Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Model Description
2.2. Grouping of Years According to the Phases of the QBO and Solar Cycle and Definition of the Equivalent Latitude
3. Results and Discussion
3.1. A Scatter Plot for the Arctic Total Ozone against the QBO and Solar Cycle Phases in March
3.2. Arctic Total Ozone and Polar Night Jet in March in the QBO and 11-Year Solar Cycle Phases
3.3. Zonal Mean Zonal Wind Evolution in the Stratosphere of the QBO-W/Smin Years and Associated Dynamical Fields
3.4. Sudden Stratospheric Warming for the Years 1979–2017
3.5. Total Ozone Anomaly during the QBO-W/Smin Years
3.6. Vertical Distribution of the Ozone Anomaly during the QBO-W/Smin Years
3.7. Anomalies in the Year 2009 and the Other QBO-W/Smin Years
3.8. Anomalies in the Year 2011
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2014. In Global Ozone Research and 542 Monitoring Project—Report No. 55; World Meteorological Organization: Geneva, Switzerland, 2014; p. 416. [Google Scholar]
- Holton, J.R.; Tan, H.-C. The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Tan, H.-C. The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteorol. Soc. Jpn. 1982, 60, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Labitzke, K. Sunspots, the QBO and the stratospheric temperature in the north polar region. Geophys. Res. Lett. 1987, 14, 535–537. [Google Scholar] [CrossRef]
- Labitzke, K.; van Loon, H. Associations between the 11-year solar cycle, the, QBO and the atmosphere, Part I: The troposphere and stratosphere in the Northern Hemisphere in winter. J. Atmos. Sol. Terr. Phys. 1988, 50, 197–206. [Google Scholar] [CrossRef]
- Naito, Y.; Hirota, I. Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle. J. Meteorol. Soc. Jpn. 1977, 75, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.J.; Crooks, S.; Pascoe, C.; Sparrow, S.; Palmer, M. Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci. 2004, 61, 2777–2796. [Google Scholar] [CrossRef]
- Matthes, K.; Kodera, K.; Garcia, R.R.; Kuroda, Y.; Marsh, D.R.; Labitzke, K. The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J. Geophys. Res. Atmos. 2013, 118, 4435–4447. [Google Scholar] [CrossRef] [Green Version]
- Anstey, J.A.; Shepherd, T.G. High-latitude influence of the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 2014, 140, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Akiyoshi, H.; Shepherd, T.G.; Takahashi, M. The combined influences of westerly phase of the Quasi-Biennial Oscillation and 11-year solar maximum conditions on the Northern Hemisphere extratropical winter circulation. J. Meteorol. Soc. Jpn. 2015, 93, 629–644. [Google Scholar] [CrossRef]
- Kren, A.C.; Marsh, D.R.; Smith, A.K.; Pilewskie, P. Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO. Atmos. Chem. Phys. 2014, 14, 4843–4856. [Google Scholar] [CrossRef]
- Camp, C.D.; Tung, K.K. The influence of the solar cycle and QBO on the late winter stratospheric polar vortex. J. Atmos. Sci. 2007, 64, 1267–1283. [Google Scholar] [CrossRef]
- Li, K.-F.; Tung, K.-K. Quasi-biennial oscillation and solar cycle influences on winter Arctic total ozone. J. Geophys. Res. Atmos. 2014, 119, 5823–5835. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Nash, E.R.; Newman, P.A.; Rosenfield, J.E.; Schoeberl, M.R. An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 1996, 101, 9471–9478. [Google Scholar] [CrossRef]
- Akiyoshi, H.; Nakamura, T.; Miyasaka, T.; Shiotani, M.; Suzuki, M. A nudged chemistry-climate model simulation of chemical constituent distribution at northern high-latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming. J. Geophys. Res. Atmos. 2016, 121, 1361–1380. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Sakamoto, K.; Akiyoshi, H.; Takahashi, M.; Nagashima, T.; Zhou, L.B. Ozone and temperature response of a chemistry climate model to the solar cycle and sea surface temperature. J. Geophys. Res. 2010, 115, D00M05. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Lamarque, J.F.; Hess, P.; Arfeuille, F.; Bowman, K.; Chipperfiel, M.P.; Duncan, B.; Fiore, A.; Gettelman, A.; Giorgetta, M.A.; et al. Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsl. 2013, 40, 48–66. [Google Scholar]
- Rayner, N.A.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Lean, J.; Rottman, G.; Harder, J.; Kopp, G. SORCE contributions to new understanding of global change and solar variability. Solar Phys. 2005, 230, 27–53. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010. In Global Ozone Research and Monitoring Project–Report No. 52; WMO: Geneva, Switzerland, 2011; p. 516. [Google Scholar]
- Fleming, E.L.; Chandra, S.; Barnett, J.J.; Corney, M. Zonal mean temperature, pressure, zonal wind, and geopotential height as functions of latitude, COSPAR International Reference Atmosphere: 1986, Part II: Middle Atmosphere Models. Adv. Space Res. 1990, 10, 11–59. [Google Scholar] [CrossRef]
- Solomon, S.; Garcia, R.R.; Stordal, F. Transport processes and ozone perturbations. J. Geophys. Res. 1985, 90, 12981–12989. [Google Scholar] [CrossRef]
- Cohen, J.; Jones, J. Corrigendum for ‘Tropospheric precursors and stratospheric warmings, 2011’. J. Clim. 2012, 25, 1779–1790. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 78, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Isaksen, I.S.A.; Zerefos, C.; Wang, W.-C.; Balis, D.; Eleftheratos, K.; Rognerud, B.; Stordal, F.; Berntsen, T.K.; LaCasce, J.H.; Søvde, O.A.; et al. Attribution of the Arctic ozone column deficit in March 2011. Geophys. Res. Lett. 2012, 39, L24810(1-5). [Google Scholar] [CrossRef]
NH Winter | Date | QBO/Solar Phase |
---|---|---|
1978/1979 | 22 February 1979 | - |
1979/1980 | 29 February 1980 | QBO-E/Smax |
1980/1981 | 4 March 1981 | QBO-W/Smax |
1981/1982 | 4 December 1981 | QBO-E/Smax |
1982/1983 | ||
1983/1984 | 24 February 1984 | - |
1984/1985 | 1 January 1985 | QBO-E/Smin |
1985/1986 | ||
1986/1987 | 23 January 1987 | - |
1987/1988 | 8 December 1987 14 March 1988 | - |
1988/1989 | 21 February 1989 | QBO-W/Smax |
1989/1990 | ||
1990/1991 | ||
1991/1992 | ||
1992/1993 | ||
1993/1994 | ||
1994/1995 | ||
1995/1996 | ||
1996/1997 | ||
1997/1998 | ||
1998/1999 | 15 December 1998 26 February 1999 | QBO-E/Smax |
1999/2000 | 20 March 2000 | QBO-W/Smax |
2000/2001 | 11 February 2001 | - |
2001/2002 | 30 December 2001 | QBO-E/Smax |
2002/2003 | 18 January 2003 | - |
2003/2004 | 5 January 2004 | QBO-E/Smin |
2004/2005 | ||
2005/2006 | 21 January 2006 | QBO-E/Smin |
2006/2007 | 24 February 2007 | QBO-W/Smin |
2007/2008 | 22 February 2008 | QBO-E/Smin |
2008/2009 | 24 January 2009 | QBO-W/Smin |
2009/2010 | 9 February 2010 24 March 2010 | - |
2010/2011 | ||
2011/2012 | ||
2012/2013 | 6 January 2013 | - |
2013/2014 | ||
2014/2015 | 28 March 2015 | QBO-E/Smax |
2015/2016 | ||
2016/2017 |
QBO-W/Smax | QBO-W/Smin | QBO-E/Smax | QBO-E/Smin | |
---|---|---|---|---|
1979–2011 (events) | 3 | 2 | 5 | 4 |
1979–2011 (winters) | 3 | 2 | 4 | 4 |
1979–2017 (events) | 3 | 2 | 6 | 4 |
1979–2017 (winters) | 3 | 2 | 5 | 4 |
February | |||||
Equivalent latitude | 70–75 N | 75–80 N | 80–90 N | ||
O3 | −21.2 | −23.5 | −21.2 | ||
Passive O3 tracer | −19.9 | −22.7 | −21.9 | ||
O3—passive O3 tracer | −1.3 | −0.8 | +0.7 | ||
March | |||||
Equivalent latitude | 70–75 N | 75–80 N | 80–90 N | ||
O3 | −20.2 | −25.2 | −27.2 | ||
Passive O3 tracer | −16.7 | −20.9 | −24.1 | ||
O3—passive O3 tracer | −3.5 | −4.3 | −3.1 |
February | |||
Equivalent latitude | 70–75 N | 75–80 N | 80–90 N |
O3 | −10.3 | −12.1 | −10.9 |
Passive O3 tracer | −8.1 | −10.4 | −10.6 |
O3—passive O3 tracer | −2.2 | −1.7 | −0.3 |
March | |||
Equivalent latitude | 70–75 N | 75–80 N | 80–90 N |
O3 | −9.8 | −13.1 | −14.4 |
Passive O3 tracer | −5.5 | −8.0 | −10.0 |
O3—passive O3 tracer | −4.3 | −5.1 | −4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, Y.; Akiyoshi, H.; Takahashi, M. Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017. Atmosphere 2021, 12, 582. https://doi.org/10.3390/atmos12050582
Yamashita Y, Akiyoshi H, Takahashi M. Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017. Atmosphere. 2021; 12(5):582. https://doi.org/10.3390/atmos12050582
Chicago/Turabian StyleYamashita, Yousuke, Hideharu Akiyoshi, and Masaaki Takahashi. 2021. "Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017" Atmosphere 12, no. 5: 582. https://doi.org/10.3390/atmos12050582
APA StyleYamashita, Y., Akiyoshi, H., & Takahashi, M. (2021). Analysis of Arctic Spring Ozone Anomaly in the Phases of QBO and 11-Year Solar Cycle for 1979–2017. Atmosphere, 12(5), 582. https://doi.org/10.3390/atmos12050582