# Armature Reaction Analysis and Performance Optimization of Hybrid Excitation Starter Generator for Electric Vehicle Range Extender

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analysis of Armature Reaction of HESG

## 3. Optimization of Influence Parameters of Voltage Regulation Rate

#### 3.1. Armature Winding Turns

#### 3.2. Main Air Gap Length

#### 3.3. Magnetization Direction Length of PM

## 4. Optimization Comparative Analysis and Performance Test

#### 4.1. No-Load Characteristic Test under Power Generation Condition

#### 4.2. Load Characteristic Test under Power Generation Condition

#### 4.3. Magnetic Regulation Characteristics Test of Hybrid Excitation Starting Generator

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Qin, S.F.; Xiong, Y.Q. Innovation strategies of Chinese new energy vehicle enterprises under the influence of non-financial policies: Effects, mechanisms and implications. Energy Policy
**2022**, 164, 112946. [Google Scholar] [CrossRef] - Shannon, N. Preparing for the electric vehicle. Transm. Distrib. World
**2022**, 74, 56–57. [Google Scholar] - Jose, S.S.; Chidambaram, R.K. Electric Vehicle Air Conditioning System and Its Optimization for Extended Range—A Review. World Electr. Veh. J.
**2022**, 13, 204. [Google Scholar] [CrossRef] - Tran, M.-K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J.
**2021**, 12, 54. [Google Scholar] [CrossRef] - Cheng, Z.; Xie, H.; Liu, C.; Li, C. Research on powertrain matching and control strategy of extended-range hybrid electric vehicle. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; pp. 1354–1358. [Google Scholar]
- Chen, Y.; Zhang, Y.; Wei, C.Y.; Li, G.; Li, C. Optimization of extended range electric vehicle energy management strategy via driving cycle identification. IOP Conf. Ser. Mater. Sci. Eng.
**2020**, 793, 012040. [Google Scholar] [CrossRef] - Mao, S.; Han, M.; Han, X.; Shao, J.; Lu, Y.; Lu, L.; Ouyang, M. Analysis and Improvement Measures of Driving Range Attenuation of Electric Vehicles in Winter. World Electr. Veh. J.
**2021**, 12, 239. [Google Scholar] [CrossRef] - Liu, H.; Lei, Y.; Fu, Y.; Li, X. An optimal slip ratio-based revised regenerative braking control strategy of range-extended electric vehicle. Energies
**2020**, 13, 1526. [Google Scholar] [CrossRef] - Cipek, M.; Kasac, J.; Pavkovic, D.; Zorc, D. A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train. Appl. Energy
**2020**, 276, 115488. [Google Scholar] [CrossRef] - Yan, S.; Zhang, X.; Gao, Z.; Wang, A.; Zhang, Y.; Xu, M.; Hua, S. Design Optimization of a New Hybrid Excitation Drive Motor for New Energy Vehicles. World Electr. Veh. J.
**2023**, 14, 4. [Google Scholar] [CrossRef] - Zhou, Z.; Hua, H.; Zhu, Z. Flux-Adjustable Permanent Magnet Machines in Traction Applications. World Electr. Veh. J.
**2022**, 13, 60. [Google Scholar] [CrossRef] - He, X.; Bao, G. Suppression of Cross-Coupling Effect of Hybrid Permanent Magnet Synchronous Motor with Parallel Magnetic Circuit. World Electr. Veh. J.
**2022**, 13, 11. [Google Scholar] [CrossRef] - Wang, H.; Wu, Z.; Liu, K.; Wei, J. Analysis and comparison of armature fields and inductances in various topologies of compulsators. IEEE Trans. Plasma Sci.
**2020**, 48, 4228–4234. [Google Scholar] [CrossRef] - Zhu, J.; Li, G.H.; Cao, D.; Zhang, Z. Voltage regulation Rate and THD optimization analysis of coreless axial flux PM synchronous generator for wind power generation. IEEJ Trans. Electr. Electron. Eng.
**2019**, 14, 1485–1493. [Google Scholar] - Chalmers, B.J. Performance of interior-type permanent magnet alternator. IEEE Proc. Electr. Power Appl.
**1994**, 141, 186–190. [Google Scholar] [CrossRef] - Chalmers, B.J.; Akmese, R. Analysis of the voltage regulation characteristic of a permanent-magnet alternator with inverse saliency. Electr. Mach. Power Syst.
**1997**, 25, 317–326. [Google Scholar] [CrossRef] - Chan, T.F.; Yan, L.T. Analysis and performance of a surface-mounted NdFeB permanent-magnet AC generator. APSCOM-97. Int. Conf. Adv. Power Syst. Control Oper. Manag.
**1997**, 2, 718–722. [Google Scholar] - Chan, T.F.; Lai, L.L.; Yan, L.T. Performance of a three-phase AC generator with inset NdFeB permanent-magnet rotor. IEEE Trans. Energy Convers.
**2004**, 19, 88–94. [Google Scholar] [CrossRef] - Chan, T.F.; Yan, L.T.; Lai, L.L. Performance of a permanent-magnet A.C. generator with rotor inverse saliency. In Proceedings of the Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003, Beijing, China, 9–11 November 2003; pp. 45–48. [Google Scholar]
- Abbas, A.; Iqbal, A. A subdomain model for armature reaction field and open-circuit field prediction in consequent pole permanent magnet machines. Int. J. Numer. Model. Electron. Netw. Devices Fields
**2022**, 35, e3023. [Google Scholar] [CrossRef] - Morteza, M.B.; Faiz, J.; Khoshtarash, J. Impacts of number of poles and slots on armature reaction and performance of ironless permanent magnet motors. Electr. Power Compon. Syst.
**2021**, 48, 1979–1991. [Google Scholar] - Li, H.R.; Lan, Z.Y.; Liao, K.L.; Wei, X.H.; Chen, L.H. Study on low voltage regulation rate of high power permanent magnet synchronous generator. Comput. Technol. Autom.
**2016**, 35, 51–55. (In Chinese) [Google Scholar] - Wang, H.J.; Lan, B. Characteristic analysis of hybrid excitation permanent magnet synchronous generator. Micromotors
**2011**, 44, 33–36. (In Chinese) [Google Scholar] - Wu, Q.; Xiong, H.; Liu, L.; Meng, G.; Li, H.; Zhou, L. Research on voltage regulation of a permanent magnet generator. In Proceedings of the 2011 International Conference on Electrical and Control Engineering (ICECE), Yichang, China, 16–18 September 2011; pp. 4935–4937. [Google Scholar]
- Guo, B.; Leng, Z.; Yang, Z.Y. Quantitative study on reducing measures of permanent magnet motor inherent voltage. Electr. Mach. Control Appl.
**2012**, 39, 16–19. (In Chinese) [Google Scholar] - Cheng, Y.F. Single-Phase Hybrid Excitation Shaft Generator and Its Voltage Stability Characterise for Vehicle Loads; Harbin Institute of Technology: Harbin, China, 2010. (In Chinese) [Google Scholar]
- Fang, Y.; Ji, J.; Zhao, W. Modeling of Fault-tolerant Flux-switching Permanent-magnet Machines for Predicting Magnetic and Armature Reaction Fields. J. Electr. Mach. Syst. China Electrotech. Soc.
**2022**, 6, 413–421. [Google Scholar] [CrossRef] - Abbaszadeh, K.; Rezaee, A.F. On-load field component separation in surface-mounted permanent-magnet motors using an improved conformal mapping method. IEEE Trans. Magn.
**2016**, 52, 1–12. [Google Scholar] [CrossRef] - Ma, C.; Li, Q.; Lu, H.; Liu, Y.; Gao, H. Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor. IET Electr. Power Appl.
**2018**, 12, 651–657. [Google Scholar] [CrossRef] - Al-Adsani, A.S.; Beik, O. Characterization of a hybrid pm generator using a 32-phase brushless excitation scheme. IEEE Trans. Energy Convers.
**2019**, 34, 1391–1400. [Google Scholar] [CrossRef] - Ghaffari, A. 2D Analytical Model of Armature Reaction Magnetic Field Distribution in Slotless Permanent-Magnet Linear Tubular Machines. J. Model. Optim.
**2020**, 12, 110–116. [Google Scholar] [CrossRef] - Blanc, A. Exciting field and quadrature-axis armature reaction in a cascade equivalent A-H-circuit of a salient-pole generator. Int. J. Electr. Comput. Eng.
**2020**, 10, 1674–1681. [Google Scholar] [CrossRef] - Tang, R. Theory and Design of Modern Permanent Magnet Motors, 6th ed.; China Machine Press: Beijing, China, 2015. [Google Scholar]

**Figure 2.**Relationship between armature reaction magnetomotive force and rotor magnetomotive force: (

**a**) pure resistive load condition; (

**b**) pure inductive load condition; (

**c**) pure capacitive load condition.

**Figure 5.**The vector diagram of the equivalent direct-axis and the equivalent quadrature-axis states: (

**a**) equivalent direct-axis state; (

**b**) equivalent quadrature-axis state.

**Figure 6.**The magnetic field line distribution diagram and magnetic density cloud diagram of armature reaction magnetic field (ARMF) in two states: (

**a**) direct-axis magnetic field line diagram; (

**b**) direct-axis magnetic density cloud diagram; (

**c**) quadrature-axis magnetic field line diagram; (

**d**) quadrature-axis magnetic density cloud diagram.

**Figure 7.**Electromagnetic characteristic parameters of starter generator with different armature winding turns: (

**a**) direct-axis and quadrature-axis armature reaction reactance; (

**b**) voltage regulation rate; (

**c**) output voltage and output power.

**Figure 8.**Electromagnetic characteristic parameters of starter generator with different lengths of main air gap: (

**a**) direct-axis and quadrature-axis armature reaction reactance; (

**b**) voltage regulation rate; (

**c**) output voltage and output power.

**Figure 9.**Electromagnetic characteristic parameters of starter generator with different magnetization direction lengths of tangential permanent magnet (PM): (

**a**) direct-axis and quadrature-axis armature reaction reactance; (

**b**) voltage regulation rate; (

**c**) output voltage and output power.

**Figure 10.**Electromagnetic characteristic parameters of starter generator with different magnetization direction lengths of combined PM: (

**a**) direct-axis and quadrature-axis armature reaction reactance; (

**b**) voltage regulation rate; (

**c**) output voltage and output power.

**Figure 11.**Surface diagram of direct-axis and quadrature-axis armature reaction reactances and the voltage regulation rate with different magnetization direction lengths of PM: (

**a**) direct-axis armature reaction reactance; (

**b**) quadrature-axis armature reaction reactance; (

**c**) voltage regulation rate.

**Figure 12.**Surface diagram of output voltage and output power under rated load conditions with different magnetization direction lengths of PM: (

**a**) output voltage; (

**b**) output power.

**Figure 14.**Pictures of the HESG and the test bench: (

**a**) PM rotor; (

**b**) electric excitation rotor; (

**c**) stator; (

**d**) parallel combined rotor; (

**e**) prototype; (

**f**) generating condition experimental platform.

Parameter Name | Before Optimization | After Optimization |
---|---|---|

Armature winding turns | 9 turns | 8 turns |

Main air gap length | 0.5 mm | 0.4 mm |

Magnetization direction lengths of tangential PM | 5 mm | 4.5 mm |

Magnetization direction lengths of combined PM | 2.5 mm | 3 mm |

Parameter Name | Before Optimization | After Optimization |
---|---|---|

Direct-axis reactance/Ω | 3.403 | 3.117 |

Quadrature-axis reactance/Ω | 6.660 | 6.029 |

Voltage regulation rate/% | 28.145 | 21.759 |

Rated load output voltage/V | 84.369 | 84.341 |

Rated load output power/W | 756.604 | 756.10 |

Parameter Name | Parameter Value |
---|---|

Stator outer diameter | 140 |

Stator inner diameter | 106 |

Axial length of the stator | 43 |

Main air gap length | 0.4 |

Rotor outer diameter | 105.2 |

Magnetization direction length of tangential PM | 4.5 |

Length of tangential PM | 15 |

Magnetization direction length of combined PM | 12 |

Length of combined PM | 3 |

Thickness of pole boots | 1.7 |

Axial length of the PM rotor | 20 |

Axial length of the claw-pole rotor | 20 |

Flange thickness of the claw-pole rotor | 9 |

Yoke thickness of the claw-pole rotor | 16 |

Claw root thickness | 9 |

Claw tip thickness | 2.7 |

Pole arc coefficient of claw root | 1.05 |

Pole arc coefficient of claw tip | 0.45 |

Speed/(r/min) | Load Power/W | Output Voltage/V |
---|---|---|

2000 | 980 | 83.6 |

1000 | 83.1 | |

1020 | 82.8 | |

4000 | 980 | 84.4 |

1000 | 84.3 | |

1020 | 84.2 | |

4800 | 980 | 84.6 |

1000 | 84.6 | |

1020 | 84.5 | |

980 | 83.6 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, M.; Ren, J.; Hu, W.; Han, Y.; Geng, H.; Yan, S.; Xu, M.
Armature Reaction Analysis and Performance Optimization of Hybrid Excitation Starter Generator for Electric Vehicle Range Extender. *World Electr. Veh. J.* **2023**, *14*, 286.
https://doi.org/10.3390/wevj14100286

**AMA Style**

Gao M, Ren J, Hu W, Han Y, Geng H, Yan S, Xu M.
Armature Reaction Analysis and Performance Optimization of Hybrid Excitation Starter Generator for Electric Vehicle Range Extender. *World Electric Vehicle Journal*. 2023; 14(10):286.
https://doi.org/10.3390/wevj14100286

**Chicago/Turabian Style**

Gao, Mingling, Jinling Ren, Wenjing Hu, Yutong Han, Huihui Geng, Shilong Yan, and Mingjun Xu.
2023. "Armature Reaction Analysis and Performance Optimization of Hybrid Excitation Starter Generator for Electric Vehicle Range Extender" *World Electric Vehicle Journal* 14, no. 10: 286.
https://doi.org/10.3390/wevj14100286