Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = stratified atmospheric layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8557 KiB  
Article
A Novel Earth-System Spatial Grid Model: ISEA4H-ESSG for Multi-Layer Geoscience Data Integration and Analysis
by Yue Ma, Guoqing Li, Long Zhao and Xiaochuang Yao
Appl. Sci. 2025, 15(7), 3703; https://doi.org/10.3390/app15073703 - 27 Mar 2025
Viewed by 635
Abstract
This paper presents a novel Earth-System Stratified Grid (ISEA4H-ESSG) model, designed to address the challenges in multi-layer geoscience data management and analysis. In the realm of geosciences, which encompasses the solid earth, atmosphere, hydrosphere, and biosphere, as well as planetary and space sciences, [...] Read more.
This paper presents a novel Earth-System Stratified Grid (ISEA4H-ESSG) model, designed to address the challenges in multi-layer geoscience data management and analysis. In the realm of geosciences, which encompasses the solid earth, atmosphere, hydrosphere, and biosphere, as well as planetary and space sciences, the effective integration of diverse data sources is crucial. Traditional grids have limitations in three-dimensional spatial modeling, cross-layer data fusion, and dynamic multi-scale analysis. The ISEA4H-ESSG model overcomes these drawbacks by integrating the Icosahedral Snyder Equal-Area Aperture 4 Hexagon Discrete Global Grid System (ISEA4H DGGS) with a degenerative subdivision mechanism. It adheres to six core principles, including stratified spherical coverage, geographic consistency, multi-scale dynamic adaptability, global seamless partitioning, encoding uniqueness and efficiency, and multi-source data compatibility. Through the independent subdivision of spherical and radial layers, this model balances resolution differences and resolves polar-grid distortion and cross-layer data heterogeneity issues. The introduction of a four-dimensional spatiotemporal encoding framework enhances the storage and parallel computing capabilities of massive datasets. Case studies on ionosphere three-dimensional modeling and global atmospheric temperature field formatting demonstrate the high precision and adaptability of the ISEA4H-ESSG model. This research provides a unified spatial data infrastructure for geosciences, facilitating in-depth studies on natural hazards, climate change, and planetary evolution, and offering new perspectives for international partnerships and future Earth-related research. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 20169 KiB  
Article
PM2.5 Concentration Prediction in the Beijing–Tianjin–Hebei Region Based on ERA5 Stratified PWV and Atmospheric Pollutants
by Jun Shang, Peixuan Zhang, Yong Wang, Yanping Liu, Hongsheng Wang and Suo Li
Atmosphere 2025, 16(3), 269; https://doi.org/10.3390/atmos16030269 - 25 Feb 2025
Viewed by 548
Abstract
Accurate prediction of PM2.5 (particle pollution from fine particulate) concentration is crucial for environmental protection and public health. Precipitable water vapor (PWV) in the atmosphere is an important meteorological element with stratification properties, which plays a crucial role in energy transfer, weather [...] Read more.
Accurate prediction of PM2.5 (particle pollution from fine particulate) concentration is crucial for environmental protection and public health. Precipitable water vapor (PWV) in the atmosphere is an important meteorological element with stratification properties, which plays a crucial role in energy transfer, weather dynamics, and PM2.5 generation. However, past studies tend to use total PWV as an input parameter, neglecting the impact of PWV variations in different altitude layers on PM2.5 concentration. To overcome this limitation, this study proposes an innovative approach that employs stratified water vapor data (ERA5-PWV) calculated from the ERA5 reanalysis data instead of the total PWV obtained using the traditional method. This approach provides a more accurate representation of the vertical distribution of atmospheric PWV and enhances the prediction of PM2.5 content. In this study, the stratified ERA5 PWV in the Beijing–Tianjin–Hebei region is integrated with other meteorological elements and atmospheric pollutants, and the FFT-ConvLSTM method, characterized by its spatio-temporal properties, is utilized to predict the PM2.5 concentration by incorporating the spatio-temporal correlation. The FFT-ConvLSTM model is modeled by extracting spatio-temporal features through ConvLSTM, following the identification of the optimal common change period of each element using the FFT technique. This process mitigates the problem of spatio-temporal heterogeneity among elements, thus, realizing the high-precision prediction of gridded PM2.5 concentration in the next 24 h. The research results show that among the results of different layers of ERA5-PWV combinations involved in the prediction of PM2.5 concentrations in the research region, divided into three parts of the research region—plains, mountains, and plateaus—the stratified ERA5-PWV from layers 1–4 with pressure levels consistently outperformed the total ERA5-PWV in accuracy, and the RMSEs of the predicted results for the PM2.5 concentrations were each reduced by 0.862 μg/m3, 5.384 μg/m3 and 1.706 μg/m3. Full article
Show Figures

Figure 1

18 pages, 5015 KiB  
Article
Dissipation Scaling with a Variable Cϵ Coefficient in the Stable Atmospheric Boundary Layer
by Marta Wacławczyk, Jackson Nzotungishaka, Paweł Jędrejko, Joydeep Sarkar and Szymon P. Malinowski
Atmosphere 2025, 16(2), 188; https://doi.org/10.3390/atmos16020188 - 7 Feb 2025
Viewed by 670
Abstract
This work concerns the Taylor formula for the turbulence kinetic energy dissipation rate in the stable atmospheric boundary layer. The formula relates the turbulence kinetic energy dissipation rate to statistics at large scales, namely, the turbulence kinetic energy and the integral length scale. [...] Read more.
This work concerns the Taylor formula for the turbulence kinetic energy dissipation rate in the stable atmospheric boundary layer. The formula relates the turbulence kinetic energy dissipation rate to statistics at large scales, namely, the turbulence kinetic energy and the integral length scale. In parameterization schemes for atmospheric turbulence, it is usually assumed that the dissipation coefficient Cϵ in the Taylor formula is constant. However, a series of recent theoretical works and laboratory experiments showed that Cϵ depends on the local Reynolds number. We calculate turbulence statistics, including the dissipation rate, the standard deviation of fluctuating velocities and integral length scales, using observational data from the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition. We show that the dissipation coefficient Cϵ varies considerably and is a function of the Reynolds number, however, the functional form of this dependency in the stably stratified atmospheric boundary layer is different than in previous studies. Full article
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Slowly Rotating Peculiar Star BD00°1659 as a Benchmark for Stratification Studies in Ap/Bp Stars
by Anna Romanovskaya, Tatiana Ryabchikova, Yury Pakhomov, Ilya Potravnov and Tatyana Sitnova
Galaxies 2024, 12(5), 55; https://doi.org/10.3390/galaxies12050055 - 25 Sep 2024
Cited by 2 | Viewed by 967
Abstract
We present the results of a self-consistent analysis of the magnetic silicon star BD+00°1659, based on its high-resolution spectra taken from the ESPaDOnS archive (R = 68,000). This narrow-lined star shows the typical high Si abundance and Si iiiii anomaly, [...] Read more.
We present the results of a self-consistent analysis of the magnetic silicon star BD+00°1659, based on its high-resolution spectra taken from the ESPaDOnS archive (R = 68,000). This narrow-lined star shows the typical high Si abundance and Si iiiii anomaly, making it an ideal prototype for investigating the vertical distribution of Si and Fe in the stellar atmosphere. The derived abundances, ranging from helium to lanthanides, confirm the star’s classification as a silicon Bp spectral type. Silicon and iron are represented by lines of different ionisation stages (Fe iiii, Si iiii), indicating an ionisation imbalance interpreted as evidence of atmospheric stratification. Our stratification analysis reveals that there is a jump in iron and silicon abundances of 1.5 dex at atmospheric layers with an optical depth of logτ5000 = −0.85–−1.00. Non-LTE calculations for iron in this stratified atmosphere show minor non-LTE effects. Our results can be applied to studying the impact of stratification on the emergent flux in rapidly rotating Si stars with similar atmospheric parameters and abundance anomalies (for example, MX TrA), where direct stratification analysis is challenging due to line blending. Full article
Show Figures

Figure 1

21 pages, 4492 KiB  
Article
Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018)
by Diandong Ren and Mervyn J. Lynch
Remote Sens. 2024, 16(11), 2038; https://doi.org/10.3390/rs16112038 - 6 Jun 2024
Cited by 3 | Viewed by 1685
Abstract
Atmospheric turbulence primarily originates from abrupt density variations in a vertically stratified atmosphere. Based on the prognostic equation of turbulent kinetic energy (TKE), we here chose three indicators corresponding to the forcing terms of the TKE generation. By utilizing ERA5 reanalysis data, we [...] Read more.
Atmospheric turbulence primarily originates from abrupt density variations in a vertically stratified atmosphere. Based on the prognostic equation of turbulent kinetic energy (TKE), we here chose three indicators corresponding to the forcing terms of the TKE generation. By utilizing ERA5 reanalysis data, we investigate first the maximum achievable daily thickness of the planetary boundary layer (PBL). The gradient Richardson number (Ri) is used to represent turbulence arising from shear instability and the daily maximum convective available potential energy (CAPE) is examined to understand the turbulence linked with convective instability. Our analysis encompasses global turbulence trends. As a case study, we focus on the North Atlantic Corridor (NAC) to reveal notable insights. Specifically, the mean annual number of hours featuring shear instability (Ri < 0.25) surged by more than 300 h in consecutive 20-year periods: 1979–1998 and 1999–2018. Moreover, a substantial subset within the NAC region exhibited a notable rise of over 10% in the number of hours characterized as severe shear instability. Contrarily, turbulence associated with convective instability (CAPE > 2 kJ/kg), which can necessitate rerouting and pose significant aviation safety challenges, displays a decline. Remote sensing of clouds confirms these assertions. This decline contains a component of inherent natural variability. Our findings suggest that, as air viscosity increases and hence a thickened PBL due to a warming climate, the global inflight turbulence is poised to intensify. Full article
Show Figures

Figure 1

6 pages, 1236 KiB  
Proceeding Paper
Pléiades Neo-Derived Bathymetry in Coastal Temperate Waters: The Case Study of Bay of Saint-Malo
by Antoine Collin, Dorothée James and Eric Feunteun
Environ. Sci. Proc. 2024, 29(1), 68; https://doi.org/10.3390/ECRS2023-16366 - 11 Dec 2023
Viewed by 715
Abstract
Satellite-derived bathymetry is increasingly attracting stakeholders’ attention tasked with remote and/or shallow depths, given its affordability compared to airborne lidar and waterborne sonar surveys. The 6-band 1.2 m Pléiades Neo (PNEO) multispectral imagery has not yet been evaluated for such a purpose. The [...] Read more.
Satellite-derived bathymetry is increasingly attracting stakeholders’ attention tasked with remote and/or shallow depths, given its affordability compared to airborne lidar and waterborne sonar surveys. The 6-band 1.2 m Pléiades Neo (PNEO) multispectral imagery has not yet been evaluated for such a purpose. The contribution of the novel PNEO bands to the depth retrieval was assessed over unclear coastal seawaters (0.2 m−1 of vertical light attenuation in the bay of Saint-Malo, France). The relevance of the radiometric level was also tested: top-of-atmosphere (TOA) digital number (DN), TOA radiance, TOA reflectance, bottom-of-atmosphere (BOA) maritime-modeled reflectance, and BOA tropospheric-modeled reflectance. The lidar response, ranging from 0 to 20 m depth, was stratified by 90 random samples per bathymetric slice of 1 m. The model was based on an easy-to-transfer neural network (one hidden layer and three neurons). The best predictions, reaching R2test of 0.81, were equally obtained for the full PNEO dataset at TOA DN, radiance, and reflectance. For both BOA full-dataset products, the results were slightly less satisfactory: R2test of 0.75 (maritime) and 0.76 (tropospheric). Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

13 pages, 3998 KiB  
Article
Symmetry Analysis of Mean Velocity Distribution in Stratified Atmospheric Surface Layers
by Yong Ji and Xi Chen
Symmetry 2023, 15(10), 1951; https://doi.org/10.3390/sym15101951 - 21 Oct 2023
Cited by 1 | Viewed by 1442
Abstract
The mean velocity distributions of unstably and stably stratified atmospheric surface layers (ASLs) are investigated here using the symmetry approach. Symmetry groups for the mean momentum and the Reynolds stress equations of ASL are searched under random dilation transformations, which, with different leading [...] Read more.
The mean velocity distributions of unstably and stably stratified atmospheric surface layers (ASLs) are investigated here using the symmetry approach. Symmetry groups for the mean momentum and the Reynolds stress equations of ASL are searched under random dilation transformations, which, with different leading order balances in different flow regions, lead to a set of specific scalings for the characteristic length 13 (defined by Reynolds shear stress and mean shear). In particular, symmetry analysis shows that in the shear-dominated region, 13 scales linearly with the surface height z, which corresponds to the classical log law of mean velocity. In the buoyancy-dominated region, 13/Lz/L4/3 for unstably stratified ASL and 13/Lconst for stably stratified ASL, where L is the Obukhov length. The specific formula of the celebrated Monin–Obukhov similarity function is obtained, and hence an algebraic model of mean velocity profiles in ASL is derived, showing good agreement with the datum from the QingTu Lake observation array (QLOA) in China. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Fluid Mechanics)
Show Figures

Figure 1

12 pages, 538 KiB  
Review
Vectorial EM Propagation Governed by the 3D Stochastic Maxwell Vector Wave Equation in Stratified Layers
by Bryce M. Barclay, Eric J. Kostelich and Alex Mahalov
Atmosphere 2023, 14(9), 1451; https://doi.org/10.3390/atmos14091451 - 18 Sep 2023
Cited by 2 | Viewed by 1708
Abstract
The modeling and processing of vectorial electromagnetic (EM) waves in inhomogeneous media are important problems in physics and engineering, and new methods need to be developed to incorporate novel vector sensor technology. Vectorial phenomena of EM waves in stratified atmospheric layers can be [...] Read more.
The modeling and processing of vectorial electromagnetic (EM) waves in inhomogeneous media are important problems in physics and engineering, and new methods need to be developed to incorporate novel vector sensor technology. Vectorial phenomena of EM waves in stratified atmospheric layers can be incorporated into governing equations by retaining the gradient of the refractive index when deriving the Maxwell Vector Wave Equation (MVWE) from Maxwell’s equations. The MVWE, as opposed to the scalar wave, Helmholtz, and paraxial equations, couples the EM field components in inhomogeneous media and thus captures important physics phenomena such as depolarization. Here, recent developments are reviewed on using sensor time series data to reconstruct electromagnetic waves that propagate through stratified media. In modern applications, often many sensors can be deployed simultaneously to observe electromagnetic waves. These networks of sensors can be used to improve the quality of the reconstructed EM wave fields and cross-validate the observed sensor time series. Lastly, the effects of noisy current densities on sensor time series are considered. Generally, as the sensor observes for longer periods of time, the variance of estimates of the wave field obtained from sensor time series data increases. As a result, longer sensor observation times do not always result in better estimates of the EM wave fields, and an optimal observation time can be obtained. Full article
Show Figures

Figure 1

6 pages, 1551 KiB  
Proceeding Paper
Characteristics of Long-Lived Coherent Vortices in a Simple Model of Quasi-Geostrophic Turbulence
by Nikolaos A. Bakas
Environ. Sci. Proc. 2023, 26(1), 87; https://doi.org/10.3390/environsciproc2023026087 - 28 Aug 2023
Viewed by 955
Abstract
Macroscale turbulence in the atmosphere is observed to be self-organized into large-scale structures such as zonal jets and robust waves and vortices. A simple model containing the relevant dynamics of turbulence self-organization is quasi-geostrophic turbulence in a stably stratified atmosphere approximated with a [...] Read more.
Macroscale turbulence in the atmosphere is observed to be self-organized into large-scale structures such as zonal jets and robust waves and vortices. A simple model containing the relevant dynamics of turbulence self-organization is quasi-geostrophic turbulence in a stably stratified atmosphere approximated with a single-layer fluid on a beta-plane. Numerical simulations of this model have shown the dominance of Rossby waves, zonal jets and robust vortices in different regions of the parameter space. In this work, we perform numerical integrations of this model and focus on the regime in which robust large-scale vortices dominate the flow. The goal is to identify the Lagrangian coherent vortices that trap the same air masses in their core throughout their life cycle and to obtain their characteristics. The vortices are identified using an objective algorithm based on the Lagrangian-averaged vorticity deviation calculated using the advection of Lagrangian particles by the flow. Long-lived vortices with scales comparable to the deformation scale are found with a symmetry between cyclones and anti-cyclones as expected from the simplified dynamics of the model. The scale as well as the life span of the vortices are also found to increase alongside an increase in the strength of turbulence. Full article
Show Figures

Figure 1

6 pages, 1859 KiB  
Proceeding Paper
The Non-Boussinesq Taylor–Caulfield Instability
by Theodoros Tolidis and Nikolaos A. Bakas
Environ. Sci. Proc. 2023, 26(1), 66; https://doi.org/10.3390/environsciproc2023026066 - 25 Aug 2023
Viewed by 754
Abstract
The study of the conditions under which a stratified shear flow becomes turbulent is important, as turbulence is the source of mixing and dissipation in the atmosphere and can significantly influence the momentum and temperature structure of the atmospheric circulation. Oftentimes, the density [...] Read more.
The study of the conditions under which a stratified shear flow becomes turbulent is important, as turbulence is the source of mixing and dissipation in the atmosphere and can significantly influence the momentum and temperature structure of the atmospheric circulation. Oftentimes, the density structure of atmospheric flows is organized in thick layers of constant density separated by thin layers of sharp density gradients. It has been shown by previous studies that such multilayered flows can become unstable under shear. In this work, we investigate Taylor–Caulfield Instability (TCI), which occurs in a three-layer fluid moving with a constant shear flow. Previous studies examined the instability under the Boussinesq approximation, which is not expected to hold in cases of sharp density gradients. The non-Boussinesq limit is therefore investigated in this work. TCI is studied using the classical perturbation theory, that is by examining the evolution of small perturbations to the base flow. The wavelength of the waves expected to dominate the flow as well as the time in which these waves will emerge are calculated. In addition, the characteristics of the unstable waves are studied under a variety of conditions for the shear and the stratification. It is found that under the Boussinesq approximation, the wavelength of the instability waves is underestimated and the time for the evolution of the waves is overestimated. Full article
Show Figures

Figure 1

26 pages, 6216 KiB  
Article
Stable Boundary Layers and Subfilter-Scale Motions
by James C. McWilliams, Charles Meneveau, Edward G. Patton and Peter P. Sullivan
Atmosphere 2023, 14(7), 1107; https://doi.org/10.3390/atmos14071107 - 4 Jul 2023
Cited by 3 | Viewed by 2484
Abstract
Recent high-resolution large-eddy simulations (LES) of a stable atmospheric boundary layer (SBL) with mesh sizes N=(5123,10243,20483) or mesh spacings =(0.78,0.39,0.2) m are analyzed. The [...] Read more.
Recent high-resolution large-eddy simulations (LES) of a stable atmospheric boundary layer (SBL) with mesh sizes N=(5123,10243,20483) or mesh spacings =(0.78,0.39,0.2) m are analyzed. The LES solutions are judged to be converged based on the good collapse of vertical profiles of mean winds, temperature, and low-order turbulence moments, i.e., fluxes and variances, with increasing N. The largest discrepancy is in the stably stratified region above the low-level jet. Subfilter-scale (SFS) motions are extracted from the LES with N=20483 and are compared to sonic anemometer fields from the horizontal array turbulence study (HATS) and its sequel over the ocean (OHATS). The results from the simulation and observations are compared using the dimensionless resolution ratio Λw/f where f is the filter width and Λw is a characteristic scale of the energy-containing eddies in vertical velocity. The SFS motions from the observations and LES span the ranges 0.1<Λw/f<20 and are in good agreement. The small, medium, and large range of Λw/f correspond to Reynolds-averaged Navier–Stokes (RANS), the gray zone (a.k.a. “Terra Incognita”), and fine-resolution LES. The gray zone cuts across the peak in the energy spectrum and then flux parameterizations need to be adaptive and account for partially resolved flux but also “stochastic” flux fluctuations that represent the turbulent correlation between the fluctuating rate of strain and SFS flux tensors. LES data with mesh 20483 will be made available to the research community through the web and tools provided by the Johns Hopkins University Turbulence Database. Full article
Show Figures

Figure 1

11 pages, 1176 KiB  
Article
Small-Scale Anisotropy in Stably Stratified Turbulence; Inferences Based on Katabatic Flows
by Eliezer Kit and Harindra J. S. Fernando
Atmosphere 2023, 14(6), 918; https://doi.org/10.3390/atmos14060918 - 24 May 2023
Cited by 1 | Viewed by 1549
Abstract
The focus of the current study is on the anisotropy of stably stratified turbulence that is not only limited to large scales and an inertial subrange but also penetrates to small-scale turbulence in the viscous/dissipation subrange on the order of the Kolmogorov scale. [...] Read more.
The focus of the current study is on the anisotropy of stably stratified turbulence that is not only limited to large scales and an inertial subrange but also penetrates to small-scale turbulence in the viscous/dissipation subrange on the order of the Kolmogorov scale. The anisotropy of buoyancy forces is well-known, including ensuing effects such as horizontal layering and pancakes structures. Laboratory experiments in the nineties by Van Atta and his students showed that the anisotropy penetrates to very small scales, but their experiments were performed only at a relatively low Reλ (i.e., at Taylor Reynolds numbers) and, therefore, did not provide convincing evidence of anisotropy penetration into viscous sublayers. Nocturnal katabatic flows having configurations of stratified parallel shear flows and developing on mountain slopes provide high Reynolds number data for testing the notion of anisotropy at viscous scales, but obtaining appropriate time series of the data representing stratified shear flows devoid of unwarranted atmospheric factors is a challenge. This study employed the “in situ” calibration of multiple hot-film-sensors collocated with a sonic anemometer that enabled obtaining a 90 min continuous time series of a “clean” katabatic flow. A detailed analysis of the structure functions was conducted in the inertial and viscous subranges at an Reλ around 1250. The results of DNS simulations by Kimura and Herring were employed for the interpretation of data. Full article
Show Figures

Figure 1

18 pages, 16146 KiB  
Article
A Spatiotemporal Atmospheric Refraction Correction Method for Improving the Geolocation Accuracy of High-Resolution Remote Sensing Images
by Xiaohong Peng, Wenwen Huang, Xiaoyan Li, Lin Yang and Fansheng Chen
Remote Sens. 2022, 14(21), 5344; https://doi.org/10.3390/rs14215344 - 25 Oct 2022
Cited by 6 | Viewed by 3404
Abstract
Atmospheric refraction is one of the most significant factors that affect the geolocation accuracy of high-resolution remote sensing images. However, most of the current atmospheric refraction correction methods based on empirical data neglect the spatiotemporal variation of pressure, temperature, and humidity of the [...] Read more.
Atmospheric refraction is one of the most significant factors that affect the geolocation accuracy of high-resolution remote sensing images. However, most of the current atmospheric refraction correction methods based on empirical data neglect the spatiotemporal variation of pressure, temperature, and humidity of the atmosphere, inevitably resulting in poor geometric positioning accuracy. Therefore, in terms of the problems mentioned above, this study proposed a spatiotemporal atmospheric refraction correction method (SARCM) based on global measured data to avoid the uncertainty of traditional empirical models. Initially, the atmosphere was stratified into 42 layers according to their pressure property, and each layer was divided into 1,042,560 grid cells with intervals of 0.25 longitude and 0.25 latitude. Then, the atmospheric refractive index of each grid in the imaging region was accurately calculated using the high-precision Ciddor formula, and the result was interpolated using three splines. Subsequently, according to the rigorous geometric positioning model, the line-of-sight of each pixel and the viewing zenith angle outside the atmosphere in WGS84 were derived to provide input for atmospheric refraction correction. Finally, the coordinates of the ground control points were corrected with the calculated atmospheric refractive index and Snell’s law. The experimental results showed that the proposed SARCM could effectively improve the positioning accuracy of the image with a large viewing zenith angle, and especially, the improvement percentage for a viewing zenith angle of 34.2426° in the x-direction was 99.5%. Moreover, the atmospheric refraction correction result of the SARCM was better than that of the primary state-of-the-art methods. Full article
(This article belongs to the Special Issue Satellite Image Processing and Analysis)
Show Figures

Graphical abstract

16 pages, 4019 KiB  
Article
Synergistic Effect of Atmospheric Boundary Layer and Regional Transport on Aggravating Air Pollution in the Twain-Hu Basin: A Case Study
by Jie Xiong, Yongqing Bai, Tianliang Zhao, Yue Zhou, Xiaoyun Sun, Jiaping Xu, Wengang Zhang, Liang Leng and Guirong Xu
Remote Sens. 2022, 14(20), 5166; https://doi.org/10.3390/rs14205166 - 15 Oct 2022
Cited by 5 | Viewed by 1873
Abstract
The impact of structural variations in the atmospheric boundary layer (ABL) during the regional transport of air pollutants on its local pollution changes deserves attention. Based on multi-source ABL detection and numerical simulation of air pollutants over the Twain-Hu Basin (THB) during 4–6 [...] Read more.
The impact of structural variations in the atmospheric boundary layer (ABL) during the regional transport of air pollutants on its local pollution changes deserves attention. Based on multi-source ABL detection and numerical simulation of air pollutants over the Twain-Hu Basin (THB) during 4–6 January 2019, the mechanism of the rapid growth of atmospheric pollutant concentrations in Xianning by the synergistic effect of regional transport and ABL evolution is explored, and the main conclusions are obtained as follows. The vertically stratified atmosphere is noticeable at nighttime, and the heavy humidity of near-surface fog within the stable boundary layer (SBL) promoted the generation and cumulative growth of secondary PM2.5 components during the pollution formation stage. The horizontal transport characteristics of atmospheric pollutant concentration peak were observed in the residual layer (RL) of 500–600 m. At the pollution maintenance stage, the convective boundary layer (CBL) developed during the daytime, and northerly wind transported high-concentration pollutants from the north to the THB. Under the combined action of horizontal transport and turbulent mixing, the high-concentration atmospheric pollutants in the mixing layer (ML) from the ground to the 500 m height were mixed uniformly and maintained accumulation growth. The next day, the strong vertical turbulent mixing caused the downward transport of high-concentration pollutants in the RL during nighttime due to the development of the CBL again, resulting in a doubling of near-surface pollutant concentration in a short time. With the development of ABL turbulence, local pollution dissipated rapidly without the continuous input of pollutants from external regions. This study emphasizes the importance of multi-scale processes impact on pollution variation, that is, regional transport of atmospheric pollutants at the CBL development stage for the rapid growth of PM2.5 concentration in the ML. Full article
Show Figures

Graphical abstract

17 pages, 12054 KiB  
Article
Alfvén Wave Conversion and Reflection in the Solar Chromosphere and Transition Region
by Paul Cally
Physics 2022, 4(3), 1050-1066; https://doi.org/10.3390/physics4030069 - 8 Sep 2022
Cited by 3 | Viewed by 2606
Abstract
Series solutions are used to explore the mode conversion of slow, Alfvén and fast magnetohydrodynamic waves injected at the base of a two-isothermal-layer stratified atmosphere with a uniform magnetic field, crudely representing the solar chromosphere and corona with intervening discontinuous transition region. This [...] Read more.
Series solutions are used to explore the mode conversion of slow, Alfvén and fast magnetohydrodynamic waves injected at the base of a two-isothermal-layer stratified atmosphere with a uniform magnetic field, crudely representing the solar chromosphere and corona with intervening discontinuous transition region. This sets a baseline for understanding the ubiquitous Alfvénic waves observed in the corona, which are implicated in coronal heating and solar wind acceleration. It is found that all three injected wave types can partially transmit as coronal Alfvén waves in varying proportions dependent on frequency, magnetic field inclination, wave orientation, and distance between the Alfvén/acoustic equipartition level and the transition region. However, net Alfvénic transmission is limited for plausible parameters, and additional magnetic field structuring may be required to provide sufficient wave energy flux. Full article
Show Figures

Figure 1

Back to TopTop