Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = stratospheric ozone tracer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7579 KiB  
Article
AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning
by Puyu Lian, Kaihui Zhao and Zibing Yuan
Remote Sens. 2024, 16(13), 2409; https://doi.org/10.3390/rs16132409 - 1 Jul 2024
Cited by 1 | Viewed by 1656
Abstract
The exacerbation of air pollution during spring in Yunnan province, China, has attracted widespread attention. However, many studies have focused solely on the impacts of anthropogenic emissions while ignoring the role of natural processes. This study used satellite data spanning 21 years from [...] Read more.
The exacerbation of air pollution during spring in Yunnan province, China, has attracted widespread attention. However, many studies have focused solely on the impacts of anthropogenic emissions while ignoring the role of natural processes. This study used satellite data spanning 21 years from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) to reveal two natural processes closely related to springtime ozone (O3) and PM2.5 pollution: stratospheric intrusions (SIs) and cross-border transport of biomass burning (BB). We aimed to assess the mechanisms through which SIs and cross-border BB transport influence O3 and PM2.5 pollution in Southwestern China during the spring. The unique geographical conditions and prevalent southwest winds are considered the key driving factors for SIs and cross-border BB transport. Frequent tropopause folding provides favorable dynamic conditions for SIs in the upper troposphere. In the lower troposphere, the distribution patterns of O3 and stratospheric O3 tracer (O3S) are similar to the terrain, indicating that O3 is more likely to reach the surface with increasing altitude. Using stratospheric tracer tagging methods, we quantified the contributions of SIs to surface O3, ranging from 6 to 31 ppbv and accounting for 10–38% of surface O3 levels. Additionally, as Yunnan is located downwind of Myanmar and has complex terrain, it provides favorable conditions for PM2.5 and O3 generation from cross-border BB transport. The decreasing terrain distribution from north to south in Yunnan facilitates PM2.5 transport to lower-elevation border cities, whereas higher-elevation cities hinder PM2.5 transport, leading to spatial heterogeneity in PM2.5. This study provides scientific support for elucidating the two key processes governing springtime PM2.5 and O3 pollution in Yunnan, SIs and cross-border BB transport, and can assist policymakers in formulating optimal emission reduction strategies. Full article
(This article belongs to the Special Issue Application of Satellite Aerosol Remote Sensing in Air Quality)
Show Figures

Graphical abstract

13 pages, 4561 KiB  
Technical Note
The Impact of Meteorological Conditions and Emissions on Tropospheric Column Ozone Trends in Recent Years
by Xuewei Hou, Yifan Zhang, Xin Lv and James Lee
Remote Sens. 2023, 15(22), 5293; https://doi.org/10.3390/rs15225293 - 9 Nov 2023
Cited by 5 | Viewed by 1950
Abstract
Based on OMI/MLS data (2005–2020) and Community Earth System Model (CESM2) simulated results (2001–2020), annual variation trends of tropospheric column ozone (TCO) in the recent two decades are explored, and the separate impacts of meteorological conditions and emissions on TCO are quantified. The [...] Read more.
Based on OMI/MLS data (2005–2020) and Community Earth System Model (CESM2) simulated results (2001–2020), annual variation trends of tropospheric column ozone (TCO) in the recent two decades are explored, and the separate impacts of meteorological conditions and emissions on TCO are quantified. The stratospheric ozone tracer (O3S) is used to quantify the contribution of stratospheric ozone to the trend of TCO. The evaluation shows that the simulated results capture the spatial-temporal distributions and the trends of tropospheric column ozone well. Over the East Asia and Southeast Asia regions, TCO is increasing, with a rate of ~0.2 DU/yr, which is primarily attributed to the emission changes in ozone precursors, nitrogen oxide (NOx) and volatile organic chemicals (VOCs). But the changes in meteorological conditions weaken the increase in TCO, even leading to a decrease in East Asia in spring and summer. TCO is decreasing in the middle and high latitudes of the southern hemisphere, which is mainly attributed to the changes in meteorological conditions. The increasing rates are the highest in autumn, especially over North America, East Asia, Europe and South of East Asia, with rate values of 0.20, 0.31, 0.17, and 0.32 DU/yr, respectively. Over the equatorial region, the contribution of stratospheric ozone to TCO is below 10 DU, and shows a weak positive trend of ~0.2 DU/yr. In the latitude of ~30°N/S, the stratospheric contribution is high, ~25 DU, and is affected by the sinking branch of the Brewer–Dobson circulation and stratosphere–troposphere exchange in the vicinity of tropical jet stream. The stratospheric contribution to TCO in the north of 30°N is significantly decreasing (~0.6 DU/yr) under the influence of meteorological conditions. Changes in emissions weaken the decrease in stratospheric contributions in the north of 30°N and enhance the increase in 30°S–30°N significantly. The trends of stratospheric contributions on TCO partly explain the trends of TCO which are mostly affected by the change in emissions. To control the increasing TCO, actions to reduce emissions are urgently needed. Full article
(This article belongs to the Special Issue Air Quality Mapping via Satellite Remote Sensing)
Show Figures

Figure 1

13 pages, 10825 KiB  
Article
Frequency Dependence of the Correlation between Ozone and Temperature Oscillations in the Middle Atmosphere
by Klemens Hocke and Eric Sauvageat
Atmosphere 2023, 14(9), 1436; https://doi.org/10.3390/atmos14091436 - 14 Sep 2023
Viewed by 1597
Abstract
This study investigates the frequency dependence of the correlation or anticorrelation of ozone and temperature in the middle atmosphere. The anticorrelation of ozone and temperature plays a role for a possible super recovery of upper stratospheric ozone in the presence of man-made cooling [...] Read more.
This study investigates the frequency dependence of the correlation or anticorrelation of ozone and temperature in the middle atmosphere. The anticorrelation of ozone and temperature plays a role for a possible super recovery of upper stratospheric ozone in the presence of man-made cooling of the middle atmosphere due to increasing carbon dioxide emissions. The correlation between lower stratospheric ozone and temperature indicates the dependence of lower stratospheric temperature trends on the ozone evolution in addition to greenhouse gas emissions. Ozone and temperature measurements of the microwave limb sounder (MLS) on the satellite Aura from 2004 to 2021 are utilized for Bern (46.95° N, 7.44° E) at middle latitudes and for the equator region. The time series are bandpass filtered for periods from 2 days to 5 years. The correlation coefficient depends on the period of the oscillation in temperature and ozone. The strongest correlation and anticorrelation are found for the annual oscillation. The anticorrelation between ozone and temperature in the upper stratosphere is about 0.7 at a period of two days and 0.99 at a period of one year. Thus, the temperature dependence of the ozone reaction rates also leads to an anticorrelation of ozone and temperature at short periods so that ozone can be considered as a tracer of planetary waves. At the equator, a dominant semiannual oscillation and an 11 year solar cycle are found for nighttime ozone in the upper mesosphere. The semiannual oscillation (SAO) in ozone and temperature shows a strong correlation indicating a dynamical control of the ozone SAO in the upper mesosphere. The SAO in the equatorial nighttime values of ozone and temperature is possibly due to a semiannual modulation of vertical advection by the diurnal tide. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

18 pages, 12581 KiB  
Article
The Stratosphere-to-Troposphere Transport Related to Rossby Wave Breaking and Its Impact on Summertime Ground-Level Ozone in Eastern China
by Hongyue Wang, Wuke Wang, Ming Shangguan, Tianyi Wang, Jin Hong, Shuyun Zhao and Jintao Zhu
Remote Sens. 2023, 15(10), 2647; https://doi.org/10.3390/rs15102647 - 19 May 2023
Cited by 12 | Viewed by 2751
Abstract
In summertime, eastern China experiences severe ozone pollution. Stratosphere-to-troposphere transport (STT), as the primary natural source of tropospheric ozone, may have a non-negligible contribution to ground-level ozone. Rossby wave breaking (RWB) is a leading mechanism that triggers STT, which can be categorized as [...] Read more.
In summertime, eastern China experiences severe ozone pollution. Stratosphere-to-troposphere transport (STT), as the primary natural source of tropospheric ozone, may have a non-negligible contribution to ground-level ozone. Rossby wave breaking (RWB) is a leading mechanism that triggers STT, which can be categorized as anticyclonic wave breakings (AWBs) and cyclonic wave breakings (CWBs). This study uses an objective method to diagnose AWBs and CWBs and to investigate their influence on the surface ozone in eastern China using ground-based ozone observations, satellite ozone data from AIRS, a stratospheric ozone tracer simulated by CAM-chem, and meteorological fields from MERRA-2. The results indicate that AWBs occur mainly and frequently over northeast China, while CWBs occur mostly over the northern Sea of Japan. STTs triggered by AWBs mainly have sinking areas over the North China Plain, increasing the ground-level ozone concentrations by 5–10 ppbv in eastern China. The downwelling zones in the CWBs extend from Mongolia to the East China Sea, potentially causing an elevation of 5–10 ppbv of ozone in both central and eastern China. This study gives an overview of the impacts of AWBs and CWBs on surface ozone in eastern China and helps to improve our understanding of summertime ozone pollution in eastern China. Full article
Show Figures

Figure 1

26 pages, 6679 KiB  
Article
Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017
by Yousuke Yamashita, Hideharu Akiyoshi and Masaaki Takahashi
Atmosphere 2021, 12(5), 582; https://doi.org/10.3390/atmos12050582 - 30 Apr 2021
Viewed by 2798
Abstract
Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during [...] Read more.
Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2017. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 21105 KiB  
Article
Connection between Antarctic Ozone and Climate: Interannual Precipitation Changes in the Southern Hemisphere
by Alessandro Damiani, Raul R. Cordero, Pedro J. Llanillo, Sarah Feron, Juan P. Boisier, Rene Garreaud, Roberto Rondanelli, Hitoshi Irie and Shingo Watanabe
Atmosphere 2020, 11(6), 579; https://doi.org/10.3390/atmos11060579 - 1 Jun 2020
Cited by 19 | Viewed by 10549
Abstract
In this study, we explored the connection between anomalies in springtime Antarctic ozone and all-year precipitation in the Southern Hemisphere by using observations from 1960–2018 and coupled simulations for 1960–2050. The observations showed that this correlation was enhanced during the last several decades, [...] Read more.
In this study, we explored the connection between anomalies in springtime Antarctic ozone and all-year precipitation in the Southern Hemisphere by using observations from 1960–2018 and coupled simulations for 1960–2050. The observations showed that this correlation was enhanced during the last several decades, when a simultaneously increased coupling between ozone and Southern Annular Mode (SAM) anomalies became broader, covering most of the following summer and part of the previous winter. For eastern Australia, the ozone–precipitation connection shows a greater persistence toward the following summer than for other regions. On the other hand, for South America, the ozone–precipitation correlation seems more robust, especially in the early summer. There, the correlation also covers part of the previous winter, suggesting that winter planetary waves could affect both parameters. Further, we estimated the sensitivity of precipitation to changes in Antarctic ozone. In both observations and simulations, we found comparable sensitivity values during the spring–summer period. Overall, our results indicate that ozone anomalies can be understood as a tracer of stratospheric circulation. However, simulations indicate that stratospheric ozone chemistry still contributes to strengthening the interannual relationship between ozone and surface climate. Because simulations reproduced most of the observed connections, we suggest that including ozone variability in seasonal forecasting systems can potentially improve predictions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 5844 KiB  
Article
First Evidences of Methyl Chloride (CH3Cl) Transport from the Northern Italy Boundary Layer during Summer 2017
by Paolo Cristofanelli, Jgor Arduini, Francescopiero Calzolari, Umberto Giostra, Paolo Bonasoni and Michela Maione
Atmosphere 2020, 11(3), 238; https://doi.org/10.3390/atmos11030238 - 29 Feb 2020
Cited by 5 | Viewed by 3818
Abstract
Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. While the atmospheric CH3Cl emissions are predominantly caused by natural sources on the global budget, significant uncertainties still remain for the anthropogenic [...] Read more.
Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. While the atmospheric CH3Cl emissions are predominantly caused by natural sources on the global budget, significant uncertainties still remain for the anthropogenic CH3Cl emission strengths. In summer 2007 an intensive field campaign within the ACTRIS-2 Project was hosted at the Mt. Cimone World Meteorological Organization/Global Atmosphere Watch global station (CMN, 44.17° N, 10.68° E, 2165 m a.s.l.). High-frequency and high precision in situ measurements of atmospheric CH3Cl revealed significant high-frequency variability superimposed on the seasonally varying regional background levels. The high-frequency CH3Cl variability was characterized by an evident cycle over 24 h with maxima during the afternoon which points towards a systematic role of thermal vertical transport of air-masses from the regional boundary layer. The temporal correlation analysis with specific tracers of anthropogenic activity (traffic, industry, petrochemical industry) together with bivariate analysis as a function of local wind regime suggested that, even if the role of natural marine emissions appears as predominant, the northern Italy boundary layer could potentially represent a non-negligible source of CH3Cl during summer. Since industrial production and use of CH3Cl have not been regulated under the Montreal Protocol (MP) or its successor amendments, continuous monitoring of CH3Cl outflow from the Po Basin is important to properly assess its anthropogenic emissions. Full article
(This article belongs to the Special Issue Recent Advances of Air Pollution Studies in Italy)
Show Figures

Figure 1

14 pages, 16516 KiB  
Article
A Stratospheric Intrusion-Influenced Ozone Pollution Episode Associated with an Intense Horizontal-Trough Event
by Yiping Wang, Hongyue Wang and Wuke Wang
Atmosphere 2020, 11(2), 164; https://doi.org/10.3390/atmos11020164 - 4 Feb 2020
Cited by 23 | Viewed by 5011
Abstract
Ozone pollution is currently a serious issue in China. As an important source of tropospheric ozone, the stratospheric ozone has received less concern. This study uses a combination of ground-based ozone measurements, the latest ERA5 reanalysis data as well as chemistry-climate model and [...] Read more.
Ozone pollution is currently a serious issue in China. As an important source of tropospheric ozone, the stratospheric ozone has received less concern. This study uses a combination of ground-based ozone measurements, the latest ERA5 reanalysis data as well as chemistry-climate model and Lagrangian Particle Dispersion Modeling (LPDM) simulations to investigate the potential impacts of stratospheric intrusion (SI) on surface ozone pollution episodes in eastern China. Station-based observations indicate that severe ozone pollution occurred from 27 April to 28 April 2018 in eastern China, with maximal values over 140 ppbv. ERA5 meteorological and ozone data suggest that a strong horizontal-trough exists at the same time, which leads to an evident SI event and brings ozone-rich air from the stratosphere to the troposphere. Using a stratospheric ozone tracer defined by NCAR’s Community Atmosphere Model with Chemistry (CAM-Chem), we conclude that this SI event contributed about 15 ppbv (15%) to the surface ozone pollution episode during 27–28 April in eastern China. The potential impacts of SI events on surface ozone variations should be therefore considered in ozone forecast and control. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future)
Show Figures

Figure 1

45 pages, 10464 KiB  
Article
Coupled Stratospheric Chemistry–Meteorology Data Assimilation. Part II: Weak and Strong Coupling
by Richard Ménard, Pierre Gauthier, Yves Rochon, Alain Robichaud, Jean de Grandpré, Yan Yang, Cécilien Charrette and Simon Chabrillat
Atmosphere 2019, 10(12), 798; https://doi.org/10.3390/atmos10120798 - 9 Dec 2019
Cited by 11 | Viewed by 4235
Abstract
We examine data assimilation coupling between meteorology and chemistry in the stratosphere from both weak and strong coupling strategies. The study was performed with the Canadian operational weather prediction Global Environmental Multiscale (GEM) model coupled online with the photochemical stratospheric chemistry model developed [...] Read more.
We examine data assimilation coupling between meteorology and chemistry in the stratosphere from both weak and strong coupling strategies. The study was performed with the Canadian operational weather prediction Global Environmental Multiscale (GEM) model coupled online with the photochemical stratospheric chemistry model developed at the Belgian Institute for Space Aeronomy, described in Part I. Here, the Canadian Meteorological Centre’s operational variational assimilation system was extended to include errors of chemical variables and cross-covariances between meteorological and chemical variables in a 3D-Var configuration, and we added the adjoint of tracer advection in the 4D-Var configuration. Our results show that the assimilation of limb sounding observations from the MIPAS instrument on board Envisat can be used to anchor the AMSU-A radiance bias correction scheme. Additionally, the added value of limb sounding temperature observations on meteorology and transport is shown to be significant. Weak coupling data assimilation with ozone–radiation interaction is shown to give comparable results on meteorology whether a simplified linearized or comprehensive ozone chemistry scheme is used. Strong coupling data assimilation, using static error cross-covariances between ozone and temperature in a 3D-Var context, produced inconclusive results with the approximations we used. We have also conducted the assimilation of long-lived species observations using 4D-Var to infer winds. Our results showed the added value of assimilating several long-lived species, and an improvement in the zonal wind in the Tropics within the troposphere and lower stratosphere. 4D-Var assimilation also induced a correction of zonal wind in the surf zone and a temperature bias in the lower tropical stratosphere. Full article
(This article belongs to the Special Issue Air Quality Prediction)
Show Figures

Figure 1

Back to TopTop