Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Setup and Sample Collection
2.3. Soil Sample Analysis
2.4. Statistical Analysis
3. Results
3.1. Stoichiometric Characteristics of SOC, TN, and TP in Urban Forests and Their Influencing Factors
3.2. Stoichiometric Characteristics of SOC, TN, and TP in Urban Wetlands Soils and Their Influencing Factors
3.3. Stoichiometric Characteristics of SOC, TN, and TP in Urban Grasslands Soils and Their Influencing Factors
4. Discussion
4.1. SOC, TN, and TP Content and Stoichiometric Characteristics in Urban Green Spaces
4.2. Influencing Factors of SOC, TN, and TP Stoichiometric Ratios in Urban Green Spaces
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote Sensing of Urban Green Spaces: A Review. Urban For. Urban Gree. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Ungaro, F.; Maienza, A.; Ugolini, F.; Lanini, G.M.; Baronti, S.; Calzolari, C. Assessment of Joint Soil Ecosystem Services Supply in Urban Green Spaces: A Case Study in Northern Italy. Urban For. Urban Green. 2022, 67, 127455. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.J.; Zhao, J.C.; Hu, Y.; Li, Y.; Wang, B. Response of Soil Carbon, Nitrogen, and Phosphorus Stoichiometric Characteristics of Pinus tabuliformis Forests to Stand Age and Density in the Loess Plateau Region of Western Shanxi Province, Northern China. J. Beijing For. Univ. 2024, 46, 30–40. [Google Scholar]
- Van de Waal, D.B.; Elser, J.J.; Martiny, A.C.; Sterner, R.W.; Cotner, J.B. Progress in ecological stoichiometry. Front. Microbiol. 2018, 9, 1957. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Wen, Y.; Cheng, M.; Wang, X. The Critical Role of Soil Ecological Stoichiometric Ratios: How Does Reforestation Improve Soil Nitrogen and Phosphorus Availability? Plants 2024, 13, 2320. [Google Scholar] [CrossRef]
- Cheng, Z.; Hettiarachchi, G.M.; Kim, K.H. Urban Soils Research: SUITMA 10. J. Environ. Qual. 2021, 50, 2–6. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, S.; Li, S. Dynamic Responses of Soil Organic Carbon to Urbanization: A Global Perspective. Glob. Change Biol. 2024, 30, e17573. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, H.; Lam, J.F.I. Urban Soil Ecological Risk Assessment Based on “Climate Change-Resilience”. Environ. Monit. Assess. 2025, 197, 218. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Managing soil carbon stocks to enhance the resilience of urban ecosystems. Carbon Manag. 2015, 6, 35–50. [Google Scholar]
- Dobson, M.C.; Crispo, M.; Blevins, R.S.; Warren, P.H.; Edmondson, J.L. An assessment of urban horticultural soil quality in the United Kingdom and its contribution to carbon storage. Sci. Total Environ. 2021, 777, 146199. [Google Scholar] [PubMed]
- Caron, S.; Garvey, S.M.; Gewirtzman, J.; Schultz, K.; Bhatnagar, J.M.; Driscoll, C.; Hutyra, L.R.; Templer, P.H. Urbanization and fragmentation have opposing effects on soil nitrogen availability in temperate forest ecosystems. Glob. Change Biol. 2023, 29, 2156–2171. [Google Scholar]
- Huang, J.; Zhang, W.; Mo, J.; Wang, S.; Liu, J.; Chen, H. Urbanization in China drives soil acidification of Pinus massoniana forests. Sci. Rep. 2015, 5, 13512. [Google Scholar] [CrossRef]
- Cunha, G.K.G.; da Cunha, K.P.V.; Araújo, F.; Angelini, R. Urbanization increases the risk of phosphorus loss in sandy soils of tropical ecosystems. Chemosphere 2024, 349, 140937. [Google Scholar] [PubMed]
- Fu, Y.; Yang, X.; Wang, J. Stoichiometric Characteristics of Soil C, N and P of Green Space along an Urban-Suburb-Rural Gradient in Nanchong. Chin. J. Ecol. 2020, 39, 4038–4047. [Google Scholar]
- Guo, Y.; Han, J.; Bao, H.; Wu, Y.; Shen, L.; Xu, X.; Chen, Z.; Smith, P.; Abdalla, M. A Systematic Analysis and Review of Soil Organic Carbon Stocks in Urban Greenspaces. Sci. Total Environ. 2024, 948, 174788. [Google Scholar] [CrossRef]
- Cusack, D.F. Soil Nitrogen Levels Are Linked to Decomposition Enzyme Activities along an Urban-Remote Tropical Forest Gradient. Soil Biol. Biochem. 2013, 57, 192–203. [Google Scholar]
- Chen, F.; Li, X.; Nagle, G.; Zhan, S. Topsoil Phosphorus Signature in Five Forest Types along an Urban-Suburban-Rural Gradient in Nanchang, Southern China. J. For. Res. 2010, 21, 39–44. [Google Scholar]
- Zhang, H.; Li, C.; Zhang, Y.; Zhang, L. Dynamic change characteristics of wetlands in Hefei and their driving factors along the urban–rural gradient. Wetlands 2024, 44, 101. [Google Scholar]
- Cusack, D.F.; Lee, J.K.; McCleery, T.L.; LeCroy, C.S. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban–rural tropical forest gradient. Glob. Change Biol. 2015, 21, 4481–4496. [Google Scholar]
- Wang, Q.; Li, Y.; Wang, L.W.; Xiang, M.; Yuan, D.; Shao, S.; Gou, Q. Stoichiometric Characteristics of Soil C, N and P of Green Space along Urban–Suburb-Rural Gradient in Eastern Chengdu. Soils 2017, 49, 358–363. [Google Scholar]
- Yesilonis, I.; Giorgio, V.; Hu, Y.; Pouyat, R.; Szlavecz, K. Changes in soil chemistry after 17 years in urban and rural Forest patches. Front. Ecol. Evol. 2022, 10, 786809. [Google Scholar] [CrossRef]
- Tešić, M.; Stojanović, N.; Knežević, M.; Bojović, D.D.; Petrović, J.; Pavlović, P. The Impact of the degree of urbanization on spatial distribution, sources and levels of heavy metals pollution in urban soils—A case study of the city of Belgrade (Serbia). Sustainability 2022, 14, 13126. [Google Scholar] [CrossRef]
- Zhai, C.; Wang, W.; He, X.; Zhou, W.; Xiao, L.; Zhang, B. Urbanization drives SOC accumulation, its temperature stability and turnover in forests, Northeastern China. Forests 2017, 8, 130. [Google Scholar] [CrossRef]
- Li, P.Q.; Fang, X.M.; Chen, F.S.; Wang, F.; Yu, J.; Wang, S.; Li, Z. Variability of Soil Water Soluble Organic Carbon Content and Its Response to Temperature Change in Green Spaces along Urban-to-Rural Gradient of Nanchang, China. Chin. J. Appl. Ecol. 2015, 26, 3398–3404. [Google Scholar]
- GB/T 17296-2009; China Information Classification and Coding Standardization Technical Committee. Classification and Codes for Chinese Soil. Standards Press of China: Beijing, China, 2009.
- Lv, T.; Wang, L.; Zhang, X.; Xie, H.; Lu, H.; Li, H.; Liu, W.; Zhang, Y. Coupling Coordinated Development and Exploring Its Influencing Factors in Nanchang, China: From the Perspectives of Land Urbanization and Population Urbanization. Land 2019, 8, 178. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Nanchang Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Jiang, J.; Lu, Y.; Chen, B.; Ming, A.; Pang, L. Nutrient resorption and C: N: P stoichiometry responses of a Pinus massoniana plantation to various thinning intensities in Southern China. Forests 2022, 13, 1699. [Google Scholar] [CrossRef]
- Zhang, J.E. Common Experimental Research Methods and Techniques in Ecology; Chemical Industry Press: Beijing, China, 2007. [Google Scholar]
- Chen, H.; Zhang, W.; Gilliam, F.; Liu, L.; Huang, J.; Zhang, T.; Wang, W.; Mo, J. Changes in Soil Carbon Sequestration in Pinus massoniana Forests along an Urban-to-Rural Gradient of Southern China. Biogeosciences 2013, 10, 6609–6616. [Google Scholar]
- Xiong, Q.; Chen, W.; He, L.; Luo, S.; Li, H. Study on the Influencing Factors and the Spatiotemporal Heterogeneity of Urban Heat Island Effect in Nanchang City of China. J. Asian Archit. Build. Eng. 2023, 22, 1444–1457. [Google Scholar]
- Lajtha, K.; Bowden, R.D.; Crow, S.; Fekete, I.; Kotroczó, Z.; Plante, A.; Simpson, M.J.; Nadelhoffer, K.J. The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Sci. Total Environ. 2018, 640, 1112–1120. [Google Scholar]
- Li, D.; Ning, Z.; Chen, G.; Li, Y.N.; Cui, B.; Wang, Q.; Xie, T. The Effect of Land Use and Land Cover on Soil Carbon Storage in the Yellow River Delta, China: Implications for Wetland Restoration and Adaptive Management. J. Environ. Manag. 2024, 367, 122097. [Google Scholar]
- Arisoesilaningsih, E.; Soejono, S. Diversity of Drought-Resistant Plants and the Benefits of Their Biomass for Improving Fertility of a Degraded Soil of Brantas River Basin. J. Degrad. Min. Lands Manag. 2015, 2, 303. [Google Scholar]
- Tobiašová, E.; Dębska, B.; Porhajašová, J. Influence of the fractional composition of humus substances on the proportion of water-resistant aggregates. J. Cent. Eur. Agric. 2015, 16, 131–139. [Google Scholar]
- Meng, L.H.; Zeng, H.; Xiong, Y.M.; Guo, D. Soil Carbon, Nitrogen and Phosphorus Contents and Fine Root Biomass under Different Vegetation Types and Building Densities in Shenzhen City. Acta Sci. Nat. Univ. Pekin. 2013, 49, 899–907. [Google Scholar]
- Rai, P.K.; Rai, A.; Singh, S. Change in Soil Microbial Biomass along a Rural-Urban Gradient in Varanasi (UP, India). Geol. Ecol. Landsc. 2018, 2, 15–21. [Google Scholar]
- Xu, J.; Jian, Z.; Zhang, Y.; Deng, X.; Lei, L.; Zeng, L.; Xiao, W.; Ni, Y. Nutrient Variations and Their Use Efficiency of Pinus massoniana Seedling Tissues in Response to Low Phosphorus Conditions. Forests 2024, 15, 351. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Futa, B.; Ukalska-Jaruga, A.; Weber, J.; Chmielewski, S.; Wesołowska, S.; Mocek-Płóciniak, A.; Patkowski, K.; Mielnik, L. Mutual relations between PAHs derived from atmospheric deposition, enzymatic activity, and humic substances in soils of differently urbanized areas. J. Soils Sediment. 2018, 18, 2682–2691. [Google Scholar] [CrossRef]
- Rao, P.; Hutyra, L.R.; Raciti, S.M.; Templer, P.H. Atmospheric nitrogen inputs and losses along an urbanization gradient from Boston to Harvard Forest, MA. Biogeochemistry 2014, 121, 229–245. [Google Scholar] [CrossRef]
- Chang, H.; Liu, Y.; Wang, Y.; Zhang, L.; Song, Z.; Hsueh, I. Nitrogen Emissions-Based Assessment of Anthropogenic Regional Ecological Risk: An Example of Taiwanese Urbanization, 1990–2015. Environ. Manag. 2018, 62, 968–986. [Google Scholar]
- Wang, J.; Bai, J.; Zhao, Q.; Lu, Q.; Xia, Z. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Sci. Rep. 2016, 6, 21137. [Google Scholar] [CrossRef]
- Alldred, M.; Baines, S.B. Effects of wetland plants on denitrification rates: A meta-analysis. Ecol. Appl. 2016, 26, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Bravo, D.; Hill, A.R. The Effect of Chronic High Groundwater Nitrate Loading on Riparian Forest Growth and Plant–Soil Processes. Water Air Soil Pollut. 2012, 223, 73–84. [Google Scholar] [CrossRef]
- Gao, H.; Bai, J.; Xiao, R.; Yan, D.; Huang, L.; Huang, C. Soil net nitrogen mineralization in salt marshes with different flooding periods in the Yellow River Delta, China. Clean–Soil Air Water 2012, 40, 1111–1117. [Google Scholar] [CrossRef]
- Dromantienė, R.; Pranckietienė, I.; Jodaugienė, D.; Paulauskienė, A. The influence of various forms of nitrogen fertilization and meteorological factors on nitrogen compounds in soil under laboratory conditions. Agronomy 2020, 10, 2011. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Z.; Song, Z.; Wang, F.; Tian, D.; Mi, W.; Huang, X.; Wang, J.; Song, L.; Yang, Z.; et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization. Glob. Change Biol. 2021, 27, 1848–1858. [Google Scholar] [CrossRef]
- Heuck, C.; Smolka, G.; Whalen, E.D.; Frey, S.; Gundersen, P.; Moldan, F.; Fernandez, I.J.; Spohn, M. Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry 2018, 141, 167–181. [Google Scholar] [CrossRef]
- Qu, T.; Du, W.; Yuan, X.; Yang, Z.; Liu, D.; Wang, D.; Yu, L. Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PLoS ONE 2016, 11, e0159680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Hu, Y.; Xi, X.; Tang, Y.; Chen, J.; Fu, X.; Sun, Y. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: Site study in Jiuduansha wetland. PLoS ONE 2015, 10, e0126951. [Google Scholar] [CrossRef]
- Heyburn, J.; McKenzie, P.; Crawley, M.J.; Fornara, D.A. Effects of grassland management on plant C: N: P stoichiometry: Implications for soil element cycling and storage. Ecosphere 2017, 8, e01963. [Google Scholar] [CrossRef]
- Dibar, D.T.; Zhang, K.; Yuan, S.; Zhang, J.; Zhou, Z.; Ye, X. Ecological stoichiometric characteristics of Carbon (C), Nitrogen (N) and Phosphorus (P) in leaf, root, stem, and soil in four wetland plants communities in Shengjin Lake, China. PLoS ONE 2020, 15, e0230089. [Google Scholar]
- Thompson, G.L.; Kao-Kniffin, J. Urban grassland management implications for soil C and N dynamics: A microbial perspective. Front. Ecol. Evol. 2019, 7, 315. [Google Scholar]
- Wang, Z.; Chen, L.; Pan, Y.; Zhao, D.; Yang, Y.; Li, X.; Wang, H. Responses in species diversity in the Hulunbuir grassland to phosphorus addition under nitrogen-limiting and non-limiting conditions. Front. Plant Sci. 2024, 15, 1393471. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, T.; Stevens, C.J.; Duchateau, L.; Jacquemyn, H.; Gowing, D.J.G.; Merckx, R.; Wallace, H.; Rooijen, N.V.; Goethem, T.; Bobbink, R.; et al. Soil phosphorus constrains biodiversity across European grasslands. Glob. Change Biol. 2014, 20, 3814–3822. [Google Scholar] [CrossRef]
- Chi, Y.; Song, S.; Xiong, K. Effects of different grassland use patterns on soil bacterial communities in the karst desertification areas. Front. Microbiol. 2023, 14, 1208971. [Google Scholar] [CrossRef] [PubMed]
- Tahovská, K.; Choma, M.; Čapek, P.; Kaštovská, E.; Kaňa, J.; Kopáček, J. Increased Saprotrophic Activity and Phosphate Leaching Following Forest Soil Decomposition without Root Access. Forests 2024, 15, 1378. [Google Scholar] [CrossRef]
Green Space Types | Green Space Subcategories | Altitude (m) | Mean Diameter at Breast Height (cm) | Soil Types |
---|---|---|---|---|
Urban forests | Pinus massoniana forests | 42.3 ± 7.18 | 16.5 ± 5.29 | Ferralsols |
Camphora officinarum forests | 46.8 ± 10.7 | 22.4 ± 8.29 | Ferralsols | |
Urban wetlands | River wetlands | 17.3 ± 1.32 | — | Gleysols |
Pond wetlands | 17.7 ± 3.50 | — | Gleysols | |
Urban grasslands | Natural grasslands | 29.4 ± 14.9 | — | Ferralsols |
Artificial grasslands | 28.2 ± 19.4 | — | Ferralsols |
Soil Nutrient | Forest Types | Soil Layers | Urban-Rural Gradients | Average | ||
---|---|---|---|---|---|---|
Urban | Suburban | Rural | ||||
SOC (g·kg−1) | Type I | 0–20 cm | 21.1 ± 4.36 Aa | 20.4 ± 11.9 Aa | 21.5 ± 8.83 Aa | 21.0 ± 7.75 |
20–40 cm | 16.3 ± 0.589 Aab | 8.27 ± 0.346 Ab | 19.5 ± 7.93 Aa | 14.7 ± 6.41 | ||
Type II | 0–20 cm | 21.5 ± 1.11 Aa | 21.7 ± 3.33 Aa | 18.7 ± 5.88 Aa | 20.6 ± 3.72 | |
20–40 cm | 16.8 ± 2.66 Aa | 17.7 ± 4.86 Aa | 12.3 ± 4.73 Aa | 15.6 ± 4.41 | ||
TN (g·kg−1) | Type I | 0–20 cm | 0.837 ± 0.183 Aa | 1.04 ± 0.777 Aa | 0.973 ± 0.455 Aa | 0.950 ± 0.468 |
20–40 cm | 0.704 ± 0.185 Aa | 0.391 ± 0.0235 Aa | 0.741 ± 0.430 Aa | 0.612 ± 0.288 | ||
Type II | 0–20 cm | 1.05 ± 0.120 Aa | 0.810 ± 0.209 Aab | 0.677 ± 0.0416 Ab | 0.847 ± 0.206 | |
20–40 cm | 0.783 ± 0.126 Aa | 0.727 ± 0.212 Aa | 0.497 ± 0.149 Aa | 0.669 ± 0.195 | ||
TP (g·kg−1) | Type I | 0–20 cm | 0.319 ± 0.0750 Aa | 0.385 ± 0.0417 Aa | 0.478 ± 0.147 Aa | 0.394 ± 0.110 |
20–40 cm | 0.271 ± 0.0738 Aa | 0.278 ± 0.00695 Ba | 0.397 ± 0.160 Aa | 0.315 ± 0.108 | ||
Type II | 0–20 cm | 0.367 ± 0.0289 Aa | 0.504 ± 0.0973 Aa | 0.448 ± 0.0347 Aa | 0.440 ± 0.0802 | |
20–40 cm | 0.298 ± 0.0613 Aa | 0.368 ± 0.0317 Aa | 0.282 ± 0.160 Aa | 0.316 ± 0.0956 |
Soil Factors | Forest Types | Soil Layers | Mean ± Standard Deviation | Soil Factors | Forest Types | Soil Layers | Mean ± Standard Deviation |
---|---|---|---|---|---|---|---|
Soil moisture content (SMC, %) | Type I | 0–20 cm | 10.3 ± 3.36 | Ammonium nitrogen (AN, mg·kg−1) | Type I | 0–20 cm | 19.4 ± 9.12 |
20–40 cm | 12.7 ± 1.96 | 20–40 cm | 13.8 ± 7.22 | ||||
Type II | 0–20 cm | 13.1 ± 4.58 | Type II | 0–20 cm | 29.2 ± 11.1 | ||
20–40 cm | 14.3 ± 5.53 | 20–40 cm | 18.5 ± 6.95 | ||||
Soil bulk density (SBD, g·cm−3) | Type I | 0–20 cm | 1.39 ± 0.135 | Nitrate nitrogen (NN, mg·kg−1) | Type I | 0–20 cm | 20.2 ± 7.38 |
20–40 cm | 1.37 ± 0.121 | 20–40 cm | 14.0 ± 8.51 | ||||
Type II | 0–20 cm | 1.36 ± 0.0845 | Type II | 0–20 cm | 17.2 ± 4.25 | ||
20–40 cm | 1.37 ± 0.114 | 20–40 cm | 12.9 ± 3.75 | ||||
Soil pH | Type I | 0–20 cm | 4.657 ± 0.153 | Available phosphorus (AP, mg·kg−1) | Type I | 0–20 cm | 10.9 ± 2.85 |
20–40 cm | 4.69 ± 0.118 | 20–40 cm | 9.01 ± 1.56 | ||||
Type II | 0–20 cm | 4.81 ± 0.162 | Type II | 0–20 cm | 12.4 ± 3.08 | ||
20–40 cm | 4.91 ± 0.203 | 20–40 cm | 10.7 ± 2.16 |
Soil Nutrient | Wetlands Types | Soil Layers | Urban-Rural Gradients | Average | ||
---|---|---|---|---|---|---|
Urban | Suburban | Rural | ||||
SOC (g·kg−1) | Type I | 0–20 cm | 15.8 ± 3.07 Aa | 13.2 ± 2.68 Aa | 16.5 ± 4.72 Aa | 15.1 ± 3.47 |
20–40 cm | 13.3 ± 0.612 Aa | 8.31 ± 1.40 Bb | 7.63 ± 0.569 Ab | 9.73 ± 2.78 | ||
Type II | 0–20 cm | 24.0 ± 7.28 Aa | 18.6 ± 3.51 Aab | 12.7 ± 1.75 Ab | 18.5 ± 6.38 | |
20–40 cm | 16.6 ± 6.21 Aa | 14.0 ± 2.05 Aa | 9.06 ± 1.88 Aa | 13.2 ± 4.75 | ||
TN (g·kg−1) | Type I | 0–20 cm | 0.925 ± 0.123 Aa | 0.674 ± 0.212 Aab | 0.466 ± 0.173 Ab | 0.688 ± 0.249 |
20–40 cm | 0.806 ± 0.130 Aa | 0.531 ± 0.116 Bb | 0.395 ± 0.131 Ab | 0.577 ± 0.211 | ||
Type II | 0–20 cm | 1.23 ± 0.272 Aa | 0.812 ± 0.171 Aa | 0.922 ± 0.509 Aa | 0.989 ± 0.355 | |
20–40 cm | 1.02 ± 0.275 Aa | 0.790 ± 0.0630 Aab | 0.549 ± 0.0871 Ab | 0.786 ± 0.251 | ||
TP (g·kg−1) | Type I | 0–20 cm | 0.485 ± 0.0748 Aa | 0.363 ± 0.100 Aa | 0.390 ± 0.179 Aa | 0.413 ± 0.123 |
20–40 cm | 0.323 ± 0.0764 Aa | 0.293 ± 0.0566 Aa | 0.223 ± 0.0455 Aa | 0.280 ± 0.0689 | ||
Type II | 0–20 cm | 0.359 ± 0.0974 Aa | 0.375 ± 0.0398 Aa | 0.320 ± 0.0837 Aa | 0.351 ± 0.0716 | |
20–40 cm | 0.226 ± 0.109 Aa | 0.304 ± 0.0214 Aa | 0.256 ± 0.0577 Aa | 0.262 ± 0.0713 |
Soil Factors | Wetlands Types | Soil Layers | Mean ± Standard Deviation | Soil Factors | Wetlands Types | Soil Layers | Mean ± Standard Deviation |
---|---|---|---|---|---|---|---|
SMC (%) | Type I | 0–20 cm | 13.5 ± 8.62 | AN (mg·kg−1) | Type I | 0–20 cm | 6.53 ± 1.14 |
20–40 cm | 12.5 ± 6.92 | 20–40 cm | 3.93 ± 1.22 | ||||
Type II | 0–20 cm | 22.3 ± 15.5 | Type II | 0–20 cm | 8.34 ± 1.24 | ||
20–40 cm | 19.9 ± 5.08 | 20–40 cm | 5.72 ± 1.19 | ||||
SBD (g·cm−3) | Type I | 0–20 cm | 1.47 ± 0.139 | NN (mg·kg−1) | Type I | 0–20 cm | 7.53 ± 2.01 |
20–40 cm | 1.58 ± 0.132 | 20–40 cm | 4.12 ± 2.16 | ||||
Type II | 0–20 cm | 1.54 ± 0.246 | Type II | 0–20 cm | 8.06 ± 2.99 | ||
20–40 cm | 1.62 ± 0.155 | 20–40 cm | 4.42 ± 2.32 | ||||
Soil pH | Type I | 0–20 cm | 6.58 ± 0.660 | AP (mg·kg−1) | Type I | 0–20 cm | 6.70 ± 0.536 |
20–40 cm | 7.40 ± 0.948 | 20–40 cm | 5.37 ± 0.485 | ||||
Type II | 0–20 cm | 6.72 ± 1.43 | Type II | 0–20 cm | 6.38 ± 0.728 | ||
20–40 cm | 6.57 ± 1.24 | 20–40 cm | 5.19 ± 0.375 |
Soil Nutrient | Grasslands Types | Soil Layers | Urban-Rural Gradients | Average | ||
---|---|---|---|---|---|---|
Urban | Suburban | Rural | ||||
SOC (g·kg−1) | Type I | 0–20 cm | 8.53 ± 1.80 Ac | 14.9 ± 0.664 Ab | 27.9 ± 4.07 Aa | 17.1 ± 8.84 |
20–40 cm | 6.29 ± 0.589 Ab | 12.2 ± 0.778 Aa | 21.5 ± 9.17 Aa | 13.3 ± 8.10 | ||
Type II | 0–20 cm | 10.8 ± 6.66 Aa | 13.1 ± 1.32 Aa | 18.2 ± 2.50 Ba | 14.0 ± 4.88 | |
20–40 cm | 7.13 ± 5.28 Ab | 10.8 ± 0.223 Bab | 15.5 ± 3.69 Aa | 11.2 ± 4.87 | ||
TN (g·kg−1) | Type I | 0–20 cm | 0.654 ± 0.0770 Ab | 0.755 ± 0.0280 Ab | 1.25 ± 0.189 Aa | 0.885 ± 0.293 |
20–40 cm | 0.590 ± 0.0546 Ab | 0.632 ± 0.0786 Ab | 1.04 ± 0.275 Aa | 0.754 ± 0.260 | ||
Type II | 0–20 cm | 0.683 ± 0.233 Aa | 0.744 ± 0.0794 Aa | 0.956 ± 0.215 Aa | 0.794 ± 0.205 | |
20–40 cm | 0.561 ± 0.195 Aa | 0.622 ± 0.0300 Aa | 0.736 ± 0.179 Aa | 0.640 ± 0.154 | ||
TP (g·kg−1) | Type I | 0–20 cm | 0.222 ± 0.0479 Ba | 0.411 ± 0.116 Aa | 0.466 ± 0.170 Aa | 0.366 ± 0.153 |
20–40 cm | 0.118 ± 0.0237 Bb | 0.351 ± 0.122 Aa | 0.358 ± 0.0924 Aa | 0.276 ± 0.142 | ||
Type II | 0–20 cm | 0.571 ± 0.147 Aa | 0.293 ± 0.00501 Aa | 0.736 ± 0.353 Aa | 0.533 ± 0.272 | |
20–40 cm | 0.469 ± 0.129 Aa | 0.228 ± 0.0304 Aa | 0.583 ± 0.393 Aa | 0.427 ± 0.260 |
Soil Factors | Grasslands Types | Soil Layers | Mean ± Standard Deviation | Soil Factors | Grasslands Types | Soil Layers | Mean ± Standard Deviation |
---|---|---|---|---|---|---|---|
SMC (%) | Type I | 0–20 cm | 7.63 ± 5.49 | AN (mg·kg−1) | Type I | 0–20 cm | 12.8 ± 1.15 |
20–40 cm | 9.14 ± 3.63 | 20–40 cm | 8.44 ± 1.64 | ||||
Type II | 0–20 cm | 10.4 ± 2.76 | Type II | 0–20 cm | 10.2 ± 3.55 | ||
20–40 cm | 11.1 ± 2.51 | 20–40 cm | 7.30 ± 2.61 | ||||
SBD (g·cm−3) | Type I | 0–20 cm | 1.44 ± 0.143 | NN (mg·kg−1) | Type I | 0–20 cm | 7.71 ± 2.96 |
20–40 cm | 1.40 ± 0.180 | 20–40 cm | 4.72 ± 1.60 | ||||
Type II | 0–20 cm | 1.45 ± 0.155 | Type II | 0–20 cm | 12.3 ± 4.28 | ||
20–40 cm | 1.45 ± 0.0615 | 20–40 cm | 8.83 ± 3.26 | ||||
Soil pH | Type I | 0–20 cm | 6.99 ± 1.35 | AP (mg·kg−1) | Type I | 0–20 cm | 8.57 ± 3.81 |
20–40 cm | 7.26 ± 1.27 | 20–40 cm | 7.05 ± 3.54 | ||||
Type II | 0–20 cm | 6.13 ± 1.35 | Type II | 0–20 cm | 10.5 ± 4.05 | ||
20–40 cm | 6.32 ± 1.35 | 20–40 cm | 8.52 ± 3.55 |
Green Space Types | Green Space Subcategories |
---|---|
Urban forests |
|
Urban wetlands |
|
Urban grasslands |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, Q.; Zhou, T.; Wang, Z.; Yu, B. Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China. Forests 2025, 16, 644. https://doi.org/10.3390/f16040644
Wang J, Yang Q, Zhou T, Wang Z, Yu B. Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China. Forests. 2025; 16(4):644. https://doi.org/10.3390/f16040644
Chicago/Turabian StyleWang, Juan, Qingpei Yang, Ting Zhou, Zhanhong Wang, and Benfeng Yu. 2025. "Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China" Forests 16, no. 4: 644. https://doi.org/10.3390/f16040644
APA StyleWang, J., Yang, Q., Zhou, T., Wang, Z., & Yu, B. (2025). Ecological Stoichiometry Characteristics and Influencing Factors of Soil Carbon, Nitrogen, and Phosphorus in Green Spaces Along the Urban-to-Rural Gradient of Nanchang, China. Forests, 16(4), 644. https://doi.org/10.3390/f16040644