Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = stoichiometric ratio (N:P)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2259 KiB  
Article
Soil C:N:P Stoichiometry in Two Contrasting Urban Forests in the Guangzhou Metropolis: Differences and Related Dominates
by Yongmei Xiong, Zhiqi Li, Shiyuan Meng and Jianmin Xu
Forests 2025, 16(8), 1268; https://doi.org/10.3390/f16081268 - 3 Aug 2025
Viewed by 169
Abstract
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N, [...] Read more.
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N, and P contents and stoichiometric ratios remain largely unexplored. We selected forest soils from Guangzhou, a major Metropolis in China, as our study area. Soil samples were collected from two urban secondary forests that naturally regenerated after disturbance (108 samples) and six urban forest parks primarily composed of artificially planted woody plant communities (72 samples). We employed mixed linear models and variance partitioning to analyze and compare soil C, N, and P contents and their stoichiometry and its main driving factors beneath suburban forests and urban park vegetation. These results exhibited that soil pH and bulk density in urban parks were higher than those in suburban forests, whereas soil water content, maximum storage capacity, and capillary porosity were higher in urban forests than in urban parks. Soil C, N, and P contents and their stoichiometry (except for N:P ratio) were significantly higher in suburban forests than in urban parks. Multiple analyzes showed that soil pH had the most pronounced negative influence on soil C, N, C:N, C:P, and N:P, but the strongest positive influence on soil P in urban parks. Soil water content had the strongest positive effect on soil C, N, P, C:N, and C:P, while soil N:P was primarily influenced by the positive effect of soil non-capillary porosity in suburban forests. Overall, our study emphasizes that suburban forests outperform urban parks in terms of carbon and nutrient accumulation, and urban green space management should focus particularly on the impact of soil pH and moisture content on soil C, N, and P contents and their stoichiometry. Full article
(This article belongs to the Special Issue Carbon, Nitrogen, and Phosphorus Storage and Cycling in Forest Soil)
Show Figures

Figure 1

17 pages, 3762 KiB  
Article
Spatiotemporal Dynamics of Nitrogen and Phosphorus in the Water and Sediment from the Source Reservoir of the Mid-Route of China’s South-to-North Water Diversion Project
by Yuanyuan Zhang, Donghua Zhang, Yue Li, Xueqing Han, Xinyu Wang, Ji’ao Zhang, Kaidi Gu, Shuaijie Sun, Qigen Liu and Jun Lv
Water 2025, 17(12), 1824; https://doi.org/10.3390/w17121824 - 18 Jun 2025
Viewed by 452
Abstract
To investigate the spatiotemporal distribution characteristics of nitrogen and phosphorus in the water and sediment of the Danjiangkou Reservoir, the source of the Middle Route of China’s South-to-North Water Diversion Project, we designed a year-long monitoring program. The water and sediment samples were [...] Read more.
To investigate the spatiotemporal distribution characteristics of nitrogen and phosphorus in the water and sediment of the Danjiangkou Reservoir, the source of the Middle Route of China’s South-to-North Water Diversion Project, we designed a year-long monitoring program. The water and sediment samples were collected from 13 sampling points in the upstream and downstream areas over the year. The results revealed significant spatial heterogeneity in N and P concentrations, with higher levels of total nitrogen, nitrate nitrogen, and nitrite nitrogen in the upstream area compared to the downstream area (p < 0.01). Total phosphorus was also significantly higher in the upstream area (p < 0.05). Seasonal variations were observed, with TN and TP levels peaking in February and August, respectively. The TN:TP ratio indicated a severe P-limited state in most periods, transitioning to a co-limited state of N and P during summer. Sediment analysis showed that TN and TP concentrations were higher in the upstream area, with no significant differences between upstream and downstream on an annual basis, exhibiting strong stoichiometric internal stability. However, seasonal differences were noted, particularly in February and November. This study highlights the complex interactions between water and sediment, emphasizing the role of sediment resuspension, water flow, and seasonal changes in nutrient dynamics. These findings provide a scientific basis for the management and protection of water quality in the Danjiangkou Reservoir, ensuring its role as a critical water source for the South-to-North Water Diversion Project. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

22 pages, 3666 KiB  
Article
Green Solid-State Synthesis of Antibacterial Binary Organic Material: Crystal Growth, Physicochemical Properties, Thermal Study, Antibacterial Activity, and Hirshfeld Surface Analysis
by Adarsh Rai, Sumit Chaudhary, Surya Prakash Dube, Szymon Bajda, Richa Raghuwanshi, Shiva Kant Mishra, Gaetano Palumbo and Rama Nand Rai
Int. J. Mol. Sci. 2025, 26(12), 5509; https://doi.org/10.3390/ijms26125509 - 9 Jun 2025
Viewed by 548
Abstract
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a [...] Read more.
The organic compounds 2-aminopyrimidine (AP) and 4-aminobenzoic acid (PABA) were selected for the synthesis of a compound by establishing the phase diagram and adopting the solid-state synthesis method. The phase diagram analysis suggested the formation of a novel intermolecular compound (IMC) at a 1:1 stoichiometric ratio of AP and PABA, along with two eutectics at 0.25 and 0.90 mole fractions of AP. FTIR and NMR spectroscopy were used for the structure elucidation of the intermolecular compound. The powder X-ray diffraction analysis revealed the novel nature of IMC (APPABA) and the mechanical mixture nature of eutectics. The sharp and single peak of the DSC curve suggested the melting and pure nature of the synthesized IMC. Various thermodynamic parameters of IMC and eutectics were studied. A single crystal of the IMC was grown from solution and its single-crystal X-ray diffraction analysis revealed that it crystallized in a monoclinic system with the P21/n space group. Hirshfeld surface analysis further validated the weak non-covalent interactions summarized through the single-crystal X-ray analysis. Studies on the IMC were thoroughly conducted to evaluate its antibacterial activity with reference to antibiotics, and it showed significant positive responses against various pathogenic microbial isolates (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella aerogenes, and Shigella boydii) and non-pathogenic microbial isolates (Enterobacter cloacae, Pseudomonas azotoformans, and Burkholderia paludis). It was also found effective against methicillin-resistant bacterial strains viz. Staphylococcus aureus MRSA. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

20 pages, 16569 KiB  
Article
Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China
by Mingxue Xiang, Gang Fu, Jianghao Cheng, Tao Ma, Yunqiao Ma, Kai Zheng and Zhaoqi Wang
Agronomy 2025, 15(6), 1413; https://doi.org/10.3390/agronomy15061413 - 9 Jun 2025
Viewed by 468
Abstract
Carbon (C), nitrogen (N), and phosphorus (P) act as pivotal regulators of biogeochemical cycles, steering organic matter decomposition and carbon sequestration in terrestrial ecosystems through the stoichiometric properties of photosynthetic organs. Deciphering their multi-scale spatiotemporal dynamics is central to unraveling plant nutrient strategies [...] Read more.
Carbon (C), nitrogen (N), and phosphorus (P) act as pivotal regulators of biogeochemical cycles, steering organic matter decomposition and carbon sequestration in terrestrial ecosystems through the stoichiometric properties of photosynthetic organs. Deciphering their multi-scale spatiotemporal dynamics is central to unraveling plant nutrient strategies and their coupling mechanisms with global element cycling. In the current study, we modeled biogeochemical parameters (C/N/P contents, stoichiometry, and pools) in plant aboveground parts by using the growing mean temperature, total precipitation, total radiation, and maximum normalized difference vegetation index (NDVImax) across nine models (i.e., random forest model, generalized boosting regression model, multiple linear regression model, artificial neural network model, generalized linear regression model, conditional inference tree model, extreme gradient boosting model, support vector machine model, and recursive regression tree) in Xizang grasslands. The results showed that the random forest model had the highest predictive accuracy for nitrogen content, C:P, and N:P ratios under both grazing and fencing conditions (training R2 ≥ 0.61, validation R2 ≥ 0.95). Additionally, the random forest model had the highest predictive accuracy for C:N ratios under fencing conditions (training R2 = 0.84, validation R2 = 1.00), as well as for C pool and P content and pool under grazing conditions (training R2 ≥ 0.62, validation R2 ≥ 0.90). Therefore, the random forest algorithm based on climate data and/or the NDVImax demonstrated superior predictive performance in modeling these biogeochemical parameters. Full article
(This article belongs to the Special Issue Advanced Machine Learning in Agriculture)
Show Figures

Figure 1

18 pages, 4974 KiB  
Article
Ecological Stoichiometric Characteristics of Plant–Litter–Soil Among Different Forest Stands in a Limestone Region of China
by Yeqiao Wang, Haochuan Tu, Jingjing Zheng, Xiongjie Li, Guibin Wang and Jing Guo
Plants 2025, 14(12), 1758; https://doi.org/10.3390/plants14121758 - 8 Jun 2025
Viewed by 2948
Abstract
The transformation of degraded stands represents an essential strategy for enhancing stand productivity and optimizing site adaptability. This study examined four typical monoculture forest stands transformed from underperforming Platycladus orientalis (PO) forests in the limestone area of Xuzhou, China: Acer pictum [...] Read more.
The transformation of degraded stands represents an essential strategy for enhancing stand productivity and optimizing site adaptability. This study examined four typical monoculture forest stands transformed from underperforming Platycladus orientalis (PO) forests in the limestone area of Xuzhou, China: Acer pictum subsp. mono (AP), Pistacia chinensis (PC), Ligustrum lucidum (LL), and Firmiana simplex (FS). The contents of carbon (C), nitrogen (N), and phosphorus (P), along with the C:N:P stoichiometric ratios, were analyzed in plants (leaves and fine roots), litter, and soil. The relationships among these components and their main influencing factors were explored. The results indicated that FS leaves contained higher levels of N and P, whereas LL litter presented significantly elevated C:N and N:P ratios in comparison with those of the other forest stands (p < 0.05). With the exception of FS, leaves displayed lower P than fine roots, which presented pronounced P enrichment. The soil C, N, and P contents decreased with depth, with both the forest stand and depth significantly impacting the soil stoichiometry (p < 0.01). Redundancy analysis identified available potassium, total nitrogen, and microbial biomass carbon in the soil as key factors influencing the stoichiometric characteristics of the leaf–fine root–litter continuum. Collectively, the leaf N:P ratios (>16) and low soil P contents indicate that plantation growth was primarily constrained by P limitation. In response, AP, PC, and LL allocate more P to fine roots to adapt to the environment. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

14 pages, 1462 KiB  
Article
Variation in Leaf C, N, and P Stoichiometric Characteristics of Populus euphratica Communities in a Desert Riparian Ecosystem of Northwest China
by Xiaolong Zhang, Xianmeng Liu, Lijiang Shi, Yinbo Zhang, Jingwei Wang, Feng Gao, Hao Qin, Min Shi, Yongji Wang and Yuanrun Zheng
Nitrogen 2025, 6(2), 35; https://doi.org/10.3390/nitrogen6020035 - 16 May 2025
Viewed by 490
Abstract
Despite extensive research on how climate and environmental factors influence leaf stoichiometry at national and global scales, experimental evidence on their effects at the community level remains limited, particularly in extremely arid regions. Herein, we investigated the leaf stoichiometry including carbon (C), nitrogen [...] Read more.
Despite extensive research on how climate and environmental factors influence leaf stoichiometry at national and global scales, experimental evidence on their effects at the community level remains limited, particularly in extremely arid regions. Herein, we investigated the leaf stoichiometry including carbon (C), nitrogen (N), and phosphorus (P) along a fine-scale riparian gradient (50–1250 m from the riverbank) in an extremely arid Populus euphratica forest in northwest China. Our results show that the community-averaged leaf total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents were 442.58 mg/g, 21.69 mg/g, and 1.18 mg/g, respectively. The community-averaged C:N, C:P, and N:P ratios were 20.74, 379.97, and 18.43, respectively. Compared to findings from other studies, the P. euphratica community exhibited lower leaf TC and TP contents but higher TN content and N:P ratios. A high N:P ratio (mean = 18.43, N:P > 16) suggests that the P. euphratica community is more susceptible to phosphorus limitation. Along the riparian gradient, community-averaged leaf TC, C:N, and C:P increased significantly, reaching their maximum (479.49 mg/g, 27.12, and 478.06, respectively) at 1250 m from the riverbank. Conversely, leaf TN and TP contents, as well as N:P, decreased significantly with increasing distance from the river, reaching their minimum values (17.49 mg/g, 0.99 mg/g, and 17.17, respectively) at 1100–1250 m. Soil available phosphorus, soil water content, soil bulk density, and soil electrical conductivity significantly influenced the leaf stoichiometry of the P. euphratica community, collectively explaining 61.78% of the total variation. Among these factors, soil water content had the most pronounced effect, surpassing soil available phosphorus, bulk density, and electrical conductivity in shaping leaf stoichiometric characteristics. Our findings indicate that at fine spatial scales, the distribution of leaf nutrients and stoichiometry seem to be predominantly influenced by local-scale factors such as soil water content, soil nutrient levels, and salt stress; P. euphratica forests would be experiencing more negative impacts in leaf nutrients and stoichiometry due to increased droughts or salt stress. Full article
Show Figures

Graphical abstract

17 pages, 1749 KiB  
Article
Effects of Litter Input on Soil Enzyme Activities and Their Stoichiometric Ratios in Sandy Soil
by Haiyan Gao, Shengnan Zhang, Zhiguo Yang, Hongbin Xu, Haiguang Huang, Chunying Wang and Lei Zhang
Agronomy 2025, 15(5), 1152; https://doi.org/10.3390/agronomy15051152 - 8 May 2025
Viewed by 578
Abstract
Litter serves as a crucial source of soil nutrients in sandy land ecosystems. Soil enzyme activities and their stoichiometric ratios act as essential “bridges” linking microbial metabolism with nutrient cycling, thereby reflecting the availability of soil nutrients and the sensitivity to microbial substrate [...] Read more.
Litter serves as a crucial source of soil nutrients in sandy land ecosystems. Soil enzyme activities and their stoichiometric ratios act as essential “bridges” linking microbial metabolism with nutrient cycling, thereby reflecting the availability of soil nutrients and the sensitivity to microbial substrate limitations. To investigate the effects of litter quality changes on soil nutrients, enzyme activities, and stoichiometric ratios in sandy land, leaf litter and surface soil were collected from four sand-fixing forests in the Mu Us Sandy Land, including YC (Corethrodendron fruticosum), NT (Caragana korshinskii), ZSH (Amorpha fruticose), and SL (Salix cheilophila). These samples were then used for indoor cultivation. Experiments with these four leaf litter types were carried out; one treatment with no litter added served as the control. Our aim was to systematically study the changing characteristics of enzyme activities related to soil carbon, nitrogen, and phosphorus with different litter inputs. The results indicate the following: (1) Compared to the control treatment with no litter added (CK), the addition of all four types of litter significantly increased soil organic carbon, total nitrogen, and alkaline nitrogen contents. The addition of NT and YC litter significantly increased dissolved organic carbon, microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN). (2) The addition of the four types of litter had different effects on the soil enzyme activity, showing increasing trends overall. A chemical analysis of the enzyme activity revealed that the soil was limited in nitrogen and phosphorus. After the addition of the ZSH, NT, and YC litter, the enzymatic C/P acquisition ratio (EC/P) and enzymatic N/P acquisition ratio (EN/P) decreased significantly, alleviating the limitation of phosphorus. After the addition of the NT litter, the enzymatic C/N acquisition ratio (EC/N) increased significantly, alleviating the limitation of soil nitrogen. (3) A correlation analysis showed that the soil nutrients had varying degrees of correlation with enzyme activity and their stoichiometric ratio. The redundancy analysis results show that MBN, TN, MBC/MBN, organic carbon, and available nitrogen were key factors influencing soil enzyme activity and stoichiometric ratios. These results provide a reference for nutrient cycling during sandy soil restoration, and they provide essential data support for the development of fragile ecosystem models in the context of global change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 3602 KiB  
Article
Fertilization Improves the Yield of Sapindus saponaria by Affecting Leaf–Soil–Microbial C–N–P Content and Stoichiometry
by Juntao Liu, Hongbing Yang, Ling Zhou, Shangpeng Zhang, Jie Chen, Xu Wang, Shixiong Wu, Yingyun Gong, Guoqing Zhang, Weihua Zhang and Liming Jia
Plants 2025, 14(9), 1360; https://doi.org/10.3390/plants14091360 - 30 Apr 2025
Viewed by 395
Abstract
The purpose of this study was to evaluate the effects of different nitrogen (N), phosphorus (P), and potassium (K) fertilization ratios on the carbon (C), N, and P contents and their ecological stoichiometric characteristics in the leaf–soil–microbial system of Sapindus saponaria and elucidate [...] Read more.
The purpose of this study was to evaluate the effects of different nitrogen (N), phosphorus (P), and potassium (K) fertilization ratios on the carbon (C), N, and P contents and their ecological stoichiometric characteristics in the leaf–soil–microbial system of Sapindus saponaria and elucidate their relationship with yield. A “3414” experimental design was employed in a 6-year-old Sapindus saponaria woodland located in Fujian Province of China. Fourteen N–P–K fertilization treatments with three replicates were established. Leaf, soil, and microbial samples were collected and analyzed for C, N, and P contents. Redundancy Analysis (RDA), Partial Least Squares Path Modeling (PLS–PM), and the entropy-weighted technique of ranking preferences by similarity to optimal solutions (TOPSIS) were utilized to assess the relationships among variables and determine optimal fertilization strategies. It was found through research that different fertilization treatment methods have a significant impact on both the soil nutrient content and the C, N, and P contents of soil microorganisms. Compared with the control group, soil organic C, total N, and total P, and microbial C, N, and P contents increased by 14.25% to 52.61%, 3.90% to 39.84%, 9.52% to 150%, 6.65% to 47.45%, 11.84% to 46.50%, and 14.91% to 201.98%, respectively. Results from Redundancy Analysis (RDA) indicated that soil organic C, total N, and total P exerted a significant influence on the leaf nutrients. PLS-PM demonstrated that fertilization indirectly affected leaf nutrient accumulation and yield by altering soil properties, with soil total phosphorus and leaf phosphorus being key determinants of yield. Additionally, soil microbial entropy impacted yield by regulating microbial biomass stoichiometric ratios. The entropy-weighted TOPSIS model identified the N2P2K2 treatment (600 kg/ha N, 500 kg/ha P, and 400 kg/ha K) as the most effective fertilization strategy. Optimizing N–P–K fertilization ratios significantly enhances leaf nutrient content and soil microbial biomass C, N, and P, thereby increasing Sapindus saponaria yield. This research clarifies the underlying mechanisms through which fertilization exerts an impact on the C–N–P stoichiometry within the leaf–soil–microbial system. Moreover, it furnishes a scientific foundation for the optimization of fertilization management strategies in Sapindus saponaria plantations. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

16 pages, 11306 KiB  
Article
Analysis of Soil Nutrient Content and Carbon Pool Dynamics Under Different Cropping Systems
by Huinan Xin, Caixia Lv, Na Li, Lei Peng, Mengdi Chang, Yongfu Li, Qinglong Geng, Shuhuang Chen and Ning Lai
Sustainability 2025, 17(9), 3881; https://doi.org/10.3390/su17093881 - 25 Apr 2025
Viewed by 341
Abstract
Understanding the effects of agricultural practices on soil nutrient dynamics is critical for optimizing land management in arid regions. This study analyzed spatial patterns, driving factors, and surface stocks (0–20 cm) of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and [...] Read more.
Understanding the effects of agricultural practices on soil nutrient dynamics is critical for optimizing land management in arid regions. This study analyzed spatial patterns, driving factors, and surface stocks (0–20 cm) of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and their stoichiometric ratios (C:N, C:P, and N:P) across six cropping systems (paddy fields, cotton fields, wheat–maize, orchards, wasteland, and others) in the Aksu region, Northwest China, using 1131 soil samples combined with geostatistical and field survey approaches. Results revealed moderate to low levels of SOC, TN, and TP, and stoichiometric ratios, with moderate spatial autocorrelation for SOC, TN, TP, and C:N but weak dependence for C:P and N:P. Cropping systems significantly influenced soil nutrient distribution: intensive systems (paddy fields and orchards) exhibited the highest SOC (22.31 ± 10.37 t hm−2), TN (2.20 ± 1.07 t hm−2), and TP stocks (peaking at 2.58 t hm−2 in orchards), whereas extensive systems (cotton fields and wasteland) showed severe nutrient depletion. Soil pH and elevation were key drivers of SOC and TN variability across all systems. The C:N ratio ranked highest in “other systems” (e.g., diversified rotations), while wheat–maize fields displayed elevated C:P and N:P ratios, likely linked to imbalanced fertilization. These findings highlight that sustainable intensification (e.g., paddy and orchard management) enhances soil carbon and nutrient retention, whereas low-input practices exacerbate degradation in arid landscapes. The study provides actionable insights for tailoring land-use strategies to improve soil health and support ecosystem resilience in water-limited agroecosystems. Full article
Show Figures

Figure 1

17 pages, 2595 KiB  
Article
Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland
by Kwenama Buthelezi and Nkosinomusa Buthelezi-Dube
Plants 2025, 14(9), 1302; https://doi.org/10.3390/plants14091302 - 25 Apr 2025
Viewed by 496
Abstract
This study investigated the long-term (70 years) effects of N fertilisation (ammonium nitrate [AN], ammonium sulphate [AS]) at 70 and 211 kg N kg/ha, and liming (L) on plant–microbial interaction and soil carbon stability in a semi-arid grassland in South Africa. Aboveground biomass [...] Read more.
This study investigated the long-term (70 years) effects of N fertilisation (ammonium nitrate [AN], ammonium sulphate [AS]) at 70 and 211 kg N kg/ha, and liming (L) on plant–microbial interaction and soil carbon stability in a semi-arid grassland in South Africa. Aboveground biomass increased with N addition, particularly AN211, showing a 119% increase compared to the control, while both liming and N applications increased belowground biomass. Nitrogen addition significantly altered plant stoichiometric ratios, with root N ratios showing greater treatment-induced variation (12.7–51.3) than shoot N ratios (10.2–16.8). Microbial biomass carbon peaked with AN70 treatment, while dehydrogenase activity was highest in lime-only plots but suppressed in non-limed N treatments. Conversely, urease activity was highest in the control group and suppressed in most fertilised treatments. Despite increased biomass production, SOC remained unchanged across treatments (49.7–57.6 g/kg), whereas soil pH was lowest (<3.5) and highest (>6) under N fertilisation and lime, respectively. PCA revealed distinct clustering of treatments, with N forms differentially affecting plant allocation patterns and microbial parameters. This study demonstrates that plant–soil–microbe stoichiometric imbalances and pH-induced limitations on microbial function explain the disconnect between plant productivity and carbon sequestration in this semi-arid grassland ecosystem. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Soil pH and Nutrient Stoichiometry as Key Drivers of Phosphorus Availability in Crop Rotation Systems
by Yi Yuan, Yi Zhu, Yichen Zhao, Meng Wang, Zhaoming Qu, Dongqing Lv, Yanli Liu, Yan Song, Tingting Wang, Chengliang Li and Haojie Feng
Agronomy 2025, 15(5), 1023; https://doi.org/10.3390/agronomy15051023 - 24 Apr 2025
Viewed by 602
Abstract
Crop rotation systems profoundly influence soil phosphorus (P) dynamics through physicochemical and microbial interactions. The mechanisms regulating P availability under various rotational practices remain poorly understood. This five-year field experiment investigated the effects of four rotation systems (WM: wheat–maize; WP: wheat–peanut; WS: wheat–soybean; [...] Read more.
Crop rotation systems profoundly influence soil phosphorus (P) dynamics through physicochemical and microbial interactions. The mechanisms regulating P availability under various rotational practices remain poorly understood. This five-year field experiment investigated the effects of four rotation systems (WM: wheat–maize; WP: wheat–peanut; WS: wheat–soybean; MV: maize–hairy vetch) on soil P fractions, phosphatase activities, P-cycling gene abundance, and their interactions with soil properties. The WM rotation substantially reduced soil pH (6.29) while increasing labile P fractions (Ca2-P) and moderately labile P (Al-P, Fe-P, and Ca8-P), which was attributed to enhanced acid phosphatase activity. The WP rotation elevated soil pH (8.13) but reduced P availability due to calcium–P immobilization. The MV rotation stimulated microbial P cycling, exhibiting the highest phoD (2.01 × 106 copies g−1) and phnK (33,140 copies g−1) gene abundance, which was linked to green manure-induced microbial activation. Redundancy analysis identified soil pH, total nitrogen, and stoichiometric ratios (C/N and N/P) as key shared drivers of P fractions and enzymatic activity. Partial least squares path modeling (PLS–PM) indicated that crop rotation directly regulated P availability through pH modulation (r = −0.559 ***) and the C/N ratio (r = 0.343 ***) while indirectly regulating P fractions through phosphatase activity. Lower C/N ratios (<10) across all rotation regimes amplified the carbon limitation in the process of P transformation, indicating that exogenous carbon inputs and appropriate stoichiometry in the soil should be optimized. The results of this study inform the selection of suitable crop rotation patterns for sustainable agriculture. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

19 pages, 2929 KiB  
Article
Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China
by Hui Li, Yi Yang, Xiaohang Weng, Yongbin Zhou, Songzhu Zhang, Liying Liu and Jiubo Pei
Forests 2025, 16(5), 720; https://doi.org/10.3390/f16050720 - 23 Apr 2025
Viewed by 367
Abstract
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as [...] Read more.
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as the stands mature and climate conditions shift, some areas are experiencing premature decline or even mortality. Ecological stoichiometry is capable of uncovering the supply and equilibrium of plant and soil nutrients within ecosystems and is extensively utilized in the identification of limiting elements. Therefore, studying its ecological stoichiometry and internal stability dynamics is of crucial significance for clarifying the nutrient cycling process in the Mongolian pine region and alleviating the decline situation. The eastern and northwestern regions of Liaoning differ significantly in precipitation and soil nutrient availability. This study examines Mongolian pine plantations in both regions, analyzing the carbon (C), nitrogen (N), and phosphorus (P) content in plant tissues, soil, microbial biomass, and stoichiometric ratio under distinct environmental conditions. In order to provide a theoretical basis for alleviating the decline of artificial poplar forests and healthy management. Results indicate that (1) leaf C, N, and P contents in the eastern Liaoning region averaged 496.67, 15.19, and 1.66 g·kg−1, respectively, whereas those in northwestern Liaoning were 514.16, 14.82, and 1.23 g·kg−1, respectively. Soil C, N, and P concentrations exhibited notable regional differences, with eastern Liaoning recording 34.54, 2.62, and 0.48 g·kg−1, compared to significantly lower values in northwestern Liaoning (7.74, 0.77, and 0.21 g·kg−1). Similarly, microbial biomass C, N, and P were higher in eastern Liaoning (18.63, 5.09, and 7.72 mg·kg−1) than in northwestern Liaoning (10.18, 3.46, and 4.38 mg·kg−1). (2) The stoichiometric ratio of soil in the Mongolian pine plantations is higher than that in northwestern Liaoning, but the stoichiometric ratio of plants shows the opposite trend. Specifically, microbial carbon-to-nitrogen (MBC/MBN) ratios are higher in eastern Liaoning, whereas microbial carbon-to-phosphorus (MBC/MBP) and nitrogen-to-phosphorus (MBN/MBP) ratios are greater in northwestern Liaoning. Correlation analysis of plant–soil–microbe stoichiometry indicates that plant growth in both regions is co-limited by nitrogen, with Mongolian pine exhibiting strong internal stability. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 2434 KiB  
Article
The Impact of a Ski Piste on the Stock and Stoichiometry of Soil Carbon, Nitrogen, and Phosphorus: A Case Study on a Forest Area in Northeast China
by Yongjie Han, Yichen Duan, Huabin Zhao, Luna Zhang, Xingchang Wang and Haiyan Zhang
Land 2025, 14(4), 846; https://doi.org/10.3390/land14040846 - 12 Apr 2025
Viewed by 440
Abstract
The construction of sports spaces such as ski resorts leads to deforestation, soil degradation and carbon (C) loss. However, the impact of ski pistes on soil C and nutrients remains unclear. The impact of an 18-year-old ski piste operation on the stock and [...] Read more.
The construction of sports spaces such as ski resorts leads to deforestation, soil degradation and carbon (C) loss. However, the impact of ski pistes on soil C and nutrients remains unclear. The impact of an 18-year-old ski piste operation on the stock and stoichiometry of soil C, nitrogen (N), phosphorus (P), bulk density, and water content across a 0–100 cm profile in a forest area in Northeast China was quantitatively assessed using the equivalent soil mass method and fixed depth method. The fixed depth method overestimated soil C, N and P stocks of the SP by 5% to 8% of 0–100 cm stocks of soil C and nutrients relative to the equivalent soil mass method used as a reference. The equivalent soil mass method demonstrated that the ski piste soil C, N, and P stocks were significantly reduced by 27.4%, 21.3%, and 27.5%, respectively, in comparison to the undisturbed forest. Surface layers (0–10 cm) exhibited the highest C and N losses, while deep soil (>50 cm) showed significant C, N and P depletion. The ski piste significantly reduced surface C:N (15.8%) and C:P (38.0%) ratios, indicating decoupled nutrient constraints on C loss. Soil compaction increased bulk density in surface layers (0–10 cm) but reduced it in deeper strata, correlating with altered C physical interdependencies. The findings highlight the vertical stratification of disturbance effects, emphasizing the critical role of stoichiometric controls and methodological considerations in assessing anthropogenic impacts on soil ecosystems. These insights are vital for the sustainable management of ski resorts to mitigate soil degradation. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

19 pages, 4269 KiB  
Article
Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China
by Juan Wang, Qingpei Yang, Ting Zhou, Zhanhong Wang and Benfeng Yu
Forests 2025, 16(4), 644; https://doi.org/10.3390/f16040644 - 8 Apr 2025
Viewed by 468
Abstract
Analyzing the soil carbon, nitrogen, and phosphorus content, along with their stoichiometric ratios across different urban-rural gradients, can offer essential insights into enhancing soil quality and the sustainable management of urban green space ecosystems. This study focused on Nanchang, China, examining two typical [...] Read more.
Analyzing the soil carbon, nitrogen, and phosphorus content, along with their stoichiometric ratios across different urban-rural gradients, can offer essential insights into enhancing soil quality and the sustainable management of urban green space ecosystems. This study focused on Nanchang, China, examining two typical urban forest types (Pinus massoniana forests and Camphora officinarum forests), two typical urban wetlands types (river wetlands and pond wetlands), as well as urban natural and artificial grasslands. It analyzed the distribution characteristics of organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and their stoichiometric ratios along the “urban-suburban-rural” gradients in surface (0–20 cm) and deep (20–40 cm) soil. The results indicated that in the deep soil of Pinus massoniana forests, rural areas exhibited significantly higher SOC content compared to suburban areas. In the surface soil of Camphora officinarum forests, the TN content and N:P were significantly greater in urban areas compared to rural areas (p < 0.05). Both soil layers in river wetlands showed significantly higher soil TN levels in urban areas compared to rural areas. Additionally, in the deep soil of pond wetlands, urban areas showed significantly greater TN content, C:P, and N:P, compared to rural areas (p < 0.05). For natural grasslands, soil C:N was significantly more in suburban and rural areas than in urban areas for both soil layers. In artificial grasslands, the SOC content in deep soil was significantly greater in rural areas compared to urban areas (p < 0.05). In the deep soil of suburban areas, soil TP content in Camphora officinarum forests was highly significantly greater than that in Pinus massoniana forests (p < 0.01). The SOC, TN content, and C:P were considerably higher in pond wetlands compared to river wetlands (p < 0.05). The SOC content of natural grasslands was significantly higher compared to artificial grasslands (p < 0.05). Nitrate nitrogen was highly significantly and positively correlated with soil N:P in the deep soil of Pinus massoniana forests (p < 0.01), and soil pH was highly significantly and negatively correlated with soil N:P in the surface soil of pond wetlands (p < 0.01). The urbanization process has altered the SOC, TN, and TP nutrient status to some extent, exacerbating the imbalance of nutrient elements in green space soils along the “urban-suburban-rural” gradients. Full article
(This article belongs to the Special Issue Forest and Urban Green Space Ecosystem Services and Management)
Show Figures

Figure 1

19 pages, 7032 KiB  
Article
Characteristics of Soil and Plant Ecological Stoichiometry of Carbon, Nitrogen, and Phosphorus in Different Wetland Types of the Yellow River
by Chuang Yan, Yuanyuan Li, Jinjuan Gao and Xiaoyan Wang
Sustainability 2025, 17(7), 3276; https://doi.org/10.3390/su17073276 - 7 Apr 2025
Viewed by 606
Abstract
Clarifying carbon (C), nitrogen (N), and phosphorus (P) ecological stoichiometry helps us to understand the ecological functions of wetland ecosystems. This study investigated the variations in ecological stoichiometry and their driving factors in the Yellow River wetland. Soil and plant samples were collected [...] Read more.
Clarifying carbon (C), nitrogen (N), and phosphorus (P) ecological stoichiometry helps us to understand the ecological functions of wetland ecosystems. This study investigated the variations in ecological stoichiometry and their driving factors in the Yellow River wetland. Soil and plant samples were collected and analyzed from riparian lower-beach wetland (LBW), riparian higher-beach wetland (HBW), and depressional wetland (DW) at the junction of the middle and lower reaches of the Yellow River, respectively. Compared with HBW, DW exhibited higher soil C/N (9.15 ± 0.13), C/P (11.17 ± 0.52), and N/P (1.08 ± 0.09) (p < 0.01), indicating its stronger C and N storage capacity. At the community level, higher plant C/N and C/P in LBW (21.47 ± 1.61 and 206.80 ± 1.75, respectively) and HBW (22.91 ± 0.90 and 241.04 ± 3.28, respectively) compared to DW (14.44 ± 1.02 and 115.66 ± 2.82, respectively) (p < 0.01) suggested that plants in LBW and HBW had greater C assimilation and nutrient use efficiency. Soil electrical conductivity (EC) and hydrolyzed N (SHN) positively affected soil ecological stoichiometry (p < 0.01). In contrast, soil EC, soil organic C, dissolved organic C, and SHN negatively altered plant stoichiometric ratios (p < 0.05), which were regulated by plant functional groups. When pooling all wetlands, stoichiometric ratios of plants were closely correlated with those of soil (p < 0.05). These findings demonstrate that wetland types notably affect soil and plant stoichiometry. Wetland types exerted opposite effects on soil and plant stoichiometry due to the different influences of soil physicochemical properties and the coupling effects of nutrient and stoichiometry between soil and plants. Therefore, the interactions between plant and soil stoichiometry should be considered to explore the C and nutrient cycles in riverine wetlands. Our research emphasizes the necessity of considering wetland type differences and intricate plant–soil stoichiometric interactions in formulating management strategies and maintaining the sustainability of wetlands. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

Back to TopTop