat model is capable of replicating key aspects of the clinical features of DysP in humans and offers a valuable tool for studying its pathogenetic mechanisms and testing potential therapeutic agents. Full article
(This article belongs to the Special Issue Potential Therapeutic Targets for the Treatment of Pathological Pain)
Show Figures

Graphical abstract

16 pages, 3450 KB  
Article
Comparative In Vitro Analysis of Composite Resins Used in Clear Aligner Attachments
by Francesca Gazzani, Denise Bellisario, Chiara Pavoni, Loredana Santo, Paola Cozza and Roberta Lione
Appl. Sci. 2025, 15(15), 8698; https://doi.org/10.3390/app15158698 - 6 Aug 2025
Viewed by 517
Abstract
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed [...] Read more.
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed to evaluate and compare the mechanical properties, thermal behavior, and wear performance of the hybrid composite Aligner Connect (AC) and the flowable resin (Connect Flow, CF). Methods: Twenty samples (ten AC and ten CF) were reproduced. All specimens underwent differential scanning calorimetry (DSC), combustion analysis, flat instrumented indentation, compression stress relaxation tests, and tribological analysis. A 3D wear profile reconstruction was performed to assess wear surfaces. Results: DSC and combustion analyses revealed distinct thermal transitions, with CF showing significantly lower Tg values (103.8 °C/81.4 °C) than AC (110.8 °C/89.6 °C) and lower residual mass after combustion (23% vs. 61%), reflecting reduced filler content and greater polymer mobility. AC exhibited superior mechanical properties, with higher maximum load (585.9 ± 22.36 N) and elastic modulus (231.5 ± 9.1 MPa) than CF (290.2 ± 5.52 N; 156 ± 10.5 MPa). Stress relaxation decrease was less pronounced in AC (18 ± 4%) than in CF (20 ± 4%). AC also showed a significantly higher friction coefficient (0.62 ± 0.060) than CF (0.55 ± 0.095), along with greater wear volume (0.012 ± 0.0055 mm3 vs. 0.0070 ± 0.0083 mm3) and maximum depth (36.88 ± 3.642 µm vs. 17.91 ± 3.387 µm). Surface roughness before wear was higher for AC (Ra, 0.577 ± 0.035 µm; Rt, 4.369 ± 0.521 µm) than for CF (Ra, 0.337 ± 0.070 µm; Rt, 2.862 ± 0.549 µm). After wear tests, roughness values converged (Ra, 0.247 ± 0.036 µm for AC; Ra, 0.236 ± 0.019 µm for CF) indicating smoothened and similar surfaces for both composites. Conclusions: The hybrid nanocomposite demonstrated greater properties in terms of stiffness, load-bearing capacity, and structural integrity when compared with flowable resin. Its use may ensure more durable attachment integrity and improved aligner–tooth interface performance over time. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies in Orthodontics)
Show Figures

Figure 1

15 pages, 2230 KB  
Article
Exploring the Rheological Properties of 3D Bioprinted Alginate-Based Hydrogels for Tissue Engineering
by R. Palacín-García, L. Goñi and T. Gómez-del Río
Biomimetics 2025, 10(8), 491; https://doi.org/10.3390/biomimetics10080491 - 24 Jul 2025
Viewed by 1047
Abstract
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how [...] Read more.
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how the alginate concentration and curing speed impact their mechanical properties. Rheological testing was employed to examine the viscoelastic behavior of alginate/polyacrylamide hydrogels manufactured using a 3D bioprinting technique. The relaxation behavior and dynamic response of these hydrogels were analyzed under torsional stress, with relaxation curves fitted using a two-term Prony series. Fourier Transform Infrared (FTIR) spectroscopy was also employed to assess biocompatibility and the conversion of acrylamide. This study successfully demonstrated the printability of alginate/polyacrylamide hydrogels with varying alginate contents. The rheological results indicated that 3D bioprinted hydrogels exhibited significantly high stiffness, viscoelasticity, and long relaxation times. The curing speed had a minimal impact on these properties. Additionally, the FTIR analysis confirmed the complete conversion of polyacrylamide, ensuring no harmful effects in biological applications. The study concludes that 3D bioprinting significantly enhances the mechanical properties of alginate/polyacrylamide hydrogels, with the alginate concentration playing a key role in the shear modulus. These hydrogels show promising potential for biocompatible applications such as wound healing dressings. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Figure 1

15 pages, 3980 KB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 618
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

19 pages, 7553 KB  
Article
Effect of Mass Reduction of 3D-Printed PLA on Load Transfer Capacity—A Circular Economy Perspective
by Aneta Liber-Kneć and Sylwia Łagan
Materials 2025, 18(14), 3262; https://doi.org/10.3390/ma18143262 - 10 Jul 2025
Viewed by 817
Abstract
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA [...] Read more.
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA specimens were printed with infill densities of 100%, 75%, and 25%. Mechanical tests, including tensile and compression tests, and one-hour stress-relaxation at 2% strain were conducted. The digital image correlation method was used to obtain the strain fields on the samples’ surface under tensile loading. Mechanical properties, including the elastic modulus, strength values, and Poisson’s ratio, were assessed. Hydrolytic degradation effects over one month were also evaluated. (3) Results: Lowering the PLA infill density reduced the ultimate tensile strength (from 60.04 ± 2.24 MPa to 26.24 ± 0.77 MPa), Young’s modulus (from 2645.05 ± 204.15 MPa to 1245.41 ± 83.79 MPa), compressive strength (from 26.59 ± 0.80 MPa to 21.83 ± 1.01 MPa), and Poisson’s ratio (from 0.32 to 0.30). A 40% mass reduction (form 100% to 25% infill density) resulted in a 56% decrease in tensile strength and a 53% decrease in Young’s modulus. A 31% mass reduction was observed for compression samples. Stress relaxation decreased significantly from 100% to 75% density, with further reductions having minimal impact. Hydrated samples showed no mechanical changes compared to baseline specimens. (4) Conclusions: Optimizing infill density in 3D-printed PLA parts helps to balance mechanical performance with material efficiency. The best mechanical properties are typically achieved with an infill density of 100%, but results show that decreasing the mass of the part by a reduction in infill density from 75% to 25% does not significantly affect the ability to transfer tensile and compression loads. PLA’s biodegradability makes it a viable alternative to stable polymers. By minimizing material waste and enabling the efficient use of resources, additive manufacturing aligns with the principles of a closed-loop economy, supporting sustainable development. Full article
(This article belongs to the Special Issue Recent Researches in Polymer and Plastic Processing)
Show Figures

Figure 1

Back to TopTop