Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = stress state of the pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2368 KB  
Article
Thermo-Chemo-Mechanical Coupling in TGO Growth and Interfacial Stress Evolution of Coated Dual-Pipe System
by Weiao Song, Tianliang Wu, Junxiang Gao, Xiaofeng Guo, Bo Yuan and Kun Lv
Coatings 2025, 15(12), 1498; https://doi.org/10.3390/coatings15121498 - 18 Dec 2025
Viewed by 291
Abstract
Improving the energy efficiency of advanced ultra-supercritical (USC) power plants by increasing steam operating temperature up to 700 °C can be achieved, at reduced cost, by using novel engineering design concepts, such as coated steam pipe systems manufactured from high temperature materials commonly [...] Read more.
Improving the energy efficiency of advanced ultra-supercritical (USC) power plants by increasing steam operating temperature up to 700 °C can be achieved, at reduced cost, by using novel engineering design concepts, such as coated steam pipe systems manufactured from high temperature materials commonly used in current operational power plants. The durability of thermal barrier coatings (TBC) in advanced USC coal power systems is critically influenced by thermally grown oxide (TGO) evolution and interfacial stress under thermo-chemo-mechanical coupling. This study investigates a novel dual-pipe coating system comprising an inner P91 steel pipe with dual coatings and external cooling, designed to mitigate thermal mismatch stresses while operating at 700 °C. A finite element framework integrating thermo-chemo-mechanical coupling theory is developed to analyze TGO growth kinetics, oxygen diffusion, and interfacial stress evolution. Results reveal significant thermal gradients across the coating, reducing the inner pipe surface temperature to 560 °C under steady-state conditions. Oxygen diffusion and interfacial curvature drive non-uniform TGO thickening, with peak regions exhibiting 23% greater thickness than troughs after 500 h of oxidation. Stress analysis identifies axial stress dominance at top coat/TGO and TGO/bond coat interfaces, increasing from 570 MPa to 850 MPa due to constrained volumetric changes and incompatible growth strains. The parabolic TGO growth kinetics and stress redistribution mechanisms underscore the critical role of thermo-chemo-mechanical interactions in interfacial degradation. These research findings will facilitate the optimization of coating architectures and the enhancement of structural integrity in high-temperature energy systems. Meanwhile, clarifying the stress evolution within the coating can improve the ability to predict failures in USC coal power technology. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 3756 KB  
Article
Study on Cyclic Tensile Shakedown Behaviour of Flexible Risers Considering Winding Process
by Shanghua Wu, Junyu Liu, Ersu Shang, Xiufeng Yue and Zhuoyuan Shen
J. Mar. Sci. Eng. 2025, 13(11), 2186; https://doi.org/10.3390/jmse13112186 - 18 Nov 2025
Viewed by 437
Abstract
Flexible risers are subjected to significant tensile loads during manufacturing, installation, and in-service phases, and they experience multiple cyclic tensile loads throughout their entire service life. Whether the armour wires can achieve shakedown under cyclic tensile loads remains an open question to be [...] Read more.
Flexible risers are subjected to significant tensile loads during manufacturing, installation, and in-service phases, and they experience multiple cyclic tensile loads throughout their entire service life. Whether the armour wires can achieve shakedown under cyclic tensile loads remains an open question to be investigated. In this study, first, the winding process of the tensile armour layers was explored, and the residual stress distribution in the cross-section of the armour wires after the winding process was obtained. Subsequently, a numerical simulation model of the flexible riser that considers residual stress was established based on the ABAQUS 2021 software to study the shakedown behaviour of the flexible riser under cyclic tensile loads. The results show that, during the initial loading–unloading process of the example pipe, the stress in the armour wire cross-section undergoes obvious redistribution. When cyclic loading is applied with a tensile force range of 0–16.1 kN, the armour wire cross-section tends to reach a shakedown state as the number of loading cycles increases. However, when cyclic loading is applied with a tensile force range of 0–30.2 kN, the strain of the armour wire cross-section gradually increases with each loading–unloading cycle, thus exhibiting a ratcheting effect. The cyclic tensile shakedown prediction model proposed in this study can provide a reference for the design of armour layers in deepwater flexible risers. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Risers and Pipelines)
Show Figures

Figure 1

21 pages, 7776 KB  
Article
Identification of Critical and Post-Critical States of a Drill String Under Dynamic Conditions During the Deepening of Directional Wells
by Mikhail Dvoynikov and Pavel Kutuzov
Eng 2025, 6(11), 306; https://doi.org/10.3390/eng6110306 - 3 Nov 2025
Viewed by 779
Abstract
When drilling inclined and horizontal sections, a significant part of the drill string is in a compressed state which leads to a loss of stability and longitudinal bending. Modeling of the stress–strain state (SSS) of the drill string (DS), including prediction of its [...] Read more.
When drilling inclined and horizontal sections, a significant part of the drill string is in a compressed state which leads to a loss of stability and longitudinal bending. Modeling of the stress–strain state (SSS) of the drill string (DS), including prediction of its stability loss, is carried out using modern software packages; the basis of the software’s mathematical apparatus and algorithms is represented by deterministic statically defined formulae and equations. At the same time, a number of factors such as the friction of the drill string against the borehole wall, the presence of tool joints, drill string dynamic operating conditions, and the uncertainty of the position of the borehole in space cast doubt on the accuracy of the calculations and the reliability of the predictive models. This paper attempts to refine the actual behavior of the drill string in critical and post-critical conditions. To study the influence of dynamic conditions in the well on changes in the SSS of the DS due to its buckling, the following initial data were used: a drill pipe with an outer diameter of 88.9 mm and tool joints causing pipe deflection under gravitational acceleration of 9.81 m/s2 placed in a horizontal wellbore with a diameter of 152.4 mm; axial vibrations with an amplitude of variable force of 15–80 kN and a frequency of 1–35 Hz; lateral vibrations with an amplitude of variable impact of 0.5–1.5 g and a frequency of 1–35 Hz; and an increasing axial load of up to 500 kN. A series of experiments are conducted with or without friction of the drill string against the wellbore walls. The results of computational experiments indicate a stabilizing effect of friction forces. It should be noted that the distance between tool joints and their diametrical ratio to the borehole, taking into account gravitational acceleration, has a stabilizing effect due to the formation of additional contact force and bending stresses. It was established that drill string vibrations may either provide a stabilizing effect or lead to a loss of stability, depending on the combination of their frequency and vibration type, as well as the amplitude of variable loading. In the experiments without friction, the range of critical loads under vibration varied from 85 to >500 kN, compared to 268 kN as obtained in the reference experiment without vibrations. In the presence of friction, the range was 150 to >500 kN, while in the reference experiment without vibrations, no buckling was observed. Based on the results of this study, it is proposed to monitor the deformation rate of the string during loading as a criterion for identifying buckling in the DS stress–strain state monitoring system. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

17 pages, 7434 KB  
Article
Investigation into the Working Behavior of Geotextile Pipe-Bag Systems on Soft Soil Foundations in the Ningde Port Industrial Zone, China
by Peijun Fan, Honglei Ren, Xiatao Zhang, Wei Li and Wanli Guo
Water 2025, 17(21), 3063; https://doi.org/10.3390/w17213063 - 25 Oct 2025
Viewed by 609
Abstract
With the rapid development of coastal and nearshore engineering projects in China, geotextile pipe and bag (GPB) structures have been increasingly applied in marine land reclamation and coastal protection works. To better understand the mechanical behavior of GPB structures on soft soil foundations, [...] Read more.
With the rapid development of coastal and nearshore engineering projects in China, geotextile pipe and bag (GPB) structures have been increasingly applied in marine land reclamation and coastal protection works. To better understand the mechanical behavior of GPB structures on soft soil foundations, this study conducts a systematic investigation into the mechanical properties of both soft soils and GPBs using a physical model test system. By integrating numerical simulations, the stress–deformation characteristics of GPB structures on soft soils and the evolution of pore pressure are further analyzed. The results indicate that the compression curve of soft soil exhibits significant nonlinearity, with silt showing higher apparent compressibility than silty clay. Experimental data yielded the compression coefficient λ and rebound coefficient μ for both soil types. As consolidation pressure increases, deviatoric stress in the soft soil rises notably, demonstrating typical strain-hardening behavior. Based on these findings, the critical state effective stress ratio M was determined for both soil types. The study also establishes the development laws of cohesion c and friction angle φ during soil consolidation, as well as the variation of pore water pressure under different confining pressures. Interface tests clarify the relationships between cohesion and friction angle at the interfaces between geotextile pipe bags and sand, and between adjacent pipe bag layers. Numerical simulations reveal that the reclamation construction process significantly influences structural horizontal displacement. Significant stress concentration occurs at the toe of the slope, while the central portion of the pipe-bag structure experiences maximum tensile stress—still within the material’s allowable stress limit. The installation of drainage boards effectively accelerates pore pressure dissipation, achieving nearly complete consolidation within one year after construction. This research provides a scientific foundation and practical engineering guidance for assessing the overall stability and safety of (GPB) structures on soft soil foundations in coastal regions. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

16 pages, 3494 KB  
Article
Mechanical Study on Leading Ductule and Pipe Roof Pre-Support Technologies in Tunnel Excavation
by Yunpeng Jiang, Hao Luo, Hui Liu and Jianfeng Gu
Buildings 2025, 15(20), 3791; https://doi.org/10.3390/buildings15203791 - 21 Oct 2025
Viewed by 611
Abstract
For the purpose of ensuring the construction safety of tunnel excavation, it is necessary to adopt a suitable pre-support technology to reinforce the surrounding rock. The pipe roof reinforcement method and the leading ductule method are the most commonly used and classical technologies [...] Read more.
For the purpose of ensuring the construction safety of tunnel excavation, it is necessary to adopt a suitable pre-support technology to reinforce the surrounding rock. The pipe roof reinforcement method and the leading ductule method are the most commonly used and classical technologies during tunnel construction. This paper adopts the Huashan tunnel and the Xianglianshan tunnel as the engineering background, the numerical simulation is established based on Midas/GTS to analyze the mechanical performance of the pre-supports formed by the two methods during excavation, then the obtained results, such as stress, deformation, plastic zone, and settlement, are analyzed and discussed. The analysis and discussion illustrate that, during excavation, compared to the leading ductule reinforcement method, the pipe roof reinforcement method can effectively control the vault settlement and improve the stress state of the lining structure, as well as prevent the stress release from the surrounding rock. Thus, the pipe roof reinforcement method shows better reinforcement effectiveness and ensures construction safety. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

16 pages, 11319 KB  
Article
Dynamic Response Mechanism and Risk Assessment of Threaded Connections During Jarring Operations in Ultra-Deep Wells
by Zhe Wang, Chunsheng Wang, Zhaoyang Zhao, Shaobo Feng, Ning Li, Xiaohai Zhao and Zhanghua Lian
Modelling 2025, 6(4), 123; https://doi.org/10.3390/modelling6040123 - 10 Oct 2025
Viewed by 604
Abstract
With the frequent occurrence of stuck pipe incidents during the ultra-deep well drilling operation, the hydraulic-while-drilling (HWD) jar has become a critical component of the bottom hole assembly (BHA). However, during jarring operations for stuck pipe release, the drill string experiences severe vibrations [...] Read more.
With the frequent occurrence of stuck pipe incidents during the ultra-deep well drilling operation, the hydraulic-while-drilling (HWD) jar has become a critical component of the bottom hole assembly (BHA). However, during jarring operations for stuck pipe release, the drill string experiences severe vibrations induced by the impact loads from the jar, which significantly alter the stress state and dynamic response of the threaded connections—the structurally weakest elements—under cyclic dynamic loading, often leading to fracture failures. here, a thread failure incident of a hydraulic jar in an ultra-deep well in the Tarim Basin, Xinjiang, is investigated. A drill string dynamic impact model incorporating the actual three-dimensional wellbore trajectory is established to capture the time-history characteristics of multi-axial loads at the threaded connection during up and down jarring. Meanwhile, a three-dimensional finite element model of a double-shouldered threaded connection with helix angle is developed, and the stress distribution of the joint thread is analyzed on the boundary condition acquired from the time-history characteristics of multi-axial loads. Numerical results indicate that the axial compression induces local bending of the drill string during down jarring, resulting in significantly greater bending moment fluctuations than in up jarring and a correspondingly higher amplitude of circumferential acceleration at the thread location. Among all thread positions, the first thread root at the pin end consistently experiences the highest average stress and stress variation, rendering it most susceptible to fatigue failure. This study provides theoretical and practical insights for optimizing drill string design and enhancing the reliability of threaded connections in deep and ultra-deep well drilling. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Graphical abstract

18 pages, 3597 KB  
Article
A Pipeline Hoop Stress Measurement Method Based on Propagation Path Correction of LCR Waves
by Bing Chen, Binbin Wang, Feifei Qiu, Chunlang Luo, Jiakai Chen and Guoqing Gou
J. Mar. Sci. Eng. 2025, 13(10), 1845; https://doi.org/10.3390/jmse13101845 - 24 Sep 2025
Cited by 1 | Viewed by 616
Abstract
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface [...] Read more.
Pipelines are extensively used in offshore equipment. Accurate and non-destructive measurement of hoop stress conditions within pipes is critical for ensuring the integrity of offshore structures. However, the existing technology to measure the hoop stress of the pipeline needs to planarize the surface of the pipeline, which greatly limits the detection efficiency. This study proposes a method for pipeline hoop stress measurement using a planar longitudinal critically refracted (LCR) probe, based on correcting LCR wave-propagation paths, which solves the problem of pipeline planarization in pipeline hoop stress measurement. First, a linear relationship between stress variations and ultrasonic time-of-flight changes in the material was established based on the acoustoelastic effect. Finite element analysis was then used to construct an acoustic simulation model for the hoop direction of the pipeline. Simulation results showed that LCR waves propagated within a wedge as quasi-plane waves and, upon oblique incidence into the pipeline, traveled along the chordal direction. Furthermore, using ray tracing methods, a mapping relationship between the pipeline geometry and the ultrasonic propagation path was established. Based on this, the LCR pipeline hoop stress measurement (LCR-HS) method was proposed. Finally, a C-shaped ring was employed to verify the measurement accuracy of the LCR-HS method. Experimental results indicated that the measurement error decreased with increasing pipe diameter and fell below 8% when the diameter exceeded 400 mm. This method enables precise measurement of hoop stress on curved surfaces by revealing the hoop propagation behavior of LCR waves in pipelines. The findings provide a technical reference for evaluating pipeline stress states, which is of significant importance for assessment of pipeline integrity. Full article
(This article belongs to the Special Issue Offshore Pipes and Energy Equipment)
Show Figures

Figure 1

17 pages, 4948 KB  
Article
Plane-Stress Measurement in Anisotropic Pipe Walls Using an Improved Tri-Directional LCR Ultrasonic Method
by Yukun Li, Longsheng Wang, Fan Fei, Dongying Wang, Zhangna Xue, Xin Liu and Xinyu Sun
Sensors 2025, 25(14), 4371; https://doi.org/10.3390/s25144371 - 12 Jul 2025
Viewed by 933
Abstract
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted [...] Read more.
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted (LCR) wave time-of-flight (TOF) measurements. The connection between plane stress and ultrasonic TOF is confirmed by examining how the anisotropy of rolled steel plates affects the speed of ultrasonic wave propagation, which is a finding not previously documented in spiral-welded pipes. Then based on this relationship, an ultrasonic stress coefficient calibration experiment for spiral-welded pipes is designed. The results show that the principal stress obtained by the ultrasonic method is closer to the engineering stress than that obtained from the coercivity method. And, as a nondestructive testing technique, the ultrasonic method is more suitable for in-service pipelines. It also elucidates the effects of probe pressure and steel plate surface roughness on the ultrasonic TOF, obtains a threshold for probe pressure, and reveals a linear relationship between roughness and TOF. This study provides a feasible technique for nondestructive measurement of plane stress in anisotropic spiral-welded pipelines, which has potential application prospects in the health monitoring of in-service pipelines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

7 pages, 581 KB  
Proceeding Paper
Non-Linear Investigation of a Functionally Graded Pipe
by Victor Rizov
Eng. Proc. 2025, 100(1), 4; https://doi.org/10.3390/engproc2025100004 - 30 Jun 2025
Viewed by 418
Abstract
A pipe subjected to an evenly distributed internal pressure is investigated in this theoretical paper. The pipe has a thin wall that is built-up by a functionally graded engineering material. The circumferential stresses and strains in the pipe wall are investigated. In essence, [...] Read more.
A pipe subjected to an evenly distributed internal pressure is investigated in this theoretical paper. The pipe has a thin wall that is built-up by a functionally graded engineering material. The circumferential stresses and strains in the pipe wall are investigated. In essence, the current investigation is non-linear since the wall behaves as a non-linear elastic body with non-linearly distributed properties through the wall thickness. The different stages of the work of the wall are investigated and the corresponding parameters of stressed and strained state are derived. The dependence of the pressure on the material and geometrical parameters are studied. Full article
Show Figures

Figure 1

17 pages, 6638 KB  
Article
Numerical Analysis of the Process of Drawing Thin-Walled CuSn8 Alloy Tubes on a Cylindrical Plug
by Maciej Suliga, Sebastian Mróz, Piotr Szota, Mateusz Wasilewski and Konrad Jaroszewski
Materials 2025, 18(12), 2754; https://doi.org/10.3390/ma18122754 - 12 Jun 2025
Cited by 1 | Viewed by 775
Abstract
The paper presents the results of FEM computer simulations of the drawing process on a cylindrical journal of thin-walled CuSn8 alloy tubes. This study demonstrates through FEM simulations that the drawing angle significantly affects the state of stress, strain and tool wear. Regardless [...] Read more.
The paper presents the results of FEM computer simulations of the drawing process on a cylindrical journal of thin-walled CuSn8 alloy tubes. This study demonstrates through FEM simulations that the drawing angle significantly affects the state of stress, strain and tool wear. Regardless of the geometry of the drawing die, greater wear was noted for the cylindrical plug. Increasing the angle of drawing die 2α from 6° to 38° contributed to a slight 5% increase in wear of the drawing dies and more than 80% increase in plug wear. Accelerated tool wear at high angles is to be associated with higher pipe pressures on the drawing die and plug. Inadequate selection of drawing geometry can cause additional material deformation effort and material fracture in the industrial drawing process of thin-walled tubes. After the drawing process, these tubes may also show non-uniform wall thickness. The optimum drawing angle for thin-walled tubes is 2α = 22°, for which about a 10% decrease in the drawing force was recorded. Full article
Show Figures

Figure 1

26 pages, 4598 KB  
Article
Investigation of Interface Behavior Between Offshore Pipe Pile and Sand Using a Newly Modified Shearing Apparatus
by Wenbo Du, Xuguang Chen, Shanshan Zhang and Bin Huang
Buildings 2025, 15(8), 1308; https://doi.org/10.3390/buildings15081308 - 16 Apr 2025
Cited by 1 | Viewed by 983
Abstract
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the [...] Read more.
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the traditional vane shear apparatus was improved by utilizing its torsional shear actuator, adding an overlying pressure fixing device, and applying lateral pressure through a compressive spring. The original cross plate was replaced with a cylindrical steel rod to simulate the shear behavior of the large−diameter pile–sand interface under different stress states. Experimental results show that this apparatus effectively solves the problem of soil loss due to the shear gap in both the ring shear and direct shear tests under smooth interface conditions. As the shear rate (2°/min, 4°/min, 6°/min) increased, the peak and residual shear stresses decreased, while the shear stress increased with vertical confinement pressure, accompanied by significant residual stress. As the relative density of sand increased from 27.4% to 72.2%, the shear behavior transitioned from contraction to dilation. Regarding surface roughness, the experiment identified a critical threshold: when roughness is below this threshold, it significantly affects the peak shear strength; when above this threshold, the effect is smaller, and failure shifts to the internal sand body. This study provides valuable insights into the mechanics of the sand–steel interface and contributes to optimizing the foundation design for marine infrastructure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 18800 KB  
Article
Research on Thermo-Mechanical Response of Solid-State Core Matrix in a Heat Pipe Cooled Reactor
by Xintong Peng, Cong Liu, Yangbin Deng, Jingyu Nie, Yingwei Wu and Guanghui Su
Energies 2025, 18(6), 1423; https://doi.org/10.3390/en18061423 - 13 Mar 2025
Viewed by 1058
Abstract
Due to its advantages of simple structure and high inherent safety, the heat pipe cooled reactor (HPR) could be widely applied in deep-sea navigation, deep-space exploration and land-based power supply as a promising advanced special nuclear power equipment option. In HPRs, the space [...] Read more.
Due to its advantages of simple structure and high inherent safety, the heat pipe cooled reactor (HPR) could be widely applied in deep-sea navigation, deep-space exploration and land-based power supply as a promising advanced special nuclear power equipment option. In HPRs, the space between the components (fuel rods and heat pipes) is filled with solid matrix material, forming a continuous solid reactor core. Thermo-mechanical response of the solid core is a special issue for HPRs and has great impacts on reactor safety. Considering the irradiation and burnup effects, the thermal and mechanical modeling of an HPR was conducted with ABAQUS-2021 in this study. The thermo-mechanical response under long-term normal operation, accident transients and single heat pipe failed conditions was simulated and analyzed. The whole core presents relatively good isothermality due to the high thermal conductivity of the solid matrix. As for the mechanical performance, the maximum stress was about 300 MPa, and the maximum displacement of the matrix could be as high as 3.7 mm. It could lead to significant variation of the reactor physical parameters, which warrants further attention in reactor design and safety analysis. Reactivity insertion accidents or single heat pipe failure has obvious influence on the thermo-mechanical performance of the local matrix, but they did not cause any failure risks, because the HPR design eliminates the dramatic power flash-up and the solid-state core avoids the heat transfer crisis caused by the coolant phase transition. A quantitative evaluation of thermo-mechanical performance was completed by this research, which is of great value for reactor design and safety evaluation of HPRs. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

24 pages, 8716 KB  
Review
Mapping the Knowledge Domain of Pressure Vessels and Piping Fields for Safety Research in Industrial Processes: A Bibliometric Analysis
by Ting Mei, Chaozhen Tong, Bingrui Tong, Junjie Zhu, Yuxuan Wang, Mengyao Kou and Hui Liu
Processes 2025, 13(1), 74; https://doi.org/10.3390/pr13010074 - 1 Jan 2025
Cited by 1 | Viewed by 2632
Abstract
With the rapid advancement of modern industries, pressure vessels and piping have become increasingly integral to sectors such as energy, petrochemicals, and process industries. To grasp the research and application status in the field of pressure vessel and piping safety, 670 publications in [...] Read more.
With the rapid advancement of modern industries, pressure vessels and piping have become increasingly integral to sectors such as energy, petrochemicals, and process industries. To grasp the research and application status in the field of pressure vessel and piping safety, 670 publications in the Web of Science core database from 2008 to 2024 were taken as data samples in this paper. The knowledge mapping tools were used to carry out co-occurrence analysis, keyword burst detection, and co-citation analysis. The results show that the research in this field presents a multidisciplinary and cross-disciplinary state, involving multiple disciplines such as Nuclear Science and Technology, Engineering Mechanics, and Energy and Fuels. The “International Journal of Hydrogen Energy”, “International Journal of Pressure Vessels and Piping”, and “Nuclear Engineering and Design” are the primary publication outlets in this domain. The study identifies three major research hotspots: (1) the safety performance of pressure vessels and piping, (2) structural integrity, failure mechanisms, and stress analysis, and (3) numerical simulation and thermal–hydraulic analysis under various operating conditions. The current challenges can be summarized into three aspects: (1) addressing the safety risks brought by new technologies and materials, (2) promoting innovation and the application of detection and monitoring technologies, and (3) strengthening the building capacity for accident prevention and emergency management. Specific to China, the current challenges include the safety and management of aging equipment, the effective detection of circumferential weld cracks, the refinement of risk assessment models, and the advancement of smart technology applications. These findings offer valuable insights for advancing safety practices and guiding future research in this multidisciplinary field. Full article
(This article belongs to the Special Issue Condition Monitoring and the Safety of Industrial Processes)
Show Figures

Figure 1

12 pages, 4239 KB  
Article
Analysis of Force Characteristics and Influencing Factors of Gas Storage Injection–Production Pipe String
by Huaquan Jiang, Tingjun Wen, Limin Li, Zhengwei Guo, Renhao Zhang, Jun Ma and Kanhua Su
Symmetry 2024, 16(12), 1692; https://doi.org/10.3390/sym16121692 - 20 Dec 2024
Viewed by 976
Abstract
Aiming at addressing the issue of seal failure of connecting threads of injection–production strings in gas storage, a theoretical research study of injection–production strings is conducted. A full-size model of an injection–production string is established by the finite element method, and natural frequency, [...] Read more.
Aiming at addressing the issue of seal failure of connecting threads of injection–production strings in gas storage, a theoretical research study of injection–production strings is conducted. A full-size model of an injection–production string is established by the finite element method, and natural frequency, buckling state, and influence factors are analyzed. Under the condition of ensuring the circumferential expansion displacement of the pipe string, appropriate annular pressure can be used to reduce the stress caused by the buckling of the pipe string. There is a pressure difference between the inside and outside of the curved section of the pipe string, and the larger the radius of curvature, the greater the pressure difference between the inside and outside of the pipe string, and the greater the fluid flow process because of the pressure difference variation caused by the vibration of the pipe string. The pipe string is in a sinusoidal or helical state near the packer position, and it has central symmetry. The variation in the pipe string outside pressure does not affect the position of the symmetric points. The research results can provide theoretical support to understand the mechanical characteristics and vibration mechanism of gas storage injection–production pipe string, identify the main control factors of vibration, and aim in the development of safety control measures. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Structural Dynamics)
Show Figures

Figure 1

23 pages, 7110 KB  
Article
Optimizing Pipeline Bridge Components Through FEA Technical Validation
by Maria Tănase, Alexandra Ileana Portoacă, Ecaterina Daniela Zeca and Loredana Maria Păunescu
Buildings 2024, 14(12), 3935; https://doi.org/10.3390/buildings14123935 - 10 Dec 2024
Viewed by 2293
Abstract
Pipeline bridges are structures characterized by their triangular truss designs, which provide support and stability for pipelines. They have been used for centuries to span gaps and are still widely employed today in various forms and applications. This paper aims to explore the [...] Read more.
Pipeline bridges are structures characterized by their triangular truss designs, which provide support and stability for pipelines. They have been used for centuries to span gaps and are still widely employed today in various forms and applications. This paper aims to explore the technical and economic aspects associated with optimizing the performance of a pipeline bridge by modifying the constitutive elements. It was investigated how variations in geometric elements and other design characteristics can influence the stress state and the associated material costs, so as to find solutions and strategies that allow the obtaining of a more efficient, safer, and more economical structure, without compromising quality or safety. Different construction scenarios were analyzed, revealing a stress increase of up to 54.77% in comparison to the lowest stress scenario (Scenario 6). Lower stress values were achieved using thicker pipes, with minimal influence from angle dimensions. A statistical analysis using ANOVA, performed in Minitab, showed that both maximum stress and material costs are predominantly influenced by pipe type (99.7% and 81.72%, respectively), rather than angle size. The optimal solution for minimizing stress and costs was determined to be the combination of angle C1 (30 × 30 × 3 mm) and pipe T3 (60.3 × 3.6 mm). This work contributes to the state of practices by providing detailed guidelines on selecting structural configurations that balance cost and performance, making it highly relevant for the design and optimization of pipeline bridges. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

Back to TopTop