Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,536)

Search Parameters:
Keywords = strength fitness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2812 KiB  
Article
Application of a Multi-Algorithm-Optimized CatBoost Model in Predicting the Strength of Multi-Source Solid Waste Backfilling Materials
by Jianhui Qiu, Jielin Li, Xin Xiong and Keping Zhou
Big Data Cogn. Comput. 2025, 9(8), 203; https://doi.org/10.3390/bdcc9080203 (registering DOI) - 7 Aug 2025
Abstract
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the [...] Read more.
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the strength of the backfill demands a considerable amount of manpower and time. The rapid and precise acquisition and optimization of backfill strength parameters hold utmost significance for mining safety. In this research, the authors carried out a backfill strength experiment with five experimental parameters, namely concentration, cement–sand ratio, waste rock–tailing ratio, curing time, and curing temperature, using an orthogonal design. They collected 174 sets of backfill strength parameters and employed six population optimization algorithms, including the Artificial Ecosystem-based Optimization (AEO) algorithm, Aquila Optimization (AO) algorithm, Germinal Center Optimization (GCO), Sand Cat Swarm Optimization (SCSO), Sparrow Search Algorithm (SSA), and Walrus Optimization Algorithm (WaOA), in combination with the CatBoost algorithm to conduct a prediction study of backfill strength. The study also utilized the Shapley Additive explanatory (SHAP) method to analyze the influence of different parameters on the prediction of backfill strength. The results demonstrate that when the population size was 60, the AEO-CatBoost algorithm model exhibited a favorable fitting effect (R2 = 0.947, VAF = 93.614), and the prediction error was minimal (RMSE = 0.606, MAE = 0.465), enabling the accurate and rapid prediction of the strength parameters of the backfill under different ratios and curing conditions. Additionally, an increase in curing temperature and curing time enhanced the strength of the backfill, and the influence of the waste rock–tailing ratio on the strength of the backfill was negative at a curing temperature of 50 °C, which is attributed to the change in the pore structure at the microscopic level leading to macroscopic mechanical alterations. When the curing conditions are adequate and the parameter ratios are reasonable, the smaller the porosity rate in the backfill, the greater the backfill strength will be. This study offers a reliable and accurate method for the rapid acquisition of backfill strength and provides new technical support for the development of filling mining technology. Full article
50 pages, 10020 KiB  
Article
A Bio-Inspired Adaptive Probability IVYPSO Algorithm with Adaptive Strategy for Backpropagation Neural Network Optimization in Predicting High-Performance Concrete Strength
by Kaifan Zhang, Xiangyu Li, Songsong Zhang and Shuo Zhang
Biomimetics 2025, 10(8), 515; https://doi.org/10.3390/biomimetics10080515 - 6 Aug 2025
Abstract
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant [...] Read more.
Accurately predicting the compressive strength of high-performance concrete (HPC) is critical for ensuring structural integrity and promoting sustainable construction practices. However, HPC exhibits highly complex, nonlinear, and multi-factorial interactions among its constituents (such as cement, aggregates, admixtures, and curing conditions), which pose significant challenges to conventional predictive models. Traditional approaches often fail to adequately capture these intricate relationships, resulting in limited prediction accuracy and poor generalization. Moreover, the high dimensionality and noisy nature of HPC mix data increase the risk of model overfitting and convergence to local optima during optimization. To address these challenges, this study proposes a novel bio-inspired hybrid optimization model, AP-IVYPSO-BP, which is specifically designed to handle the nonlinear and complex nature of HPC strength prediction. The model integrates the ivy algorithm (IVYA) with particle swarm optimization (PSO) and incorporates an adaptive probability strategy based on fitness improvement to dynamically balance global exploration and local exploitation. This design effectively mitigates common issues such as premature convergence, slow convergence speed, and weak robustness in traditional metaheuristic algorithms when applied to complex engineering data. The AP-IVYPSO is employed to optimize the weights and biases of a backpropagation neural network (BPNN), thereby enhancing its predictive accuracy and robustness. The model was trained and validated on a dataset comprising 1030 HPC mix samples. Experimental results show that AP-IVYPSO-BP significantly outperforms traditional BPNN, PSO-BP, GA-BP, and IVY-BP models across multiple evaluation metrics. Specifically, it achieved an R2 of 0.9542, MAE of 3.0404, and RMSE of 3.7991 on the test set, demonstrating its high accuracy and reliability. These results confirm the potential of the proposed bio-inspired model in the prediction and optimization of concrete strength, offering practical value in civil engineering and materials design. Full article
Show Figures

Figure 1

11 pages, 215 KiB  
Article
Personalised Prevention of Falls in Persons with Dementia—A Registry-Based Study
by Per G. Farup, Knut Hestad and Knut Engedal
Geriatrics 2025, 10(4), 106; https://doi.org/10.3390/geriatrics10040106 - 6 Aug 2025
Abstract
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons [...] Read more.
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons with mild and moderate cognitive impairment. This study explored person-specific risks of falls related to physical, mental, and cognitive functions and types of dementia: Alzheimer’s disease (AD), vascular dementia (VD), mixed Alzheimer’s disease/vascular dementia (MixADVD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods: The study used data from “The Norwegian Registry of Persons Assessed for Cognitive Symptoms” (NorCog). Differences between the dementia groups and predictors of falls, gait speed, ADL, and Cornell scores were analysed. Results: Among study participants, 537/1321 (40.7%) reported a fall in the past year, with significant variations between dementia diagnoses. Fall incidence increased with age, comorbidity/polypharmacy, depression, and MAYO fluctuation score and with reduced physical activity, gait speed, and ADL. Persons with VD and MixADVD had high fall incidences and impaired gait speed and ADL. Training of physical fitness, endurance, muscular strength, coordination, and balance and optimising treatment of comorbidities and medication enhance gait speed. Improving ADL necessitates, in addition, relief of cognitive impairment and fluctuations. Relief of depression and fluctuations by psychological and pharmacological interventions is necessary to reduce the high fall risk in persons with DLB. Conclusions: The fall incidence and fall predictors varied significantly. Personalised interventions presuppose knowledge of each individual’s fall risk factors. Full article
13 pages, 657 KiB  
Article
Physical Fitness, Experiential Avoidance, and Psychological Inflexibility Among Adolescents: Results from the EHDLA Study
by Maria Mendoza-Muñoz, José Francisco López-Gil, Damián Pereira-Payo and Raquel Pastor-Cisneros
Children 2025, 12(8), 1032; https://doi.org/10.3390/children12081032 - 6 Aug 2025
Abstract
Background/Introduction: Psychological inflexibility, which includes experiential avoidance, is a transdiagnostic process associated with multiple mental health issues in adolescence. Physical fitness (PF) has shown benefits for mental well-being, yet its specific relationship with psychological inflexibility remains understudied, particularly among youth. Objectives: To examine [...] Read more.
Background/Introduction: Psychological inflexibility, which includes experiential avoidance, is a transdiagnostic process associated with multiple mental health issues in adolescence. Physical fitness (PF) has shown benefits for mental well-being, yet its specific relationship with psychological inflexibility remains understudied, particularly among youth. Objectives: To examine the association between components of PF and psychological inflexibility, measured by the Acceptance and Action Questionnaire-II (AAQ-II), in a representative sample of Spanish adolescents. Methods: A cross-sectional analysis was conducted using data from 631 adolescents (aged 12–17) participating in the Eating Healthy and Daily Life Activities (EHDLA) study. PF was assessed by the Assessing the Levels of PHysical Activity and Fitness (ALPHA-Fit) Test Battery (cardiorespiratory fitness, muscular strength, agility, and flexibility). Psychological inflexibility was measured using the AAQ-II. Generalized linear models (GLMs) were used to evaluate associations, adjusting for age, sex, body mass index, socioeconomic status, physical activity, sedentary behavior, sleep duration, and energy intake. Results: Unadjusted analyses showed weak but significant associations between psychological inflexibility and performance in the 20 m shuttle run test (p = 0.002), the 4 × 10 shuttle run test (p = 0.005), and the sit-and-reach test (p < 0.001). However, after adjusting for covariates, none of the PF components maintained a statistically significant association with the AAQ-II scores. Conclusions: In this adolescent sample, PF components were not independently associated with psychological inflexibility after adjustment for key confounders. These findings suggest that, while PF may contribute to general well-being, it is not a primary determinant of psychological inflexibility. Further longitudinal and intervention studies are needed to clarify the mechanisms linking physical and psychological health in youth. Full article
(This article belongs to the Special Issue Physical Fitness and Health in Adolescents)
Show Figures

Figure 1

28 pages, 3960 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting, version 2.1.4) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 7257 KiB  
Article
The Development and Statistical Analysis of a Material Strength Database of Existing Italian Prestressed Concrete Bridges
by Michele D’Amato, Antonella Ranaldo, Monica Rosciano, Alessandro Zona, Michele Morici, Laura Gioiella, Fabio Micozzi, Alberto Poeta, Virginio Quaglini, Sara Cattaneo, Dalila Rossi, Carlo Pettorruso, Walter Salvatore, Agnese Natali, Simone Celati, Filippo Ubertini, Ilaria Venanzi, Valentina Giglioni, Laura Ierimonti, Andrea Meoni, Michele Titton, Paola Pannuzzo and Andrea Dall’Astaadd Show full author list remove Hide full author list
Infrastructures 2025, 10(8), 203; https://doi.org/10.3390/infrastructures10080203 - 2 Aug 2025
Viewed by 364
Abstract
This paper reports a statistical analysis of a database archiving information on the strengths of the materials in existing Italian bridges having pre- and post-tensioned concrete beams. Data were collected in anonymous form by analyzing a stock of about 170 bridges built between [...] Read more.
This paper reports a statistical analysis of a database archiving information on the strengths of the materials in existing Italian bridges having pre- and post-tensioned concrete beams. Data were collected in anonymous form by analyzing a stock of about 170 bridges built between 1960 and 2000 and located in several Italian regions. To date, the database refers to steel reinforcing bars, concrete, and prestressing steel, whose strengths were gathered from design nominal values, acceptance certificates, and in situ test results, all derived by consulting the available documents for each examined bridge. At first, this paper describes how the available data were collected. Then, the results of a statistical analysis are presented and commented on. Moreover, goodness-of-fit tests are carried out to verify the assumption validity of a normal distribution for steel reinforcing bars and prestressing steel, and a log-normal distribution for concrete. The database represents a valuable resource for researchers and practitioners for the assessment of existing bridges. It may be applied for the use of prior knowledge within a framework where Bayesian methods are included for reducing uncertainties. The database provides essential information on the strengths of the materials to be used for a simulated design and/or for verification in the case of limited knowledge. Goodness-of-fit tests make the collected information very useful, even if probabilistic methods are applied. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

14 pages, 1600 KiB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 139
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

14 pages, 10176 KiB  
Article
Recrystallization During Annealing of Low-Density Polyethylene Non-Woven Fabric by Melt Electrospinning
by Yueming Ren, Changjin Li, Minqiao Ren, Dali Gao, Yujing Tang, Changjiang Wu, Liqiu Chu, Qi Zhang and Shijun Zhang
Polymers 2025, 17(15), 2121; https://doi.org/10.3390/polym17152121 - 31 Jul 2025
Viewed by 295
Abstract
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the [...] Read more.
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the main melting point and crystallinity of LDPE decreased compared to the original sample, as did the tensile strength of the non-woven fabric. Additionally, the lamellar distribution became broader at annealing temperatures above 80 °C. The recrystallization mechanism of molten lamellae (disordered chains) in LDPE was elucidated by fitting the data using a Gaussian function. It was found that secondary crystallization, forming thicker lamellae, and spontaneous crystallization, forming thinner lamellae, occurred simultaneously at rates dependent on the annealing temperature. Secondary crystallization dominated at temperatures ≤80 °C, whereas spontaneous crystallization prevailed at temperatures above 80 °C. These findings explain the observed changes in the microstructure and tensile properties of the LDPE non-woven fabric. Furthermore, a physical model describing the microstructural evolution of the LDPE non-woven fabric during annealing was proposed based on the experimental evidence. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 4426 KiB  
Article
Analysis of Dynamic Properties and Johnson–Cook Constitutive Relationship Concerning Polytetrafluoroethylene/Aluminum Granular Composite
by Fengyue Xu, Jiabo Li, Denghong Yang and Shaomin Luo
Materials 2025, 18(15), 3615; https://doi.org/10.3390/ma18153615 - 31 Jul 2025
Viewed by 217
Abstract
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the [...] Read more.
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the research on mechanical properties of a series of composite materials based on PTFE/Al as the matrix. Firstly, the 26.5Al-73.5PTFE (wt.%) composite specimens are prepared by preprocessing, mixing, molding, high-temperature sintering, and cooling. Then, the quasi-static compression and Hopkinson bar tests are performed to explore the mechanical properties of the PTFE/Al composite. Influences of the strain rate of loading on the yield stress, the ultimate strength, and the limited strain are also analyzed. Lastly, based on the experimental results, the material parameters in the Johnson–Cook constitutive model are obtained by the method of piecewise fitting to describe the stress–strain relation of the PTFE/Al composite. Combining the experimental details and the obtained material parameters, the numerical simulation of the dynamic compression of the PTFE/Al composite specimen is carried out by using the ANSYS/LS-DYNA platform. The results show that the computed stress–strain curves present a reasonable agreement with the experimental data. It should be declared that this research does not involve the energy release behavior of the 26.5Al-73.5PTFE (wt.%) reactive material because the material is not initiated within the strain rate range of the dynamic test in this paper. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 232
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

20 pages, 4901 KiB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 - 31 Jul 2025
Viewed by 153
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

14 pages, 257 KiB  
Article
Mental and Physical Health of Chinese College Students After Shanghai Lockdown: An Exploratory Study
by Jingyu Sun, Rongji Zhao and Antonio Cicchella
Healthcare 2025, 13(15), 1864; https://doi.org/10.3390/healthcare13151864 - 30 Jul 2025
Viewed by 248
Abstract
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, [...] Read more.
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, with females often more vulnerable to mental health issues. Objective: This study aimed to comprehensively assess the physical and psychological health of Chinese college students post-lockdown, focusing on the relationship between stress, anxiety, depression, sleep patterns, and physical health, with a particular emphasis on gender differences. Methods: We conducted a cross-sectional study involving 116 students in Shanghai, utilizing psychological scales (HAMA, IPAQ, PSQI, SDS, FS 14, PSS, SF-36) and physical fitness tests (resting heart rate, blood pressure, hand grip, forced vital capacity, standing long jump, sit-and-reach, one-minute sit-up test and the one-minute squat test, single-leg stand test with eyes closed), to analyze health and behavior during the pandemic lockdown. All students have undergone the same life habits during the pandemic. Results: The HAMA scores indicated no significant levels of physical or mental anxiety. The PSS results (42.45 ± 8.93) reflected a high overall stress level. Furthermore, the PSQI scores (5.4 ± 2.91) suggested that the participants experienced mild insomnia. The IPAQ scores indicated higher levels of job-related activity (1261.49 ± 2144.58), transportation activity (1253.65 ± 987.57), walking intensity (1580.78 ± 1412.20), and moderate-intensity activity (1353.03 ± 1675.27) among college students following the lockdown. Hand grip strength (right) (p = 0.001), sit-and-reach test (p = 0.001), standing long jump (p = 0.001), and HAMA total score (p = 0.033) showed significant differences between males and females. Three principal components were identified in males: HAMA, FS14, and PSQI, explaining a total variance of 70.473%. Similarly, three principal components were extracted in females: HAMA, PSQI, and FS14, explaining a total variance of 69.100%. Conclusions: Our study underscores the complex interplay between physical activity (PA), mental health, and quality of life, emphasizing the need for gender-specific interventions. The persistent high stress, poor sleep quality, and reduced PA levels call for a reorganized teaching schedule to enhance student well-being without increasing academic pressure. Full article
16 pages, 686 KiB  
Article
Age- and Sex-Specific Reference Values for Handgrip Strength Among Healthy Tunisian Adolescents
by Souhail Bchini, Ismail Dergaa, Dhouha Moussaoui, Halil İbrahim Ceylan, Taoufik Selmi, Raul Ioan Muntean and Nadhir Hammami
Medicina 2025, 61(8), 1383; https://doi.org/10.3390/medicina61081383 - 30 Jul 2025
Viewed by 310
Abstract
Background and Objectives: Handgrip strength represents a critical indicator of physical fitness and nutritional status in adolescents, yet population-specific reference values remain limited in developing countries. Understanding age- and sex-specific variations is crucial for accurate clinical assessment and effective health monitoring. The objective [...] Read more.
Background and Objectives: Handgrip strength represents a critical indicator of physical fitness and nutritional status in adolescents, yet population-specific reference values remain limited in developing countries. Understanding age- and sex-specific variations is crucial for accurate clinical assessment and effective health monitoring. The objective of this study was to establish comprehensive reference values for handgrip strength in healthy Tunisian adolescents aged 13–19 years and examine sex and age group differences in these measures. Materials and Methods: This cross-sectional study was conducted between September 2024 and June 2025, involving a sample of 950 participants (482 males, 468 females) aged 13–19 years from northwest Tunisia. Handgrip strength was measured using standardized dynamometry protocols for both hands. Anthropometric measurements included height, weight, and body mass index. Percentile curves were generated using the LMS method, and correlations between handgrip strength and anthropometric variables were analyzed using Pearson correlation coefficients. Results: Males demonstrated significantly higher handgrip strength than females from age 13 onward (13 years: p = 0.021; 14–19 years: p ≤ 0.001). Effect sizes for sex differences were consistently large across age groups (Cohen’s d range: 0.53–2.09 for the dominant hand). Mean dominant handgrip strength ranged from 25.60 ± 7.73 kg to 47.60 ± 12.45 kg in males and 21.90 ± 6.13 kg to 28.40 ± 4.74 kg in females across age groups. After adjusting for body mass, sex differences remained significant between groups (13 years: p = 0.014; d= 1.5; 14–19 years: p ≤ 0.001; d: 1.71–3.12). Strong positive correlations emerged between handgrip strength and height (males: r = 0.748, females: r = 0.601), body mass (males: r = 0.659, females: r = 0.601), and body mass index (BMI) (males: r = 0.391, females: r = 0.461). Body mass and height emerged as the strongest predictors of handgrip strength in both sexes, while BMI showed a smaller but still significant contribution. Conclusions: This study provides the first comprehensive age- and sex-specific reference values for handgrip strength in Tunisian adolescents. Healthcare providers can utilize these percentile charts for the clinical assessment and identification of musculoskeletal fitness deficits. The results suggest its use in educational and clinical contexts. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

19 pages, 6265 KiB  
Article
Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment
by Jiahui Li, Hui Li, Wei Zhang, Xiongguang Li, Xiangke Kong and Min Liu
Sustainability 2025, 17(15), 6908; https://doi.org/10.3390/su17156908 - 30 Jul 2025
Viewed by 261
Abstract
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment [...] Read more.
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment (pH, pollutant concentration, aquifer media, dissolved organic matter, and ionic strength) on the adsorption process. Polyethylene (PE) and tetracycline (TC) were selected as typical microplastics and antibiotics in the experiment. The study results showed that the adsorption of TC by PE reached equilibrium at 48 h, and the adsorption kinetics fitted pseudo-second-order kinetics models well. The adsorption isotherm was consistent with the Langmuir model. The adsorption capacity of PE for TC was highest under neutral conditions and positively correlated with the initial concentration of TC. The aquifer media exhibited limited effects on the adsorption process. Fulvic acid (FA) significantly suppressed TC adsorption onto PE, attributable to competitive adsorption mechanisms. TC adsorption on PE initially increased then declined with Ca2+ concentration due to Ca2+ bridging and competition. This research elucidates the adsorption mechanisms of PE towards TC, providing theoretical basis and reference for assessing the environmental risk of microplastics and antibiotics in groundwater. Full article
Show Figures

Figure 1

13 pages, 258 KiB  
Article
Physical Fitness Profiles of Young Female Team Sport Athletes from Portuguese Rural Settings: A Cross-Sectional Study
by Bebiana Sabino, Margarida Gomes, Ana Rodrigues, Pedro Bento and Nuno Loureiro
Sports 2025, 13(8), 248; https://doi.org/10.3390/sports13080248 - 28 Jul 2025
Viewed by 307
Abstract
Background: Sports performance indicators are mainly based on male athletes, highlighting the importance of portraying the female reality, particularly in rural contexts. This study aims to characterize sports performance indicators (body composition and physical fitness) of young Portuguese female athletes. Methods: A cross-sectional [...] Read more.
Background: Sports performance indicators are mainly based on male athletes, highlighting the importance of portraying the female reality, particularly in rural contexts. This study aims to characterize sports performance indicators (body composition and physical fitness) of young Portuguese female athletes. Methods: A cross-sectional study was conducted with 124 girls (13.66 ± 1.93 years) participating in federated team sports in a rural region of Portugal. Body composition was assessed using bioelectrical impedance, and physical fitness was evaluated through vertical jump tests (countermovement jump and squat jump), sprint (20 m), agility (T-test), handgrip strength, and cardiovascular endurance (Yo-Yo IR1). Results: Volleyball players are taller; football and basketball players are heavier; football and volleyball players have more fat-free mass than handball players (p < 0.05). Body mass index and % body fat did not differ between sports (p > 0.05). Volleyball players performed better in the countermovement jump (F = 4.146, p = 0.008) and squat jump (F = 7.686, p < 0.001) when compared to basketball, football, and handball players. No differences were observed in the speed or cardiorespiratory endurance tests (p > 0.05). Conclusions: The results revealed that, despite some specific differences between sports, most physical fitness indicators did not differ significantly between sports after controlling for age, menarche, and training experience. These findings suggest that shared contextual limitations in rural regions may take precedence over sport-specific adaptations in the early stages of sports participation. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Sports)
Back to TopTop