DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration
Abstract
:1. Introduction
Overview of the Proposed Method
- : 3D point;
- : 2D pixel;
- : 3D sample point with index j in the RP space;
- : 2D point in the i-th satellite image;
- : 2D point in the i-th satellite image projected from ;
- : 2D point at the j-th tile in the i-th satellite image;
- : 2D sample point k in the i-th satellite image with height element;
- : Pin-hole camera parameters of the i-th satellite camera;
- : 3D homography transformation matrix to transform the initial DSM from distorted projective space to a geometric reference space (in this paper, we use the WGS84 coordinate system);
- : The forward RPC parameter and function from the geo-reference coordinate system to the i-th satellite image;
- : The inverse RPC parameter and function from the i-th satellite image to the geo-reference coordinate system;
- : The forward RPC parameter and function from the geo-reference coordinate system to the j-th tile in the i-th satellite image;
- : The inverse RPC parameter and function from the j-th tile in the i-th satellite image to the geo-reference coordinate system;
- : An RPC parameter in RPC sub-functions with index ;
- : Satellite image of the i-th camera;
- : Total number of satellite images;
- : Total number of tiles in a satellite image;
- : Total number of 3D sample points in the RP space or 2D samples in an image.
2. Background and Related Work
2.1. Pin-Hole and Pushbroom Camera Models
2.2. DSM Reconstruction Using the Pin-Hole Model
2.3. DSM Reconstruction Using the Pushbroom Model
3. Proposed Method
3.1. Initial DSM Reconstruction
- : Estimated pin-hole camera parameters of the multi-view satellite images;
- : 3D homography matrix transforming an initial DSM from distorted SfM space to a geometric reference space (in this paper, we use the WGS84 coordinate system);
- : Vertex coordinates of the Rectangular Parallelepiped (RP) enclosing the initial DSM.
3.2. RPC Estimation
3.3. RPC Integration
3.4. 3D DSM Reconstruction Using a True MVSS Method
4. Experiments and Error Analysis
4.1. Qualitative Analysis and Comparison with the Pin-Hole Camera Model
4.2. Quantitative Error Analysis
Discussion about the Error of the OMA_284 Tile
4.3. Error Analysis Using DFC19 Multi-View Images
5. Conclusions
Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Franchis, C.; Meinhardt-Llopis, E.; Michel, J.; Morel, J.-M.; Facciolo, G. On Stereo-Rectification of Pushbroom Images. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5447–5451. [Google Scholar]
- He, S.; Li, S.; Jiang, S.; Jiang, W. HMSM-Net: Hierarchical Multi-Scale Matching Network for Disparity Estimation of High-Resolution Satellite Stereo Images. ISPRS J. Photogramm. Remote Sens. 2022, 188, 314–330. [Google Scholar] [CrossRef]
- Liu, J.; Ji, S. A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-View Stereo Reconstruction from an Open Aerial Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6050–6059. [Google Scholar]
- Zhou, X.; Wang, Y.; Lin, D.; Cao, Z.; Li, B.; Liu, J. SatelliteRF: Accelerating 3D Reconstruction in Multi-View Satellite Images with Efficient Neural Radiance Fields. Appl. Sci. 2024, 14, 2729. [Google Scholar] [CrossRef]
- Gómez, A.; Randall, G.; Facciolo, G.; von Gioi, R.G. An Experimental Comparison of Multi-View Stereo Approaches on Satellite Images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 844–853. [Google Scholar]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef]
- Facciolo, G.; De Franchis, C.; Meinhardt, E. MGM: A Significantly More Global Matching for Stereovision. In Proceedings of the BMVC 2015, Swansea, UK, 7–10 September 2015. [Google Scholar]
- Collins, R.T. A Space-Sweep Approach to True Multi-Image Matching. In Proceedings of the CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 358–363. [Google Scholar]
- Bleyer, M.; Rhemann, C.; Rother, C. Patchmatch Stereo-Stereo Matching with Slanted Support Windows. In Proceedings of the BMVC, Dundee, UK, 29 August–2 September 2011; Volume 11, pp. 1–11. [Google Scholar]
- Zhang, F.; Prisacariu, V.; Yang, R.; Torr, P.H.S. Ga-Net: Guided Aggregation Net for End-to-End Stereo Matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 185–194. [Google Scholar]
- Li, Z.; Haiyan, W.Y.Z.; Song, M. A Review of 3D Reconstruction from High-Resolution Urban Satellite Images. Int. J. Remote Sens. 2023, 44, 713–748. [Google Scholar] [CrossRef]
- Tao, C.V. 3D Reconstruction Methods Based on the Rational Function Model. PERS 2002, 68, 705–714. [Google Scholar]
- Franchis, C.; Meinhardt-Llopis, E.; Michel, J.; Morel, J.-M.; Facciolo, G. An automatic and modular stereo pipeline for pushbroom images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-3, 49–56. [Google Scholar] [CrossRef]
- Facciolo, G.; De Franchis, C.; Meinhardt-Llopis, E. Automatic 3D Reconstruction from Multi-Date Satellite Images. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 57–66. [Google Scholar]
- Gao, J.; Liu, J.; Ji, S. Rational Polynomial Camera Model Warping for Deep Learning Based Satellite Multi-View Stereo Matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6148–6157. [Google Scholar]
- Zhang, K.; Snavely, N.; Sun, J. Leveraging Vision Reconstruction Pipelines for Satellite Imagery. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 2139–2148. [Google Scholar]
- Park, S.-Y.; Seo, D.; Lee, M.-J. GEMVS: A Novel Approach for Automatic 3D Reconstruction from Uncalibrated Multi-View Google Earth Images Using Multi-View Stereo and Projective to Metric 3D Homography Transformation. Int. J. Remote Sens. 2023, 44, 3005–3030. [Google Scholar] [CrossRef]
- Bullinger, S.; Bodensteiner, C.; Arens, M. 3D Surface Reconstruction From Multi-Date Satellite Images. arXiv 2021, arXiv:2102.02502. [Google Scholar] [CrossRef]
- Marí, R.; Facciolo, G.; Ehret, T. Sat-Nerf: Learning Multi-View Satellite Photogrammetry with Transient Objects and Shadow Modeling Using RPC Cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1311–1321. [Google Scholar]
- Long, T.; Jiao, W.; He, G. RPC Estimation via ℓ1-Norm-Regularized Least Squares (L1ls). IEEE Trans. Geosci. Remote Sens. 2015, 53, 4554–4567. [Google Scholar] [CrossRef]
- Seo, D.U.; Park, S.Y. 3D Reconstruction from Multi-View Google Earth Satellite Stereo Images by Generating Virtual RPC Based on 3D Homography-Based Georeferencing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1075–1080. [Google Scholar] [CrossRef]
- Google Inc Google Earth Pro. Available online: https://www.google.com/earth/about/versions/#download-pro (accessed on 21 February 2024).
- Schonberger, J.L.; Frahm, J.-M. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Schönberger, J.L.; Zheng, E.; Frahm, J.-M.; Pollefeys, M. Pixelwise View Selection for Unstructured Multi-View Stereo. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part III 14. pp. 501–518. [Google Scholar]
- Seo, D.; Lee, H.S.; Park, S.-Y. MS2P: A True Multi-View Satellite Stereo Pipeline without Rectification of Push Broom Images. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5603–5606. [Google Scholar]
- Sturm, P. Pinhole Camera Model. In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2021; pp. 983–986. [Google Scholar]
- Feng, S.; Zuo, C.; Zhang, L.; Tao, T.; Hu, Y.; Yin, W.; Qian, J.; Chen, Q. Calibration of Fringe Projection Profilometry: A Comparative Review. Opt. Lasers Eng. 2021, 143, 106622. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge Books Online; Cambridge University Press: Cambridge, UK, 2003; ISBN 9780521540513. [Google Scholar]
- Lee, M.-J.; Um, G.-M.; Yun, J.; Cheong, W.-S.; Park, S.-Y. Enhanced Soft 3D Reconstruction Method with an Iterative Matching Cost Update Using Object Surface Consensus. Sensors 2021, 21, 6680. [Google Scholar] [CrossRef]
- Marí, R.; de Franchis, C.; Meinhardt-Llopis, E.; Anger, J.; Facciolo, G. A Generic Bundle Adjustment Methodology for Indirect RPC Model Refinement of Satellite Imagery. Image Process. Line 2021, 11, 344–373. [Google Scholar] [CrossRef]
- Golub, G.H.; Reinsch, C. Singular Value Decomposition and Least Squares Solutions. In Handbook for Automatic Computation: Volume II: Linear Algebra; Springer: Berlin/Heidelberg, Germany, 1971; pp. 134–151. [Google Scholar]
- Le Saux, B.; Yokoya, N.; Hänsch, R.; Brown, M. 2019 Ieee Grss Data Fusion Contest: Large-Scale Semantic 3d Reconstruction. IEEE Geosci. Remote Sens. Mag. (GRSM) 2019, 7, 33–36. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Y.; Jiang, W.; Li, Q. Efficient Structure from Motion for UAV Images via Anchor-Free Parallel Merging. ISPRS J. Photogramm. Remote Sens. 2024, 211, 156–170. [Google Scholar] [CrossRef]
- Hermann, M.; Weinmann, M.; Nex, F.; Stathopoulou, E.K.; Remondino, F.; Jutzi, B.; Ruf, B. Depth Estimation and 3D Reconstruction from UAV-Borne Imagery: Evaluation on the UseGeo Dataset. ISPRS Open J. Photogramm. Remote Sens. 2024, 13, 100065. [Google Scholar] [CrossRef]
Camera Model | Method | MAE | RMSE | ||||
---|---|---|---|---|---|---|---|
JAX068 | JAX165 | OMA284 | JAX068 | JAX165 | OMA284 | ||
True RPC (DFC19) | S2P [13,14] | 0.531 | 0.579 | 0.322 | 1.994 | 2.313 | 1.864 |
MS2P [25] | 0.478 | 0.530 | 0.391 | 1.887 | 2.006 | 1.713 | |
Pin-hole | GEMVS [17] | 1.922 | 1.779 | 1.857 | 2.552 | 2.375 | 2.198 |
Estimated RPC (w/o integration) | MS2P | 1.619 | 1.170 | 1.987 | 2.826 | 2.708 | 4.450 |
Estimated RPC (w/integration) | MS2P | 1.535 | 1.145 | 1.684 | 2.572 | 2.663 | 3.331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D.-U.; Park, S.-Y. DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration. Remote Sens. 2024, 16, 3863. https://doi.org/10.3390/rs16203863
Seo D-U, Park S-Y. DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration. Remote Sensing. 2024; 16(20):3863. https://doi.org/10.3390/rs16203863
Chicago/Turabian StyleSeo, Dong-Uk, and Soon-Yong Park. 2024. "DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration" Remote Sensing 16, no. 20: 3863. https://doi.org/10.3390/rs16203863
APA StyleSeo, D. -U., & Park, S. -Y. (2024). DSM Reconstruction from Uncalibrated Multi-View Satellite Stereo Images by RPC Estimation and Integration. Remote Sensing, 16(20), 3863. https://doi.org/10.3390/rs16203863