Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Sampling Data
2.2.2. GF-7 Stereo Imagery Data
2.2.3. Sentinel-2 Data
2.2.4. Sentinel-1 Data
2.2.5. Topographic Data
2.3. Methods
2.3.1. Features Construction and Selection with RFE
2.3.2. Forest AGB Model with XGBoost
2.3.3. Accuracy Evaluation of Model
3. Results
3.1. Feature Combination Comparison and Selection
3.2. AGB Model Validation and Feature Contribution Evaluation
3.3. Forest AGB Mapping
4. Discussion
4.1. Analysis of Feature Combinations of Multi-Source Data in Forest AGB Estimation
4.2. Analysis of AGB Estimates for Different Forest Types
4.3. Comparative Analysis of AGB Estimation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical Forests Are a Net Carbon Source Based on Aboveground Measurements of Gain and Loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Li, S.; Pang, Y.; Zheng, G.; Kong, D.; Li, Z. Assessing Spatiotemporal Variations of Forest Carbon Density Using Bi-Temporal Discrete Aerial Laser Scanning Data in Chinese Boreal Forests. For. Ecosyst. 2023, 10, 100135. [Google Scholar] [CrossRef]
- Chave, J. Ground Data Are Essential for Biomass Remote Sensing Missions. Surv. Geophys. 2019, 40, 863–880. [Google Scholar] [CrossRef]
- Guo, R.; Gao, J.; Fu, S.; Xiu, Y.; Zhang, S.; Huang, X.; Feng, Q.; Liang, T. Estimating Aboveground Biomass of Alpine Grassland During the Wilting Period Using In Situ Hyperspectral, Sentinel-2, and Sentinel-1 Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Huang, R.; Yao, W.; Xu, Z.; Cao, L.; Shen, X. Information Fusion Approach for Biomass Estimation in a Plateau Mountainous Forest Using a Synergistic System Comprising UAS-Based Digital Camera and LiDAR. Comput. Electron. Agric. 2022, 202, 107420. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Liu, M.; Cao, C.; Dang, Y.; Ni, X. Mapping Forest Canopy Height in Mountainous Areas Using ZiYuan-3 Stereo Images and Landsat Data. Forests 2019, 10, 105. [Google Scholar] [CrossRef]
- Ni, W.; Yu, T.; Pang, Y.; Zhang, Z.; He, Y.; Li, Z.; Sun, G. Seasonal Effects on Aboveground Biomass Estimation in Mountainous Deciduous Forests Using ZY-3 Stereoscopic Imagery. Remote Sens. Environ. 2023, 289, 113520. [Google Scholar] [CrossRef]
- Persson, H.J.; Perko, R. Assessment of Boreal Forest Height from WorldView-2 Satellite Stereo Images. Remote Sens. Lett. 2016, 7, 1150–1159. [Google Scholar] [CrossRef]
- Puliti, S.; Hauglin, M.; Breidenbach, J.; Montesano, P.; Neigh, C.S.R.; Rahlf, J.; Solberg, S.; Klingenberg, T.F.; Astrup, R. Modelling Above-Ground Biomass Stock over Norway Using National Forest Inventory Data with ArcticDEM and Sentinel-2 Data. Remote Sens. Environ. 2020, 236, 111501. [Google Scholar] [CrossRef]
- Du, L.; Pang, Y.; Ni, W.; Liang, X.; Li, Z.; Suarez, J.; Wei, W. Forest Terrain and Canopy Height Estimation Using Stereo Images and Spaceborne LiDAR Data from GF-7 Satellite. Geo-Spat. Inf. Sci. 2023, 27, 811–821. [Google Scholar] [CrossRef]
- Li, G.; Gao, X.; Hu, F.; Guo, A.; Liu, Z.; Chen, J.; Liu, C.; Nie, S.; Fu, A. OVERVIEW OF THE TERRESTRIAL ECOSYSTEM CARBON MONITORING SATELLITE LASER ALTIMETER. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B1-2022, 53–58. [Google Scholar] [CrossRef]
- Sun, Z.; Li, P.; Wang, D.; Meng, Q.; Sun, Y.; Zhai, W. Recognizing Urban Functional Zones by GF-7 Satellite Stereo Imagery and POI Data. Appl. Sci. 2023, 13, 6300. [Google Scholar] [CrossRef]
- Li, H.; Hiroshima, T.; Li, X.; Hayashi, M.; Kato, T. High-Resolution Mapping of Forest Structure and Carbon Stock Using Multi-Source Remote Sensing Data in Japan. Remote Sens. Environ. 2024, 312, 114322. [Google Scholar] [CrossRef]
- Varvia, P.; Saarela, S.; Maltamo, M.; Packalen, P.; Gobakken, T.; Næsset, E.; Ståhl, G.; Korhonen, L. Estimation of Boreal Forest Biomass from ICESat-2 Data Using Hierarchical Hybrid Inference. Remote Sens. Environ. 2024, 311, 114249. [Google Scholar] [CrossRef]
- Liang Mengyu, M.; Duncanson, L.; Silva, J.A.; Sedano, F. Quantifying Aboveground Biomass Dynamics from Charcoal Degradation in Mozambique Using GEDI Lidar and Landsat. Remote Sens. Environ. 2023, 284, 113367. [Google Scholar] [CrossRef]
- Shendryk, Y. Fusing GEDI with Earth Observation Data for Large Area Aboveground Biomass Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103108. [Google Scholar] [CrossRef]
- Li, G.; Xie, Z.; Jiang, X.; Lu, D.; Chen, E. Integration of ZiYuan-3 Multispectral and Stereo Data for Modeling Aboveground Biomass of Larch Plantations in North China. Remote Sens. 2019, 11, 2328. [Google Scholar] [CrossRef]
- Lucas, R.M.; Mitchell, A.L.; Armston, J. Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large (Subnational to Global) Scales. Curr. For. Rep. 2015, 1, 162–177. [Google Scholar] [CrossRef]
- Li, J.; Bao, W.; Wang, X.; Song, Y.; Liao, T.; Xu, X.; Guo, M. Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Datasets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–10. [Google Scholar] [CrossRef]
- Forkuor, G. Above-Ground Biomass Mapping in West African Dryland Forest Using Sentinel-1 and 2 Datasets—A Case Study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N.M. Improving above Ground Biomass Estimates of Southern Africa Dryland Forests by Combining Sentinel-1 SAR and Sentinel-2 Multispectral Imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the Forest Stand Mean Height and Aboveground Biomass in Northeast China Using SAR Sentinel-1B, Multispectral Sentinel-2A, and DEM Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289. [Google Scholar] [CrossRef]
- Xu, Y. Topographic and Biotic Factors Determine Forest Biomass Spatial Distribution in a Subtropical Mountain Moist Forest. For. Ecol. Manag. 2015, 357, 95–103. [Google Scholar] [CrossRef]
- Huang, W.; Li, W.; Xu, J.; Ma, X.; Li, C.; Liu, C. Hyperspectral Monitoring Driven by Machine Learning Methods for Grassland Above-Ground Biomass. Remote Sens. 2022, 14, 2086. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, G.; Xu, H. Group Feature Screening Based on Gini Impurity for Ultrahigh-Dimensional Multi-Classification. AIMS Math. 2023, 8, 4342–4362. [Google Scholar] [CrossRef]
- Guo, Q.; Du, S.; Jiang, J.; Guo, W.; Zhao, H.; Yan, X.; Zhao, Y.; Xiao, W. Combining GEDI and Sentinel Data to Estimate Forest Canopy Mean Height and Aboveground Biomass. Ecol. Inform. 2023, 78, 102348. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of Machine Learning Methods and Multi-Source Remote Sensing Data Combinations to Construct Forest above-Ground Biomass Models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Gu, C.; Clevers, J.G.P.W.; Liu, X.; Tian, X.; Li, Z.; Li, Z. Predicting Forest Height Using the GOST, Landsat 7 ETM+, and Airborne LiDAR for Sloping Terrains in the Greater Khingan Mountains of China. ISPRS J. Photogramm. Remote Sens. 2018, 137, 97–111. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving Forest Aboveground Biomass Estimation Using Seasonal Landsat NDVI Time-Series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed, Native Pasture Landscape. Remote Sens. 2019, 11, 872. [Google Scholar] [CrossRef]
- Xi Zhilong, Z.; Xu, H.; Xing, Y.; Gong, W.; Chen, G.; Yang, S. Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sens. 2022, 14, 364. [Google Scholar] [CrossRef]
- Li Wang, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-Resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Tang, H.; Huang, H.; Zheng, Y.; Qin, P.; Xu, Y.; Ding, S. Improved GEDI Canopy Height Extraction Based on a Simulated Ground Echo in Topographically Undulating Areas. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, W.; Sun, G.; Chi, H.; Zhang, Z.; Guo, Z. Slope-Adaptive Waveform Metrics of Large Footprint Lidar for Estimation of Forest Aboveground Biomass. Remote Sens. Environ. 2019, 224, 386–400. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Liang, S. New Metrics and the Combinations for Estimating Forest Biomass From GLAS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7830–7839. [Google Scholar] [CrossRef]
- Xia, S.; Yang, Y. A Model-Free Feature Selection Technique of Feature Screening and Random Forest Based Recursive Feature Elimination. Int. J. Intell. Syst. 2023. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System 2016. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Zhang, X.; He, G.; Yan, S.; Long, T.; Peng, X.; Zhang, Z.; Wang, G. Forest Status Assessment in China with SDG Indicators Based on High-Resolution Satellite Data. Int. J. Digit. Earth 2023, 16, 1008–1021. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Hu, X.; Zhang, P. Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification. Forests 2023, 14, 1414. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Hu, T.; Jin, S.; Liu, X.; Niu, C.; Liu, Z.; Kelly, M.; Wei, J.; Guo, Q. Allometry-Based Estimation of Forest Aboveground Biomass Combining LiDAR Canopy Height Attributes and Optical Spectral Indexes. For. Ecosyst. 2022, 9, 100059. [Google Scholar] [CrossRef]
- Yang, Q.; Niu, C.; Liu, X.; Feng, Y.; Ma, Q.; Wang, X.; Tang, H.; Guo, Q. Mapping High-Resolution Forest Aboveground Biomass of China Using Multisource Remote Sensing Data. GIScience Remote Sens. 2023, 60, 2203303. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, L.; Zhang, W.; Marino, A.; Wang, M.; Ma, J.; Shi, J.; Jing, Q.; Zhang, F.; Zhao, H.; et al. Forest Above-Ground Biomass Estimation Using X, C, L, and P Band SAR Polarimetric Observations and Different Inversion Models. Int. J. Digit. Earth 2024, 17, 2310730. [Google Scholar] [CrossRef]
- Nie, Y.; Hu, Y.; Sa, R.; Fan, W. Inversion of Forest above Ground Biomass in Mountainous Region Based on PolSAR Data after Terrain Correction:A Case Study from Saihanba, China. Remote Sens. 2024, 16, 846. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, Spatial Distribution and Uncertainty of Forest Biomass Stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, W.; Li, Y.; Shi, J.; Wang, Z. Forest Total and Component Above-Ground Biomass (AGB) Estimation through C- and L-Band Polarimetric SAR Data. Forests 2022, 13, 442. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, W.; Sun, G.; Huang, W.; Ranson, K.J.; Cook, B.D.; Guo, Z. Biomass Retrieval from L-Band Polarimetric UAVSAR Backscatter and PRISM Stereo Imagery. Remote Sens. Environ. 2017, 194, 331–346. [Google Scholar] [CrossRef]
- Wang, M.; Sun, R.; Xiao, Z. Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland. Remote Sens. 2018, 10, 344. [Google Scholar] [CrossRef]
- Wang Yueting, Y.; Zhang, X.; Guo, Z. Estimation of Tree Height and Aboveground Biomass of Coniferous Forests in North China Using Stereo ZY-3, Multispectral Sentinel-2, and DEM Data. Ecol. Indic. 2021, 126, 107645. [Google Scholar] [CrossRef]
- Chang, Z.; Hobeichi, S.; Wang, Y.-P.; Tang, X.; Abramowitz, G.; Chen, Y.; Cao, N.; Yu, M.; Huang, H.; Zhou, G.; et al. New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets. Remote Sens. 2021, 13, 2892. [Google Scholar] [CrossRef]
Tree Species | Allometric Growth Models |
---|---|
larch | |
birch | |
poplar |
Satellite | Variables | Description | |
---|---|---|---|
GF-7 and ALOS DEM | TH | DSMGF-7–DEMALOS | |
Sentinel-2 | Multispectral bands | B2 | Blue 0.490 nm (10 m) |
B3 | Green 0.560 nm (10 m) | ||
B4 | Red 0.665 nm (10 m) | ||
B5 | Vegetation red edge 0.705 nm (20 m) | ||
B6 | Vegetation red edge 0.740 nm (20 m) | ||
B7 | Vegetation red edge 0.783 nm (20 m) | ||
B8 | NIR 0.842 nm (20 m) | ||
B8A | Narrow NIR 0.865 nm (20 m) | ||
B11 | SWIR 1.61 nm (20 m) | ||
B12 | SWIR 2.19 nm (20 m) | ||
Vegetation indices and biophysical features | RVI, WDVI, NDVI, GRVI, EVI, GNDVI NBR, NBR2, SAVI, MSAVI2, NDI45 IRECI, NDRE1, IPVI, PVI, NDVI56 NDVI57, NDVI58a, NDVI67, NDVI68a NDVI78a, IRECI, SAVI, TSAVI, LAI, CAB, FVC, FAPAR, CWC | All 29 features calculated from the multispectral bands | |
Sentinel-1 | Polarization | VV | Vertical–Vertical polarization |
VH | Vertical–Horizontal polarization | ||
features | VV + VH | Sum | |
VV − VH | Difference | ||
VV/VH | Quotient | ||
ALOS | DEM | Elevation | Digital Elevation Model |
features | Aspect | Features calculated by DEM | |
Slope | |||
SPI | |||
TWI |
Data Combinations | All Features | Selectted Features | ||||
---|---|---|---|---|---|---|
R2 | RMSE (Mg/ha) | Num | R2 | RMSE (Mg/ha) | Num | |
Tree Height(TH) | 0.43 | 28.72 | 1 | / | / | / |
S1 | 0.09 | 49.32 | 5 | 0.15 | 49.11 | 4 |
S2 | 0.33 | 30.88 | 39 | 0.34 | 29.72 | 14 |
DEM | 0.19 | 44.79 | 5 | 0.20 | 44.31 | 5 |
TH + S1 (TS1) | 0.44 | 28.61 | 6 | 0.46 | 28.43 | 5 |
TH + S2 (TS2) | 0.48 | 24.26 | 40 | 0.49 | 23.22 | 15 |
TH + DEM (TD) | 0.47 | 26.44 | 6 | 0.48 | 26.21 | 4 |
S1 + S2 (S1S2) | 0.35 | 30.86 | 44 | 0.37 | 29.84 | 21 |
S1 + DEM (S1D) | 0.21 | 40.13 | 10 | 0.22 | 39.56 | 8 |
S2 + DEM (S2D) | 0.35 | 30.11 | 44 | 0.36 | 29.98 | 23 |
TH + S1 + S2 (TS1S2) | 0.52 | 23.45 | 45 | 0.53 | 21.89 | 16 |
TH + S1 + DEM (TS1D) | 0.49 | 27.68 | 11 | 0.50 | 25.95 | 7 |
TH + S2 + DEM (TS2D) | 0.59 | 22.88 | 45 | 0.60 | 21.32 | 16 |
S1 + S2 + DEM (S1S2D) | 0.36 | 30.23 | 49 | 0.37 | 30.12 | 25 |
All data types (TS1S2D) | 0.59 | 22.94 | 50 | 0.60 | 21.28 | 13 |
Tree Height | S1 | S2 | DEM | |
---|---|---|---|---|
TH + S2 + DEM (TS2D) | TH | None | B2, B3, B5, B11, B12, NDRE1, CAB, NDVI, FVC, CWC, GNDVI | Slope, SPI, Elevation, TWI |
All data types (TS1S2D) | TH | VV/VH, VV + VH | B5, B12, NDI45, NDRE1, CAB, NDVI, FVC | Slope, SPI, Elevation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xing, Y.; Fu, A.; Tang, J.; Chang, X.; Yang, H.; Yang, S.; Li, Y. Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm. Forests 2025, 16, 347. https://doi.org/10.3390/f16020347
Wang D, Xing Y, Fu A, Tang J, Chang X, Yang H, Yang S, Li Y. Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm. Forests. 2025; 16(2):347. https://doi.org/10.3390/f16020347
Chicago/Turabian StyleWang, Dejun, Yanqiu Xing, Anmin Fu, Jie Tang, Xiaoqing Chang, Hong Yang, Shuhang Yang, and Yuanxin Li. 2025. "Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm" Forests 16, no. 2: 347. https://doi.org/10.3390/f16020347
APA StyleWang, D., Xing, Y., Fu, A., Tang, J., Chang, X., Yang, H., Yang, S., & Li, Y. (2025). Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm. Forests, 16(2), 347. https://doi.org/10.3390/f16020347