Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = stereo satellite imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 274
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 327
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 7524 KiB  
Article
Surface Reconstruction Planning with High-Quality Satellite Stereo Pairs Searching
by Jinwen Li, Guangli Ren, Youmei Pan, Jing Sun, Peng Wang, Fanjiang Xu and Zhaohui Liu
Remote Sens. 2025, 17(14), 2390; https://doi.org/10.3390/rs17142390 - 11 Jul 2025
Viewed by 336
Abstract
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality [...] Read more.
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality of the resulted digital surface model (DSM) heavily relies on the choice of stereo image pairs. However, current approaches of stereo Earth observation still employ a post-acquisition manner without sophisticated planning in advance, causing inefficiencies and low reconstruction quality. This paper introduces a novel quality-driven planning method for satellite stereo imaging, aiming at optimizing the search of stereo pairs to achieve high-quality 3D reconstruction. Moreover, a regression model is customized and incorporated to estimate the reconstructed point cloud geopositioning quality, based on the enhanced features of possible Earth-imaging opportunities. Experiments conducted on both real satellite images and simulated constellation data demonstrate the efficacy of the proposed method in estimating reconstruction quality beforehand and searching for optimal stereo pair combinations as the final satellite imaging schedule, which can improve the stereo quality significantly. Full article
Show Figures

Figure 1

19 pages, 41225 KiB  
Article
High-Precision Reconstruction of Water Areas Based on High-Resolution Stereo Pairs of Satellite Images
by Junyan Ye, Ruiqiu Xu, Yixiao Wang and Xu Huang
Remote Sens. 2025, 17(13), 2139; https://doi.org/10.3390/rs17132139 - 22 Jun 2025
Viewed by 372
Abstract
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing [...] Read more.
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing water surface DSMs with traditional dense matching methods, such as significant holes and abnormal undulations. These problems significantly impact the intelligent application of satellite DSM products. To address these issues, this study innovatively proposes a water region DSM reconstruction method, boundary plane-constrained surface water stereo reconstruction (BPC-SWSR). The algorithm constructs a water surface reconstruction model with constraints on the plane’s tilt angle and boundary, combining effective ground matching data from the shoreline and the plane constraints of the water surface. This method achieves the seamless planar reconstruction of the water region, effectively solving the technical challenges of low geometric accuracy in water surface DSMs. This article conducts experiments on 10 high-resolution satellite stereo image pairs, covering three types of water bodies: river, lake, and sea. Ground truth water surface elevations were obtained through a manual tie point selection followed by forward intersection and planar fitting in water surface areas, establishing a rigorous validation framework. The DSMs generated by the proposed algorithm were compared with those generated by state-of-the-art dense matching algorithms and the industry-leading software Reconstruction Master version 6.0. The proposed algorithm achieves a mean RMSE of 2.279 m and a variance of 0.6613 m2 in water surface elevation estimation, significantly outperforming existing methods with average RMSE and a variance of 229.2 m and 522.5 m2, respectively. This demonstrates the algorithm’s ability to generate more accurate and smoother water surface models. Furthermore, the algorithm still achieves excellent reconstruction results when processing different types of water areas, confirming its wide applicability in real-world scenarios. Full article
Show Figures

Figure 1

20 pages, 4530 KiB  
Article
Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm
by Dejun Wang, Yanqiu Xing, Anmin Fu, Jie Tang, Xiaoqing Chang, Hong Yang, Shuhang Yang and Yuanxin Li
Forests 2025, 16(2), 347; https://doi.org/10.3390/f16020347 - 15 Feb 2025
Viewed by 1048
Abstract
Aboveground biomass (AGB) serves as an important indicator for assessing the productivity of forest ecosystems and exploring the global carbon cycle. However, accurate estimation of forest AGB remains a significant challenge, especially when integrating multi-source remote sensing data, and the effects of different [...] Read more.
Aboveground biomass (AGB) serves as an important indicator for assessing the productivity of forest ecosystems and exploring the global carbon cycle. However, accurate estimation of forest AGB remains a significant challenge, especially when integrating multi-source remote sensing data, and the effects of different feature combinations for AGB estimation results are unclear. In this study, we proposed a method for estimating forest AGB by combining Gao Fen 7 (GF-7) stereo imagery with data from Sentinel-1 (S1), Sentinel-2 (S2), and the Advanced Land Observing Satellite digital elevation model (ALOS DEM), and field survey data. The continuous tree height (TH) feature was derived using GF-7 stereo imagery and the ALOS DEM. Spectral features were extracted from S1 and S2, and topographic features were extracted from the ALOS DEM. Using these features, 15 feature combinations were constructed. The recursive feature elimination (RFE) method was used to optimize each feature combination, which was then input into the extreme gradient boosting (XGBoost) model for AGB estimation. Different combinations of features used to estimate forest AGB were compared. The best model was selected for mapping AGB distribution at 30 m resolution. The outcomes showed that the forest AGB model was composed of 13 features, including TH, topographic, and spectral features extracted from S1 and S2 data. This model achieved the best prediction performance, with a determination coefficient (R2) of 0.71 and a root mean square error (RMSE) of 18.11 Mg/ha. TH was found to be the most important predictive feature, followed by S2 optical features, topographic features, and S1 radar features. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 4483 KiB  
Article
DEM Generation Incorporating River Channels in Data-Scarce Contexts: The “Fluvial Domain Method”
by Jairo R. Escobar Villanueva, Jhonny I. Pérez-Montiel and Andrea Gianni Cristoforo Nardini
Hydrology 2025, 12(2), 33; https://doi.org/10.3390/hydrology12020033 - 14 Feb 2025
Cited by 1 | Viewed by 1673
Abstract
This paper presents a novel methodology to generate Digital Elevation Models (DEMs) in flat areas, incorporating river channels from relatively coarse initial data. The technique primarily utilizes filtered dense point clouds derived from SfM-MVS (Structure from Motion-Multi-View Stereo) photogrammetry of available crewed aerial [...] Read more.
This paper presents a novel methodology to generate Digital Elevation Models (DEMs) in flat areas, incorporating river channels from relatively coarse initial data. The technique primarily utilizes filtered dense point clouds derived from SfM-MVS (Structure from Motion-Multi-View Stereo) photogrammetry of available crewed aerial imagery datasets. The methodology operates under the assumption that the aerial survey was carried out during low-flow or drought conditions so that the dry (or almost dry) riverbed is detected, although in an imprecise way. Direct interpolation of the detected elevation points yields unacceptable river channel bottom profiles (often exhibiting unrealistic artifacts) and even distorts the floodplain. In our Fluvial Domain Method, channel bottoms are represented like “highways”, perhaps overlooking their (unknown) detailed morphology but gaining in general topographic consistency. For instance, we observed an 11.7% discrepancy in the river channel long profile (with respect to the measured cross-sections) and a 0.38 m RMSE in the floodplain (with respect to the GNSS-RTK measurements). Unlike conventional methods that utilize active sensors (satellite and airborne LiDAR) or classic topographic surveys—each with precision, cost, or labor limitations—the proposed approach offers a more accessible, cost-effective, and flexible solution that is particularly well suited to cases with scarce base information and financial resources. However, the method’s performance is inherently limited by the quality of input data and the simplification of complex channel morphologies; it is most suitable for cases where high-resolution geomorphological detail is not critical or where direct data acquisition is not feasible. The resulting DEM, incorporating a generalized channel representation, is well suited for flood hazard modeling. A case study of the Ranchería river delta in the Northern Colombian Caribbean demonstrates the methodology. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

27 pages, 4799 KiB  
Article
Deep Learning-Based Land Cover Extraction from Very-High-Resolution Satellite Imagery for Assisting Large-Scale Topographic Map Production
by Yofri Furqani Hakim and Fuan Tsai
Remote Sens. 2025, 17(3), 473; https://doi.org/10.3390/rs17030473 - 30 Jan 2025
Viewed by 1001
Abstract
The demand for large-scale topographic maps in Indonesia has significantly increased due to the implementation of several government initiatives that necessitate the utilization of spatial data in development planning. Currently, the national production capacity for large-scale topographic maps in Indonesia is 13,000 km [...] Read more.
The demand for large-scale topographic maps in Indonesia has significantly increased due to the implementation of several government initiatives that necessitate the utilization of spatial data in development planning. Currently, the national production capacity for large-scale topographic maps in Indonesia is 13,000 km2/year using stereo-plotting/mono-plotting methods from photogrammetric data, Lidar, high-resolution satellite imagery, or a combination of the three. In order to provide the necessary data to the respective applications in a timely manner, one strategy is to only generate critical layers of the maps. One of the topographic map layers that is often needed is land cover. This research focuses on providing land cover to support the accelerated provision of topographic maps. The data used are very-high-resolution satellite images. The method used is a deep learning approach to classify very-high-resolution satellite images into land cover data. The implementation of the deep learning approach can advance the production of topographic maps, particularly in the provision of land cover data. This significantly enhances the efficiency and effectiveness of producing large-scale topographic maps, hence increasing productivity. The quality assessment of this study demonstrates that the AI-assisted method is capable of accurately classifying land cover data from very-high-resolution images, as indicated by the Kappa values of 0.81 and overall accuracy of 86%, respectively. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches in Remote Sensing)
Show Figures

Figure 1

49 pages, 68388 KiB  
Article
Improved Stereophotogrammetric and Multi-View Shape-from-Shading DTMs of Occator Crater and Its Interior Cryovolcanism-Related Bright Spots
by Alicia Neesemann, Stephan van Gasselt, Ralf Jaumann, Julie C. Castillo-Rogez, Carol A. Raymond, Sebastian H. G. Walter and Frank Postberg
Remote Sens. 2025, 17(3), 437; https://doi.org/10.3390/rs17030437 - 27 Jan 2025
Viewed by 1382
Abstract
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central [...] Read more.
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central cryovolcanic dome, Cerealia Tholus, and especially the associated bright carbonate and ammonium chloride deposits—named Cerealia Facula and the thinner, more dispersed Vinalia Faculae—are the surface expressions of a deep brine reservoir beneath Occator. Understandably, this made this crater the target for future sample return mission studies. The planning and preparation for this kind of mission require the characterization of potential landing sites based on the most accurate topography and orthorectified image data. In this work, we demonstrate the capabilities of the freely available and open-source USGS Integrated Software for Imagers and Spectrometers (ISIS 3) and Ames Stereo Pipeline (ASP 2.7) in creating high-quality image data products as well as stereophotogrammetric (SPG) and multi-view shape-from-shading (SfS) digital terrain models (DTMs) of the aforementioned spectroscopically challenging features. The main data products of our work are four new DTMs, including one SPG and one SfS DTM based on High-Altitude Mapping Orbit (HAMO) (CSH/CXJ) and one SPG and one SfS DTM based on Low-Altitude Mapping Orbit (LAMO) (CSL/CXL), along with selected Extended Mission Orbit 7 (XMO7) framing camera (FC) data. The SPG and SfS DTMs were calculated to a GSD of 1 and 0.5 px, corresponding to 136 m (HAMO SPG), 68 m (HAMO SfS), 34 m (LAMO SPG), and 17 m (LAMO SfS). Finally, we show that the SPG and SfS approaches we used yield consistent results even in the presence of high albedo differences and highlight how our new DTMs differ from those previously created and published by the German Aerospace Center (DLR) and the Jet Propulsion Laboratory (JPL). Full article
Show Figures

Figure 1

23 pages, 31563 KiB  
Article
Comparative Analysis of Deep Learning-Based Stereo Matching and Multi-View Stereo for Urban DSM Generation
by Mario Fuentes Reyes, Pablo d’Angelo and Friedrich Fraundorfer
Remote Sens. 2025, 17(1), 1; https://doi.org/10.3390/rs17010001 - 24 Dec 2024
Cited by 3 | Viewed by 1697
Abstract
The creation of digital surface models (DSMs) from aerial and satellite imagery is often the starting point for different remote sensing applications. For this task, the two main used approaches are stereo matching and multi-view stereo (MVS). The former needs stereo-rectified pairs as [...] Read more.
The creation of digital surface models (DSMs) from aerial and satellite imagery is often the starting point for different remote sensing applications. For this task, the two main used approaches are stereo matching and multi-view stereo (MVS). The former needs stereo-rectified pairs as inputs and the results are in the disparity domain. The latter works with images from various perspectives and produces a result in the depth domain. So far, both approaches have proven to be successful in producing accurate DSMs, especially in the deep learning area. Nonetheless, an assessment between the two is difficult due to the differences in the input data, the domain where the directly generated results are provided and the evaluation metrics. In this manuscript, we processed synthetic and real optical data to be compatible with the stereo and MVS algorithms. Such data is then applied to learning-based algorithms in both analyzed solutions. We focus on an experimental setting trying to establish a comparison between the algorithms as fair as possible. In particular, we looked at urban areas with high object densities and sharp boundaries, which pose challenges such as occlusions and depth discontinuities. Results show in general a good performance for all experiments, with specific differences in the reconstructed objects. We describe qualitatively and quantitatively the performance of the compared cases. Moreover, we consider an additional case to fuse the results into a DSM utilizing confidence estimation, showing a further improvement and opening up a possibility for further research. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

29 pages, 30892 KiB  
Article
A Generalized Voronoi Diagram-Based Segment-Point Cyclic Line Segment Matching Method for Stereo Satellite Images
by Li Zhao, Fengcheng Guo, Yi Zhu, Haiyan Wang and Bingqian Zhou
Remote Sens. 2024, 16(23), 4395; https://doi.org/10.3390/rs16234395 - 24 Nov 2024
Viewed by 887
Abstract
Matched line segments are crucial geometric elements for reconstructing the desired 3D structure in stereo satellite imagery, owing to their advantages in spatial representation, complex shape description, and geometric computation. However, existing line segment matching (LSM) methods face significant challenges in effectively addressing [...] Read more.
Matched line segments are crucial geometric elements for reconstructing the desired 3D structure in stereo satellite imagery, owing to their advantages in spatial representation, complex shape description, and geometric computation. However, existing line segment matching (LSM) methods face significant challenges in effectively addressing co-linear interference and the misdirection of parallel line segments. To address these issues, this study proposes a “continuous–discrete–continuous” cyclic LSM method, based on the Voronoi diagram, for stereo satellite images. Initially, to compute the discrete line-point matching rate, line segments are discretized using the Bresenham algorithm, and the pyramid histogram of visual words (PHOW) feature is assigned to the line segment points which are detected using the line segment detector (LSD). Next, to obtain continuous matched line segments, the method combines the line segment crossing angle rate with the line-point matching rate, utilizing a soft voting classifier. Finally, local point-line homography models are constructed based on the Voronoi diagram, filtering out misdirected parallel line segments and yielding the final matched line segments. Extensive experiments on the challenging benchmark, WorldView-2 and WorldView-3 satellite image datasets, demonstrate that the proposed method outperforms several state-of-the-art LSM methods. Specifically, the proposed method achieves F1-scores that are 6.22%, 12.60%, and 18.35% higher than those of the best-performing existing LSM method on the three datasets, respectively. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

26 pages, 11943 KiB  
Article
3D Point Cloud Fusion Method Based on EMD Auto-Evolution and Local Parametric Network
by Wen Chen, Hao Chen and Shuting Yang
Remote Sens. 2024, 16(22), 4219; https://doi.org/10.3390/rs16224219 - 12 Nov 2024
Cited by 4 | Viewed by 1472
Abstract
Although the development of high-resolution remote sensing satellite technology has made it possible to reconstruct the 3D structure of object-level features using satellite imagery, the results from a single reconstruction are often insufficient to comprehensively describe the 3D structure of the target. Therefore, [...] Read more.
Although the development of high-resolution remote sensing satellite technology has made it possible to reconstruct the 3D structure of object-level features using satellite imagery, the results from a single reconstruction are often insufficient to comprehensively describe the 3D structure of the target. Therefore, developing an effective 3D point cloud fusion method can fully utilize information from multiple observations to improve the accuracy of 3D reconstruction. To this end, this paper addresses the problems of shape distortion and sparse point cloud density in existing 3D point cloud fusion methods by proposing a 3D point cloud fusion method based on Earth mover’s distance (EMD) auto-evolution and local parameterization network. Our method is divided into two stages. In the first stage, EMD is introduced as a key metric for evaluating the fusion results, and a point cloud fusion method based on EMD auto-evolution is constructed. The method uses an alternating iterative technique to sequentially update the variables and produce an initial fusion result. The second stage focuses on point cloud optimization by constructing a local parameterization network for the point cloud, mapping the upsampled point cloud in the 2D parameter domain back to the 3D space to complete the optimization. Through these two steps, the method achieves the fusion of two sets of non-uniform point cloud data obtained from satellite stereo images into a single, denser 3D point cloud that more closely resembles the true target shape. Experimental results demonstrate that our fusion method outperforms other classical comparison algorithms for targets such as buildings, planes, and ships, and achieves a fused RMSE of approximately 2 m and an EMD accuracy better than 0.5. Full article
Show Figures

Figure 1

16 pages, 9232 KiB  
Article
DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration
by Dong-Uk Seo and Soon-Yong Park
Remote Sens. 2024, 16(20), 3863; https://doi.org/10.3390/rs16203863 - 17 Oct 2024
Viewed by 1466
Abstract
In this paper, we propose a 3D Digital Surface Model (DSM) reconstruction method from uncalibrated Multi-view Satellite Stereo (MVSS) images, where Rational Polynomial Coefficient (RPC) sensor parameters are not available. While recent investigations have introduced several techniques to reconstruct high-precision and high-density DSMs [...] Read more.
In this paper, we propose a 3D Digital Surface Model (DSM) reconstruction method from uncalibrated Multi-view Satellite Stereo (MVSS) images, where Rational Polynomial Coefficient (RPC) sensor parameters are not available. While recent investigations have introduced several techniques to reconstruct high-precision and high-density DSMs from MVSS images, they inherently depend on the use of geo-corrected RPC sensor parameters. However, RPC parameters from satellite sensors are subject to being erroneous due to inaccurate sensor data. In addition, due to the increasing data availability from the internet, uncalibrated satellite images can be easily obtained without RPC parameters. This study proposes a novel method to reconstruct a 3D DSM from uncalibrated MVSS images by estimating and integrating RPC parameters. To do this, we first employ a structure from motion (SfM) and 3D homography-based geo-referencing method to reconstruct an initial DSM. Second, we sample 3D points from the initial DSM as references and reproject them to the 2D image space to determine 3D–2D correspondences. Using the correspondences, we directly calculate all RPC parameters. To overcome the memory shortage problem while running the large size of satellite images, we also propose an RPC integration method. Image space is partitioned to multiple tiles, and RPC estimation is performed independently in each tile. Then, all tiles’ RPCs are integrated into the final RPC to represent the geometry of the whole image space. Finally, the integrated RPC is used to run a true MVSS pipeline to obtain the 3D DSM. The experimental results show that the proposed method can achieve 1.455 m Mean Absolute Error (MAE) in the height map reconstruction from multi-view satellite benchmark datasets. We also show that the proposed method can be used to reconstruct a geo-referenced 3D DSM from uncalibrated and freely available Google Earth imagery. Full article
Show Figures

Figure 1

22 pages, 45055 KiB  
Article
SA-SatMVS: Slope Feature-Aware and Across-Scale Information Integration for Large-Scale Earth Terrain Multi-View Stereo
by Xiangli Chen, Wenhui Diao, Song Zhang, Zhiwei Wei and Chunbo Liu
Remote Sens. 2024, 16(18), 3474; https://doi.org/10.3390/rs16183474 - 19 Sep 2024
Viewed by 1560
Abstract
Satellite multi-view stereo (MVS) is a fundamental task in large-scale Earth surface reconstruction. Recently, learning-based multi-view stereo methods have shown promising results in this field. However, these methods are mainly developed by transferring the general learning-based MVS framework to satellite imagery, which lacks [...] Read more.
Satellite multi-view stereo (MVS) is a fundamental task in large-scale Earth surface reconstruction. Recently, learning-based multi-view stereo methods have shown promising results in this field. However, these methods are mainly developed by transferring the general learning-based MVS framework to satellite imagery, which lacks consideration of the specific terrain features of the Earth’s surface and results in inadequate accuracy. In addition, mainstream learning-based methods mainly use equal height interval partition, which insufficiently utilizes the height hypothesis surface, resulting in inaccurate height estimation. To address these challenges, we propose an end-to-end terrain feature-aware height estimation network named SA-SatMVS for large-scale Earth surface multi-view stereo, which integrates information across different scales. Firstly, we transform the Sobel operator into slope feature-aware kernels to extract terrain features, and a dual encoder–decoder architecture with residual blocks is applied to incorporate slope information and geometric structural characteristics to guide the reconstruction process. Secondly, we introduce a pixel-wise unequal interval partition method using a Laplacian distribution based on the probability volume obtained from other scales, resulting in more accurate height hypotheses for height estimation. Thirdly, we apply an adaptive spatial feature extraction network to search for the optimal fusion method for feature maps at different scales. Extensive experiments on the WHU-TLC dataset also demonstrate that our proposed model achieves the best MAE metric of 1.875 and an RMSE metric of 3.785, which constitutes a state-of-the-art performance. Full article
Show Figures

Figure 1

15 pages, 5689 KiB  
Article
Modelling Water Availability in Livestock Ponds by Remote Sensing: Enhancing Management in Iberian Agrosilvopastoral Systems
by Francisco Manuel Castaño-Martín, Álvaro Gómez-Gutiérrez and Manuel Pulido-Fernández
Remote Sens. 2024, 16(17), 3257; https://doi.org/10.3390/rs16173257 - 2 Sep 2024
Viewed by 1242
Abstract
Extensive livestock farming plays a crucial role in the economy of agrosilvopastoral systems of the southwestern Iberian Peninsula (known as dehesas and montados in Spanish and Portuguese, respectively) as well as providing essential ecosystem services. The existence of livestock in these areas heavily [...] Read more.
Extensive livestock farming plays a crucial role in the economy of agrosilvopastoral systems of the southwestern Iberian Peninsula (known as dehesas and montados in Spanish and Portuguese, respectively) as well as providing essential ecosystem services. The existence of livestock in these areas heavily relies on the effective management of natural resources (annual pastures and water stored in ponds built ad hoc). The present work aims to assess the water availability in these ponds by developing equations to estimate the water volume based on the surface area, which can be quantified by means of remote sensing techniques. For this purpose, field surveys were carried out in September 2021, 2022 and 2023 at ponds located in representative farms, using unmanned aerial vehicles (UAVs) equipped with RGB sensors and survey-grade global navigation satellite systems and inertial measurement units (GNSS-IMU). These datasets were used to produce high-resolution 3D models by means of Structure-from-Motion and Multi-View Stereo photogrammetry, facilitating the estimation of the stored water volume within a Geographic Information System (GIS). The Volume–Area–Height relationships were calibrated to allow conversions between these parameters. Regression analyses were performed using the maximum volume and area data to derive mathematical models (power and quadratic functions) that resulted in significant statistical relationships (r2 > 0.90, p < 0.0001). The root mean square error (RMSE) varied from 1.59 to 17.06 m3 and 0.16 to 3.93 m3 for the power and quadratic function, respectively. Both obtained equations (i.e., power and quadratic general functions) were applied to the estimated water storage in similar water bodies using available aerial or satellite imagery for the period from 1984 to 2021. Full article
Show Figures

Figure 1

21 pages, 9059 KiB  
Article
EUNet: Edge-UNet for Accurate Building Extraction and Edge Emphasis in Gaofen-7 Images
by Ruijie Han, Xiangtao Fan and Jian Liu
Remote Sens. 2024, 16(13), 2397; https://doi.org/10.3390/rs16132397 - 29 Jun 2024
Cited by 2 | Viewed by 2584
Abstract
Deep learning is currently the mainstream approach for building extraction tasks in remote-sensing imagery, capable of automatically learning features of buildings in imagery and yielding satisfactory extraction results. However, due to the diverse sizes, irregular layouts, and complex spatial relationships of buildings, extracted [...] Read more.
Deep learning is currently the mainstream approach for building extraction tasks in remote-sensing imagery, capable of automatically learning features of buildings in imagery and yielding satisfactory extraction results. However, due to the diverse sizes, irregular layouts, and complex spatial relationships of buildings, extracted buildings often suffer from incompleteness and boundary issues. Gaofen-7 (GF-7), as a high-resolution stereo mapping satellite, provides well-rectified images from its rear-view imagery, which helps mitigate occlusions in highly varied terrain, thereby offering rich information for building extraction. To improve the integrity of the edges of the building extraction results, this paper proposes a dual-task network (Edge-UNet, EUnet) based on UNet, incorporating an edge extraction branch to emphasize edge information while predicting building targets. We evaluate this method using a self-made GF-7 Building Dataset, the Wuhan University (WHU) Building Dataset, and the Massachusetts Buildings Dataset. Comparative analysis with other mainstream semantic segmentation networks reveals significantly higher F1 scores for the extraction results of our method. Our method exhibits superior completeness and accuracy in building edge extraction compared to unmodified algorithms, demonstrating robust performance. Full article
Show Figures

Figure 1

Back to TopTop