Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = starter rotors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10659 KiB  
Article
The Study of the Balancing Process for Starting Rotors in Heavy-Duty Vehicles: An Industrial Application
by Gabriel de Jesús Davila-Alfaro, Antonio Enrique Salas-Reyes, Jan Mayén Chaires, Hugo Arcos-Gutiérrez, Isaías E. Garduño, Adriana Gallegos-Melgar, Maricruz Hernández-Hernández and Víctor Hugo Mercado-Lemus
Vehicles 2024, 6(4), 1752-1768; https://doi.org/10.3390/vehicles6040085 - 3 Oct 2024
Cited by 1 | Viewed by 1826
Abstract
In the heavy-duty vehicle industry, unbalance in the armature is one of the most common problems affecting starters’ performance and durability. This research presents a comprehensive study to improve the balancing process for starting rotors in heavy-duty vehicles. The complete manufacturing process of [...] Read more.
In the heavy-duty vehicle industry, unbalance in the armature is one of the most common problems affecting starters’ performance and durability. This research presents a comprehensive study to improve the balancing process for starting rotors in heavy-duty vehicles. The complete manufacturing process of armatures was analyzed to understand the contribution of assembly processes to unbalancing. The analysis revealed that the primary factor leading to high unbalance in these parts is the misalignment of conductors within the armature winding. During assembly, these conductors experience axial movements, resulting in non-uniform mass distribution and causing unbalanced values ranging from 150 to 350 g·mm. These values surpass the permissible limit, making rectification during the balancing process at the end of the assembly impossible. Consequently, a novel alignment tool was designed to address this issue, significantly reducing the effect and achieving the maximum allowable unbalance of 100 g·mm. This allowed the balancing machine used in the process to correct the initial unbalance of the reinforcements in a single work cycle, improving operation efficiency by about 15%. Full article
Show Figures

Figure 1

27 pages, 6846 KiB  
Article
Nonlinear Modeling and Analysis of Wound-Rotor Synchronous Starter/Generator (WRSSG) in Generating State for More Electric Aircraft
by Haoran Du, Yongzhi Liu, Tianxing Li and Peirong Zhu
Actuators 2023, 12(12), 439; https://doi.org/10.3390/act12120439 - 25 Nov 2023
Cited by 2 | Viewed by 2226
Abstract
The nonlinear modeling and analyzing of wound-rotor synchronous starter/generators (WRSSGs) plays a vital role in the analysis and monitoring of aircraft power systems. Moreover, they are of great significance with regard to the establishment of a future aircraft smart grid. However, owing to [...] Read more.
The nonlinear modeling and analyzing of wound-rotor synchronous starter/generators (WRSSGs) plays a vital role in the analysis and monitoring of aircraft power systems. Moreover, they are of great significance with regard to the establishment of a future aircraft smart grid. However, owing to its nonlinear, high-dimensional, and strong coupling characteristics, this modeling has always remained in the frequency domain stage and the progress of more intuitive time domain modeling has been slow. This paper presents a nonlinear model of a WRSSG in a generating state. When the WRSSG is in power generation mode, most cases indicate that the aircraft is in flight mode. The establishment of the nonlinear model of the system in the power generation state is of great significance for the research of the health management and state monitoring of the aircraft power system and can improve the safety and reliability of the aircraft during flight. The model uses FE analysis and neural network to solve the nonlinear problem of the motor in the system and uses the improved variable parameter average model to solve the nonlinear problem of the rotating rectifier. According to the principle of signal transmission, a time domain model for the whole system is developed. Finally, the model is compiled by the RT-LAB real-time simulator. The nonlinear model performs well when compared with FE analysis results and tested against the MIL-STD-704F standard. The proposed nonlinear model and analysis results can be used for the condition monitoring and fault diagnosis of aircraft power systems. The hardware-in-the-loop test platform based on an accurate nonlinear model is a feasible means to study the failure of expensive equipment, and it can aid the study of irreversible failures of equipment at a low cost. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation)
Show Figures

Figure 1

19 pages, 10681 KiB  
Article
Armature Reaction Analysis and Performance Optimization of Hybrid Excitation Starter Generator for Electric Vehicle Range Extender
by Mingling Gao, Jinling Ren, Wenjing Hu, Yutong Han, Huihui Geng, Shilong Yan and Mingjun Xu
World Electr. Veh. J. 2023, 14(10), 286; https://doi.org/10.3390/wevj14100286 - 10 Oct 2023
Cited by 1 | Viewed by 2453
Abstract
The armature reaction of the hybrid excitation starter generator (HESG) under load conditions will affect the distribution of the main magnetic field and the output performance. However, using the conventional field-circuit combination method to study the armature reaction has the problem of low [...] Read more.
The armature reaction of the hybrid excitation starter generator (HESG) under load conditions will affect the distribution of the main magnetic field and the output performance. However, using the conventional field-circuit combination method to study the armature reaction has the problem of low accuracy and inaccurate influencing factors. Therefore, this paper proposed a graphical method to analyze the armature reaction and a new type of HESG with a combined-pole permanent magnet (PM) rotor and claw-pole electromagnetic rotor. The analytical formula of the voltage regulation rate under the armature reaction was derived using the graphical method. The main influencing parameters of the armature reaction magnetic field (ARMF) were analyzed, and the overall output performance was analyzed using finite element software. On this basis, comparison analyses before and after optimization and the prototype test were carried out. The results show that the direct-axis armature reaction reactance, quadrature-axis armature reaction reactance, and voltage regulation rate of the optimized HESG were significantly reduced, the output voltage range of the whole machine was wide, and the voltage regulation performance was good. Full article
Show Figures

Figure 1

24 pages, 43640 KiB  
Article
Neck Structure Optimal Design of the Turbine Wheel for Containment Design of the Air Turbine Starter
by Liqiang Chen, Haijun Xuan, Wenbin Jia, Jianxin Liu, Zehui Fang and Yao Zheng
Aerospace 2023, 10(9), 802; https://doi.org/10.3390/aerospace10090802 - 14 Sep 2023
Cited by 3 | Viewed by 2259
Abstract
The airworthiness standards of the transport category airplanes stipulate that the high energy rotor equipment must be of the sufficient containment capacity. It is of great importance to study the containment and weight reduction for the air turbine starter. In this paper, based [...] Read more.
The airworthiness standards of the transport category airplanes stipulate that the high energy rotor equipment must be of the sufficient containment capacity. It is of great importance to study the containment and weight reduction for the air turbine starter. In this paper, based on an OSF design, Kriging response surface model and MOGA algorithm, a neck structure optimal design method was proposed for the air turbine wheel. Using the optimal design method, the optimal structural parameters were suggested as the design parameters, and verified by the over-speed burst test. The maximum errors of the burst speeds between the experimental and design values are less than 2%, and the neck structure turbine wheel breaks in the neck as expected, validating the accuracy of the optimal design method. Then, the effects of turbine wheel burst modes on the containment were investigated quantitatively, and verified by the containment tests. Based on the experimental and simulation results, the containment design method was proposed for the neck structure turbine wheel. The results show that compared with the trisection wheel burst, the rim burst dramatically decrease the mass and initial kinetic energy of burst released fragments by 63.3% and 24.8%, thereby greatly reducing the thickness and the mass of the containment ring by 29.5% and 29.1%. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 5977 KiB  
Article
Study on the Optimal Design Method of the Containment Ring for an Air Turbine Starter
by Yanan Zhang, Zekan He, Haijun Xuan, Jianxin Liu, Xiaojun Guo, Dong Mi and Zehui Fang
Aerospace 2023, 10(7), 624; https://doi.org/10.3390/aerospace10070624 - 10 Jul 2023
Cited by 3 | Viewed by 2229
Abstract
The airworthiness standards of transport category airplanes clearly stipulate that the equipment containing high-energy rotors must be shown by test that it can contain any failure of a high-energy rotor that occurs at the highest speed. The air turbine starter (ATS) is typical [...] Read more.
The airworthiness standards of transport category airplanes clearly stipulate that the equipment containing high-energy rotors must be shown by test that it can contain any failure of a high-energy rotor that occurs at the highest speed. The air turbine starter (ATS) is typical equipment containing high-energy rotors, and the manufacturers of ATS attach great importance to research on structural containment and weight reduction. In this paper, an optimal design method for a U-type containment ring is proposed. The method adopts the optimal Latin hypercube design, numerical simulation, response surface modeling, and genetic algorithm to achieve the multi-parameter optimal design of the containment ring section. By combining simulation and experiment, the influence weights of different structural parameters of the containment ring on the residual kinetic energy of debris and the containment ring volume were analyzed. The influence of different structural parameters of a U-type containment ring on containment results was studied, and a containment test was carried out to verify the containment capability of an optimized containment ring. The results show that the thickness of the containment ring has the greatest influence on the residual kinetic energy of the debris, and the weight ratio is 38%. The maximum radial deformation of the optimized containment ring can reach 22.3%, which means that the energy absorption effect of the containment ring on the disk fragments is significantly improved. With the same containment capability, the weight reduction effect of an optimized containment ring can reach 26.5%. The research results can provide weight reduction optimization methods and design theoretical guidance for U-type containment structures. Full article
Show Figures

Figure 1

21 pages, 11567 KiB  
Article
Performance Evaluation of Stator/Rotor-PM Flux-Switching Machines and Interior Rotor-PM Machine for Hybrid Electric Vehicles
by Wenfei Yu, Zhongze Wu and Wei Hua
World Electr. Veh. J. 2023, 14(6), 139; https://doi.org/10.3390/wevj14060139 - 26 May 2023
Cited by 4 | Viewed by 2766
Abstract
A three-phase interior permanent magnet (IPM) machine with 18-stator-slots/12-rotor-poles and concentrated armature winding is commercially employed as a 10 kW integrated-starter-generator in a commercial hybrid electric vehicle. For comprehensive and fair evaluation, a pair of flux-switching permanent magnet (FSPM) brushless machines, namely one [...] Read more.
A three-phase interior permanent magnet (IPM) machine with 18-stator-slots/12-rotor-poles and concentrated armature winding is commercially employed as a 10 kW integrated-starter-generator in a commercial hybrid electric vehicle. For comprehensive and fair evaluation, a pair of flux-switching permanent magnet (FSPM) brushless machines, namely one stator permanent magnet flux-switching (SPM-FS) machine, and one rotor permanent magnet flux-switching (RPM-FS) machine, are designed and compared under the same DC-link voltage and armature current density. Firstly, a SPM-FS machine is designed and compared with an IPM machine under the same torque requirement, and the performance indicates that they exhibit similar torque density; however, the former suffers from magnetic saturation and low utilization of permanent magnets (PMs). Thus, to eliminate significant stator iron saturation and improve the ratio of torque per PM mass, an RPM-machine is designed with the same overall volume of the IPM machine, where the PMs are moved from stator to rotor and a multi-objective optimization algorithm is applied in the machine optimization. Then, the electromagnetic performance of the three machines, considering end-effect, is compared, including air-gap flux density, torque ripple, overload capacity and flux-weakening ability. The predicted results indicate that the RPM-FS machine exhibits the best performance as a promising candidate for hybrid electric vehicles. Experimental results of both the IPM and SPM-FS machines are provided for validation. Full article
Show Figures

Figure 1

29 pages, 8995 KiB  
Article
Automatic Classification of Rotor Faults in Soft-Started Induction Motors, Based on Persistence Spectrum and Convolutional Neural Network Applied to Stray-Flux Signals
by Vicente Biot-Monterde, Angela Navarro-Navarro, Israel Zamudio-Ramirez, Jose A. Antonino-Daviu and Roque A. Osornio-Rios
Sensors 2023, 23(1), 316; https://doi.org/10.3390/s23010316 - 28 Dec 2022
Cited by 16 | Viewed by 2448
Abstract
Due to their robustness, versatility and performance, induction motors (IMs) have been widely used in many industrial applications. Despite their characteristics, these machines are not immune to failures. In this sense, breakage of the rotor bars (BRB) is a common fault, which is [...] Read more.
Due to their robustness, versatility and performance, induction motors (IMs) have been widely used in many industrial applications. Despite their characteristics, these machines are not immune to failures. In this sense, breakage of the rotor bars (BRB) is a common fault, which is mainly related to the high currents flowing along those bars during start-up. In order to reduce the stresses that could lead to the appearance of these faults, the use of soft starters is becoming usual. However, these devices introduce additional components in the current and flux signals, affecting the evolution of the fault-related patterns and so making the fault diagnosis process more difficult. This paper proposes a new method to automatically classify the rotor health state in IMs driven by soft starters. The proposed method relies on obtaining the Persistence Spectrum (PS) of the start-up stray-flux signals. To obtain a proper dataset, Data Augmentation Techniques (DAT) are applied, adding Gaussian noise to the original signals. Then, these PS images are used to train a Convolutional Neural Network (CNN), in order to automatically classify the rotor health state, depending on the severity of the fault, namely: healthy motor, one broken bar and two broken bars. This method has been validated by means of a test bench consisting of a 1.1 kW IM driven by four different soft starters coupled to a DC motor. The results confirm the reliability of the proposed method, obtaining a classification rate of 100.00% when analyzing each model separately and 99.89% when all the models are analyzed at a time. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2022)
Show Figures

Figure 1

33 pages, 13951 KiB  
Article
Radial Magnetic Bearings for Rotor–Shaft Support in Electric Jet Engine
by Krzysztof Falkowski, Paulina Kurnyta-Mazurek, Tomasz Szolc and Maciej Henzel
Energies 2022, 15(9), 3339; https://doi.org/10.3390/en15093339 - 4 May 2022
Cited by 14 | Viewed by 3074
Abstract
New technologies are being developed to elaborate cutting-edge electrical jet engines to replace classical constructions. These new concepts consider the possibility of using electrical machines both as starters and generators, as well as suspension systems for the turbine shafts of aircraft engines. The [...] Read more.
New technologies are being developed to elaborate cutting-edge electrical jet engines to replace classical constructions. These new concepts consider the possibility of using electrical machines both as starters and generators, as well as suspension systems for the turbine shafts of aircraft engines. The paper will present mathematical analysis regarding active magnetic bearing (AMB) implementation for rotor–shaft support. This technology allows the elimination of friction forces between cooperating kinematic pairs (stator and rotor), reduces the adverse effects of classic bearings, and increases operating speed range and an operational susceptibility. The mathematical and numerical analysis of active magnetic suspension systems are presented. Next, a comparison of the theoretical studies using Comsol Multiphysics software and its experimental verification are described. A discussion regarding the mathematical analysis and experimental effects is also provided. The conclusion summarizes the theoretical and experimental features of heteropolar radial active magnetic bearings in new electric aircraft engines. Full article
(This article belongs to the Special Issue Modelling and Simulation of Rotating Machines)
Show Figures

Figure 1

19 pages, 8259 KiB  
Article
Current and Stray Flux Combined Analysis for the Automatic Detection of Rotor Faults in Soft-Started Induction Motors
by Angela Navarro-Navarro, Israel Zamudio-Ramirez, Vicente Biot-Monterde, Roque A. Osornio-Rios and Jose A. Antonino-Daviu
Energies 2022, 15(7), 2511; https://doi.org/10.3390/en15072511 - 29 Mar 2022
Cited by 17 | Viewed by 2821
Abstract
Induction motors (IMs) have been extensively used for driving a wide variety of processes in several industries. Their excellent performance, capabilities and robustness explain their extensive use in several industrial applications. However, despite their robustness, IMs are susceptible to failure, with broken rotor [...] Read more.
Induction motors (IMs) have been extensively used for driving a wide variety of processes in several industries. Their excellent performance, capabilities and robustness explain their extensive use in several industrial applications. However, despite their robustness, IMs are susceptible to failure, with broken rotor bars (BRB) being one of the potential faults. These types of faults usually occur due to the high current amplitude flowing in the bars during the starting transient. Currently, soft-starters have been used in order to reduce the negative effects and stresses developed during the starting. However, the addition of these devices makes the fault diagnosis a complex and sometimes erratic task, since the typical fault-related patterns evolutions are usually irregular, depending on particular aspects that may change according to the technology implemented by the soft-starter. This paper proposes a novel methodology for the automatic detection of BRB in IMs under the influence of soft-starters. The proposal relies on the combined analysis of current and stray flux signals by means of suitable indicators proposed here, and their fusion through a linear discriminant analysis (LDA). Finally, the LDA output is used to train a feed-forward neural network (FFNN) to automatically detect the severity of the failure, namely: a healthy motor, one broken rotor bar, and two broken rotor bars. The proposal is validated under a testbench consisting of a kinematic chain driven by a 1.1 kW IM and using four different models of soft-starters. The obtained results demonstrate the capabilities of the proposal, obtaining a correct classification rate (94.4% for the worst case). Full article
(This article belongs to the Special Issue Advances in the Field of Electrical Machines and Drives)
Show Figures

Figure 1

24 pages, 6446 KiB  
Article
Numerical Simulation and Wind Tunnel Investigation on Static Characteristics of VAWT Rotor Starter with Lift-Drag Combined Structure
by Fang Feng, Guoqiang Tong, Yunfei Ma and Yan Li
Energies 2021, 14(19), 6167; https://doi.org/10.3390/en14196167 - 27 Sep 2021
Cited by 6 | Viewed by 2038
Abstract
In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce [...] Read more.
In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines. Full article
(This article belongs to the Special Issue Aerodynamically Coupled Phenomena in Wind Turbine)
Show Figures

Figure 1

18 pages, 2882 KiB  
Article
Stray Flux Analysis for the Detection and Severity Categorization of Rotor Failures in Induction Machines Driven by Soft-Starters
by Vicente Biot-Monterde, Ángela Navarro-Navarro, Jose A. Antonino-Daviu and Hubert Razik
Energies 2021, 14(18), 5757; https://doi.org/10.3390/en14185757 - 13 Sep 2021
Cited by 13 | Viewed by 2587
Abstract
The condition monitoring of induction motors (IM), is an important concern for industry due to the widespread use of these machines. Magnetic Flux Analysis, has been proven to be a reliable method of diagnosing these motors. Among the IM types, squirrel-cage motors (SCIM) [...] Read more.
The condition monitoring of induction motors (IM), is an important concern for industry due to the widespread use of these machines. Magnetic Flux Analysis, has been proven to be a reliable method of diagnosing these motors. Among the IM types, squirrel-cage motors (SCIM) are one of the most commonly used. In many industrial applications, the IM are driven by different types of starters, quite often by soft-starters. Despite rotor damages are more prone to occur in line-started motors, these kind of failures have been also reported in those ones driven by soft-starters. Related to this, the use of these type of starters may introduce some harmonic components, that could veil the magnetic flux signature of the different rotor faults. So, the aim of this study is to confirm if the Stray Flux Analysis technique maintains its reliability in these cases. Thus, this article presents the results of soft-started induction motors start-up tests, both in healthy and faulty motors. The fault components are detected by analyzing the stray flux during the starting and the study is complemented by analyzing the stray flux during the steady-state. In addition to the failure patterns, numerical indicators have been found so the identification of the failures is not only qualitative, but also quantitative. The results confirm the potential of the technique for detecting electromechanical failures in soft-started SCIMs. Full article
(This article belongs to the Special Issue Failure Diagnosis and Prognosis of Induction Machines)
Show Figures

Figure 1

24 pages, 1380 KiB  
Review
Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles
by Ming Cheng, Le Sun, Giuseppe Buja and Lihua Song
Energies 2015, 8(9), 9541-9564; https://doi.org/10.3390/en8099541 - 2 Sep 2015
Cited by 118 | Viewed by 17217
Abstract
The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in [...] Read more.
The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized. Full article
(This article belongs to the Special Issue Advances in Plug-in Hybrid Vehicles and Hybrid Vehicles)
Show Figures

Figure 1

13 pages, 561 KiB  
Article
Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs
by Ping Zheng, Chengde Tong, Jingang Bai, Yi Sui, Zhiyi Song and Fan Wu
Energies 2012, 5(10), 4027-4039; https://doi.org/10.3390/en5104027 - 19 Oct 2012
Cited by 5 | Viewed by 6209
Abstract
The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM), integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs). As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths [...] Read more.
The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM), integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs). As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE) operate at optimum efficiency are validated. Full article
Show Figures

Figure 1

Back to TopTop