Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = spray flame synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3162 KB  
Review
Advances in Flame-Retardant Coatings for Rigid Polyurethane Foams: A Critical Review
by Qinhe Guo, Jiong Chen, Lulu Xu, Min Chen, Yan Zhang, Yi Xiao, Yao Yuan, Kate Nguyen and Wei Wang
Fire 2025, 8(11), 419; https://doi.org/10.3390/fire8110419 - 28 Oct 2025
Viewed by 2210
Abstract
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame [...] Read more.
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame spread, intense heat release, and the generation of toxic smoke. Traditional strategies to reduce flammability have primarily focused on incorporating additive or reactive flame retardants into the foam matrix, which can effectively suppress combustion but often compromise mechanical integrity, suffer from migration or compatibility issues, and involve complex synthesis routes. Despite recent progress, the long-term stability, scalability, and durability of surface flame-retardant coatings for RPUFs remain underexplored, limiting their practical application in industrial environments. Recent advances have emphasized the development of surface-engineered flame-retardant coatings, including intumescent systems, inorganic–organic hybrids, bio-inspired materials, and nanostructured composites. These coatings form protective interfaces that inhibit ignition, restrict heat and mass transfer, promote char formation, and suppress smoke without altering the intrinsic properties of RPUFs. Emerging deposition methods, such as layer-by-layer assembly, spray coating, ultraviolet (UV) curing, and brush application, enable precise control over thickness, uniformity, and adhesion, enhancing durability and multifunctionality. Integrating bio-based and hybrid approaches further offers environmentally friendly and sustainable solutions. Collectively, these developments demonstrate the potential of surface-engineered coatings to achieve high-efficiency flame retardancy while preserving thermal and mechanical performance, providing a pathway for safe, multifunctional, and industrially viable RPUFs. Full article
(This article belongs to the Special Issue Smart Firefighting Technologies and Advanced Materials)
Show Figures

Figure 1

16 pages, 2250 KB  
Article
Comparative Study of ZnO and ZnO-Ag Particle Synthesis via Flame and Spray Pyrolysis for the Degradation of Methylene Blue
by Kusdianto, Nurdiana Ratna Puri, Adhi Setiawan, Sugeng Winardi, Widiyastuti, Suci Madhania, Mohammad Irwan Fatkhur Rozy and Manabu Shimada
Molecules 2025, 30(16), 3364; https://doi.org/10.3390/molecules30163364 - 13 Aug 2025
Cited by 1 | Viewed by 1093
Abstract
The treatment of organic waste from dyes or other industry processes is a crucial issue that requires urgent attention. Photocatalysis is a promising method for tackling this problem, with ZnO being a commonly used photocatalyst material. This study compared the degrading efficiency of [...] Read more.
The treatment of organic waste from dyes or other industry processes is a crucial issue that requires urgent attention. Photocatalysis is a promising method for tackling this problem, with ZnO being a commonly used photocatalyst material. This study compared the degrading efficiency of ZnO particles and ZnO-Ag composites by utilizing flame and spray pyrolysis techniques. Under UV light, methylene blue (MB) was used as a model organic waste. The generated particles were characterized using Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy (SEM), X-Ray diffraction (XRD), and a UV-Vis spectrometer. The findings showed that the ZnO and ZnO-Ag obtained using both methods exhibited hexagonal Wurtzite crystal structures, and there was no significant difference in the crystal sizes produced. SEM analysis indicated that the morphology of the resulting particles differed significantly, with flame-synthesized particles being remarkably smaller in size (one-thirtieth the size following spray synthesis) and having smoother surfaces. Furthermore, the addition of Ag particles to ZnO enhanced the MB degradation efficiency by two to three times, achieving a maximum of 64% at 75 min. The BET analysis showed that the surface area of ZnO doped with Ag was larger compared to that of pristine ZnO. On the other hand, the ZnO-Ag particles produced via spray pyrolysis exhibited a total pore volume (determined through nitrogen adsorption–desorption analysis) three times larger than that of the particles produced via the flame method. The particles produced via spray pyrolysis also had better MB degradation performance compared to those synthesized using flame pyrolysis. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

21 pages, 6110 KB  
Article
Thermoplasmonic Nano–Hybrid Core@Shell Ag@SiO2 Films Engineered via One–Step Flame Spray Pyrolysis
by Christos Dimitriou and Yiannis Deligiannakis
Nanomaterials 2025, 15(10), 743; https://doi.org/10.3390/nano15100743 - 15 May 2025
Cited by 1 | Viewed by 1447
Abstract
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 [...] Read more.
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 nanoparticles coated with an ultrathin (1–2 nm) silica (SiO2) nanolayer in a single step in tandem with their deposition as films onto solid substrates. Accordingly, we engineered a library of Ag@SiO2 nanofilms with precisely controlled thicknesses in the range of 1–23 μm. A systematic study of the thermoplasmonic heat-generation efficiency (ΔT) of the films under visible-light irradiation (LED, λ = 405 nm) revealed that the films’ compactness and thickness are key parameters governing the heat-generation efficiency and thermal response rate. Moreover, we show that the substrate type can also play a key role; Ag@SiO2 films on glass-fiber filters (PGFFs) enabled faster temperature increase (dT/dt) and a higher maximum temperature gain (ΔTmax) compared with Ag@SiO2 films on glass substrates (PGSs). The photothermal conversion efficiencies were approximately 60%, with the highest efficiency (η = 65%) observed in the thinner impinged film. This study demonstrates that FSP-derived Ag@SiO2 nanofilms provide a versatile and scalable platform for thermoplasmonic heat generation applications with significant industrial potential. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

16 pages, 3060 KB  
Article
High-Pressure CO2 Photoreduction, Flame Spray Pyrolysis and Type-II Heterojunctions: A Promising Synergy
by Matteo Tommasi, Alice Gramegna, Simge Naz Degerli, Federico Galli and Ilenia Rossetti
Catalysts 2025, 15(4), 383; https://doi.org/10.3390/catal15040383 - 16 Apr 2025
Viewed by 1037
Abstract
In this work, three catalysts, TiO2, WO3 and TiO2/WO3, have been synthesized through flame spray pyrolysis synthesis (FSP) and have been tested for CO2 photoreduction. The catalysts were fully characterized by XRD, DRS UV–Vis, N [...] Read more.
In this work, three catalysts, TiO2, WO3 and TiO2/WO3, have been synthesized through flame spray pyrolysis synthesis (FSP) and have been tested for CO2 photoreduction. The catalysts were fully characterized by XRD, DRS UV–Vis, N2 physisorption and SEM. Experimental tests were performed in a one-of-a-kind high-pressure reactor at 18 bar. TiO2 P25 was used as a benchmark to compare the productivities of the newly synthetized catalysts. The two single oxides showed comparable productivities, both slightly lower than the P25 reference value (ca. 17 mol/kgcat·h). The mixed oxide, TiO2/WO3, instead showed an impressive productivity of formic acid with 36 mol/kgcat·h, which is around 2.5 times higher than both of the single oxides alone. The formation of a type-II heterojunction has been confirmed through DRS analysis. The remarkable productivity demonstrates how FSP synthesis can be a crucial tool to obtain highly active and stable photocatalysts. This approach has already been successfully scaled up for the industrial production of various catalysts, showcasing its versatility and efficiency. Full article
(This article belongs to the Special Issue Advances in Catalysis for a Sustainable Future)
Show Figures

Figure 1

21 pages, 8010 KB  
Article
On the Formation of Carbonaceous By-Product Species in Spray Flame Synthesis of Maghemite Nanoparticles
by Ricardo Tischendorf, Kristina Duschik, Fabian Fröde, Manuel Reddemann, Reinhold Kneer, Heinz Pitsch, Mirko Schaper and Hans-Joachim Schmid
Appl. Sci. 2025, 15(6), 3294; https://doi.org/10.3390/app15063294 - 18 Mar 2025
Cited by 2 | Viewed by 873
Abstract
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration [...] Read more.
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration (0.1 M and 0.2 M) in the precursor feed while using ethanol and 2-ethylhexanoic acid as solvent. Conducting complementary powder analysis revealed a predominant presence of carboxylates and carbonates as by-product species (~14–18 wt.%), while no strong indications for elemental carbon and precursor/solvent residues can be found. Carbonates/carboxylates are located on particle surfaces, and the particles’ surface loadings by these species are independent of the precursor concentration but depend on burner type, with SpraySyn2 exhibiting lower values, indicating a more complete combustion for this burner. Through time-resolved thermophoretic sampling, we further demonstrate that carbon forms temporally in the visible flame center when using SpraySyn1. Since carbon solely forms momentarily within large flame pulses and decomposes further downstream, its temporal formation is of minor relevance for the final particle purity. However, its local co-existence aside from γ-Fe2O3 in the flame has potential to bias in situ diagnostics. Full article
Show Figures

Figure 1

16 pages, 9326 KB  
Article
Spray-Flame Synthesis (SFS) and Characterization of Li1.3Al0.3−xYxTi1.7(PO4)3 [LA(Y)TP] Solid Electrolytes
by Md Yusuf Ali, Hans Orthner and Hartmut Wiggers
Nanomaterials 2025, 15(1), 42; https://doi.org/10.3390/nano15010042 - 29 Dec 2024
Cited by 3 | Viewed by 1920
Abstract
Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, [...] Read more.
Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis. The as-synthesized samples consist of an amorphous component and anatase-TiO2 crystalline particles. Brief annealing at 750–1000 °C for one hour was sufficient to achieve the desired phase while maintaining the material’s sub-micrometer scale. Rietveld analysis of X-Ray diffraction data demonstrated that the crystal volume increases with Y doping. At the same time, with high Y incorporation, a segregation of the YPO4 phase was observed in addition to the desired LATP phase. Another impurity phase, LiTiOPO4, was observed besides YPO4 and, with higher calcination temperature (1000 °C), the phase fraction for both impurities also increased. The ionic conductivity increased with Y incorporation from 0.1 mS/cm at room temperature in the undoped sample to 0.84 mS/cm in the case of LAY0.1TP, which makes these materials—especially considering the comparatively low sintering temperature—highly interesting for applications in the field of solid-state batteries. Full article
Show Figures

Figure 1

19 pages, 3756 KB  
Article
Spray-Flame Synthesis of NASICON-Type Rhombohedral (α) Li1+xYxZr2−x(PO4)3 [x = 0–0.2] Solid Electrolytes
by Md Yusuf Ali, Tianyu Chen, Hans Orthner and Hartmut Wiggers
Nanomaterials 2024, 14(15), 1278; https://doi.org/10.3390/nano14151278 - 30 Jul 2024
Cited by 5 | Viewed by 2443
Abstract
Since solid electrolytes have a broad electrochemical stability window, are exceptionally electrochemically stable against Li metal, and function as a physical separator to prevent dendrite growth, they are at the forefront of alternate possibilities, further increasing the stability and energy density of Li-ion [...] Read more.
Since solid electrolytes have a broad electrochemical stability window, are exceptionally electrochemically stable against Li metal, and function as a physical separator to prevent dendrite growth, they are at the forefront of alternate possibilities, further increasing the stability and energy density of Li-ion batteries. NASICON-type electrolytes are a promising candidate due to their negligible moisture sensitivity, which results in outstanding stability and a lower probability of Li2CO3 passivity under the ambient atmosphere. However, one of the most promising representatives, Li1+xYxZr2−x(PO4)3 (LYZP), has multiple stable phases with significant variation in their corresponding Li-ion conductivity. In this paper, we have successfully synthesized the highly ionically conductive rhombohedral phase of LYZP via spray-flame synthesis. Two different solvent mixtures (e.g., 2-ethyl hexanoic acid/ethanol, propanol/propanoic acid) were chosen to explore the effect of precursor composition and combustion enthalpy on the phase composition of the nanoparticle. The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline tetragonal zirconia (t-ZrO2) phase, while lithium, yttrium, and phosphate were present on the nanoparticles’ surface as amorphous phases. However, a short annealing step (1 h) was sufficient to obtain the NASICON phase. Moreover, we have shown the gradual phase conversion from orthorhombic β phase to rhombohedral α phase as the annealing temperature increased from 700 °C to 1300 °C (complete removal of β phase). In this context, Y3+ doping was also crucial, along with the appropriate solvent mixture and annealing temperature, for obtaining the much-desired rhombohedral α phase. Further, 0.2 at% Y3+ doping was added to the solvent mixture of 2-ethyl hexanoic acid/ethanol, and annealing at 1300 °C for 1 h resulted in a high ionic conductivity of 1.14∙10−5 S cm−1. Full article
(This article belongs to the Topic Electrochemical Energy Storage Materials)
Show Figures

Figure 1

11 pages, 2015 KB  
Article
Engineering of LiTaO3 Nanoparticles by Flame Spray Pyrolysis: Understanding In Situ Li-Incorporation into the Ta2O5 Lattice
by Pavlos Psathas, Areti Zindrou, Anastasia V. Spyrou and Yiannis Deligiannakis
Nanomaterials 2024, 14(15), 1257; https://doi.org/10.3390/nano14151257 - 27 Jul 2024
Cited by 2 | Viewed by 2696
Abstract
Lithium tantalate (LiTaO3) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO3 nanoparticles using a scalable Flame [...] Read more.
Lithium tantalate (LiTaO3) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO3 nanoparticles using a scalable Flame Spray Pyrolysis (FSP) technology, that allows the formation of LiTaO3 nanomaterials in a single step. Raman, XRD and TEM studies allow for comprehension of the formation mechanism of the LiTaO3 nanophases, with particular emphasis on the penetration of Li atoms into the Ta-oxide lattice. We show that, control of the High-Temperature Particle Residence Time (HTPRT) in the FSP flame, is the key-parameter that allows successful penetration of the -otherwise amorphous- Li phase into the Ta2O5 nanophase. In this way, via control of the HTPRT in the FSP process, we synthesized a series of nanostructured LiTaO3 particles of varying phase composition from {amorphous Li/Ta2O5/LiTaO3} to {pure LiTaO3, 15–25 nm}. Finally, the photophysical activity of the FSP-made LiTaO3 was validated for photocatalytic H2 production from H2O. These data are discussed in conjunction with the role of the phase composition of the LiTaO3 nanoparticles. More generally, the present work allows a better understanding of the mechanism of ABO3 perovskite formation that requires the incorporation of two cations, A and B, into the nanolattice. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 8901 KB  
Article
A pH-Responsive Polycaprolactone–Copper Peroxide Composite Coating Fabricated via Suspension Flame Spraying for Antimicrobial Applications
by Tingting Cui, Daofeng Zhou, Yu Zhang, Decong Kong, Zhijuan Wang, Zhuoyue Han, Meiqi Song, Xierzhati Aimaier, Yanxin Dan, Botao Zhang and Hua Li
Materials 2024, 17(11), 2666; https://doi.org/10.3390/ma17112666 - 1 Jun 2024
Cited by 3 | Viewed by 1930
Abstract
In this study, a pH-responsive polycaprolactone (PCL)–copper peroxide (CuO2) composite antibacterial coating was developed by suspension flame spraying. The successful synthesis of CuO2 nanoparticles and fabrication of the PCL-CuO2 composite coatings were confirmed by microstructural and chemical analysis. The [...] Read more.
In this study, a pH-responsive polycaprolactone (PCL)–copper peroxide (CuO2) composite antibacterial coating was developed by suspension flame spraying. The successful synthesis of CuO2 nanoparticles and fabrication of the PCL-CuO2 composite coatings were confirmed by microstructural and chemical analysis. The composite coatings were structurally homogeneous, with the chemical properties of PCL well maintained. The acidic environment was found to effectively accelerate the dissociation of CuO2, allowing the simultaneous release of Cu2+ and H2O2. Antimicrobial tests clearly revealed the enhanced antibacterial properties of the PCL-CuO2 composite coating against both Escherichia coli and Staphylococcus aureus under acidic conditions, with a bactericidal effect of over 99.99%. This study presents a promising approach for constructing pH-responsive antimicrobial coatings for biomedical applications. Full article
(This article belongs to the Special Issue New Advances in Functionalization of Metal Materials)
Show Figures

Figure 1

14 pages, 2524 KB  
Article
Flame Spray Pyrolysis Synthesis of Vo-Rich Nano-SrTiO3-x
by Areti Zindrou, Pavlos Psathas and Yiannis Deligiannakis
Nanomaterials 2024, 14(4), 346; https://doi.org/10.3390/nano14040346 - 11 Feb 2024
Cited by 5 | Viewed by 3002
Abstract
Engineering of oxygen vacancies (Vo) in nanomaterials allows diligent control of their physicochemical properties. SrTiO3 possesses the typical ABO3 structure and has attracted considerable attention among the titanates due to its chemical stability and its high conduction band energy. This has [...] Read more.
Engineering of oxygen vacancies (Vo) in nanomaterials allows diligent control of their physicochemical properties. SrTiO3 possesses the typical ABO3 structure and has attracted considerable attention among the titanates due to its chemical stability and its high conduction band energy. This has resulted in its extensive use in photocatalytic energy-related processes, among others. Herein, we introduce the use of Flame Spray Pyrolysis (FSP); an industrial and scalable process to produce Vo-rich SrTiO3 perovskites. We present two types of Anoxic Flame Spray Pyrolysis (A-FSP) technologies using CH4 gas as a reducing source: Radial A-FSP (RA-FSP); and Axial A-FSP (AA-FSP). These are used for the control engineering of oxygen vacancies in the SrTiO3-x nanolattice. Based on X-ray photoelectron spectroscopy, Raman and thermogravimetry-differential thermal analysis, we discuss the role and the amount of the Vos in the so-produced nano-SrTiO3-x, correlating the properties of the nanolattice and energy-band structure of the SrTiO3-x. The present work further corroborates the versatility of FSP as a synthetic process and the potential future application of this process to engineer photocatalysts with oxygen vacancies in quantities that can be measured in kilograms. Full article
Show Figures

Graphical abstract

68 pages, 20769 KB  
Review
Advanced Flame Spray Pyrolysis (FSP) Technologies for Engineering Multifunctional Nanostructures and Nanodevices
by Christos Dimitriou, Pavlos Psathas, Maria Solakidou and Yiannis Deligiannakis
Nanomaterials 2023, 13(23), 3006; https://doi.org/10.3390/nano13233006 - 23 Nov 2023
Cited by 30 | Viewed by 10094
Abstract
Flame spray pyrolysis (FSP) is an industrially scalable technology that enables the engineering of a wide range of metal-based nanomaterials with tailored properties nanoparticles. In the present review, we discuss the recent state-of-the-art advances in FSP technology with regard to nanostructure engineering as [...] Read more.
Flame spray pyrolysis (FSP) is an industrially scalable technology that enables the engineering of a wide range of metal-based nanomaterials with tailored properties nanoparticles. In the present review, we discuss the recent state-of-the-art advances in FSP technology with regard to nanostructure engineering as well as the FSP reactor setup designs. The challenges of in situ incorporation of nanoparticles into complex functional arrays are reviewed, underscoring FSP’s transformative potential in next-generation nanodevice fabrication. Key areas of focus include the integration of FSP into the technology readiness level (TRL) for nanomaterials production, the FSP process design, and recent advancements in nanodevice development. With a comprehensive overview of engineering methodologies such as the oxygen-deficient process, double-nozzle configuration, and in situ coatings deposition, this review charts the trajectory of FSP from its foundational roots to its contemporary applications in intricate nanostructure and nanodevice synthesis. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 403 KB  
Review
Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review
by Roman Dziembaj, Marcin Molenda and Lucjan Chmielarz
Catalysts 2023, 13(8), 1165; https://doi.org/10.3390/catal13081165 - 29 Jul 2023
Cited by 12 | Viewed by 4475
Abstract
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species [...] Read more.
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species (O2n−, O) are generated at the M/CeO2−y nanoparticle interface, as well as in the surface layer of their solid-state solutions MxCe1−xO2−y. The crystal structure of CeO2, ZrO2 and (Ce, Zr)O2 and its defects are discussed in connection with the resulting specific catalytic activity. All the methods (simple precipitation and co-precipitation from mother liquors, sol–gel methods, precipitation from nanoemulsions, hydrothermal and solvothermal techniques, combustion and flame spray pyrolysis, precipitation using molecular and solid-state matrices, 3D printing and mechanochemical methods) used for the synthesis of these nanomaterials are comprehensively reviewed, describing the rules of individual procedures and preparation details. Methods of deposition of metal catalysts and their oxides on CeO2 nanoparticles, such as impregnation, washcoating and precipitation deposition, were also discussed. This review contains more than 160 references to representative papers wherein the reader can find further details on individual syntheses of effective ceria-based catalysts for redox reactions. Full article
14 pages, 4216 KB  
Article
Spray Flame Synthesis and Multiscale Characterization of Carbon Black–Silica Hetero-Aggregates
by Simon Buchheiser, Ferdinand Kistner, Frank Rhein and Hermann Nirschl
Nanomaterials 2023, 13(12), 1893; https://doi.org/10.3390/nano13121893 - 20 Jun 2023
Cited by 8 | Viewed by 2515
Abstract
The increasing demand for lithium-ion batteries requires constant improvements in the areas of production and recycling to reduce their environmental impact. In this context, this work presents a method for structuring carbon black aggregates by adding colloidal silica via a spray flame with [...] Read more.
The increasing demand for lithium-ion batteries requires constant improvements in the areas of production and recycling to reduce their environmental impact. In this context, this work presents a method for structuring carbon black aggregates by adding colloidal silica via a spray flame with the goal of opening up more choices for polymeric binders. The main focus of this research lies in the multiscale characterization of the aggregate properties via small-angle X-ray scattering, analytical disc centrifugation and electron microscopy. The results show successful formation of sinter-bridges between silica and carbon black leading to an increase in hydrodynamic aggregate diameter from 201 nm to up to 357 nm, with no significant changes in primary particle properties. However, segregation and coalescence of silica particles was identified for higher mass ratios of silica to carbon black, resulting in a reduction in the homogeneity of the hetero-aggregates. This effect was particularly evident for silica particles with larger diameters of 60 nm. Consequently, optimal conditions for hetero-aggregation were identified at mass ratios below 1 and particle sizes around 10 nm, at which homogenous distributions of silica within the carbon black structure were achieved. The results emphasise the general applicability of hetero-aggregation via spray flames with possible applications as battery materials. Full article
(This article belongs to the Special Issue Nanocomposite Design for Energy-Related Applications)
Show Figures

Figure 1

34 pages, 7676 KB  
Review
Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives
by Xianming Gao, Mingkun Wang and Zhiwei He
Coatings 2023, 13(5), 877; https://doi.org/10.3390/coatings13050877 - 7 May 2023
Cited by 15 | Viewed by 5825
Abstract
Wood is a renewable material that has been widely utilized as indoor and outdoor construction and decoration material in our daily life. Although wood has many advantages (i.e., light weight, high strength, low price and easy machinability), it has some drawbacks that influence [...] Read more.
Wood is a renewable material that has been widely utilized as indoor and outdoor construction and decoration material in our daily life. Although wood has many advantages (i.e., light weight, high strength, low price and easy machinability), it has some drawbacks that influence dimensional stability, cracking and decay resistance in real practical applications. To mitigate these issues, superhydrophobic surfaces have been introduced to wood substrates, creating superhydrophobic wood surfaces (SHWSs) that can improve stability, water resistance, ultraviolet radiation resistance and flame retardancy. Herein, the recent developments and future perspectives of SHWSs are reviewed. Firstly, the preparation methods of SHWSs are summarized and discussed in terms of immersion, spray-coating, hydrothermal synthesis, dip-coating, deposition, sol-gel process and other methods, respectively. Due to the characteristics of the above preparation methods and the special properties of wood substrates, multiple methods are suggested to be combined to prepare SHWSs rather than each individual method. Secondly, the versatile practical applications of SHWSs are introduced, including anti-fungi/anti-bacteria, oil/water separation, fire-resistance, anti-ultraviolet irradiation, electromagnetic interference shielding, photocatalytic performance, and anti-icing. When discussing these practical applications, the advantages of SHWSs and the reason why SHWSs can be used in such applications are also mentioned. Finally, we provide with perspectives and outlooks for the future developments and applications of SHWSs, expecting to extend the utilization of SHWSs in our daily life and industry. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic and Icephobic Surfaces)
Show Figures

Figure 1

35 pages, 5194 KB  
Review
Flame Synthesis of Carbon and Metal-Oxide Nanoparticles: Flame Types, Effects of Combustion Parameters on Properties and Measurement Methods
by Raul Serrano-Bayona, Carson Chu, Peng Liu and William L. Roberts
Materials 2023, 16(3), 1192; https://doi.org/10.3390/ma16031192 - 30 Jan 2023
Cited by 20 | Viewed by 5414
Abstract
Carbon and metal-oxide nanoparticles (NP) are currently synthesized worldwide for various applications in the solar-energy, optical, pharmaceutical, and biomedical industries, among many others. Gas phase methods comprise flame synthesis and flame spray pyrolysis (FSP), which provide high efficiency, low cost, and the possibility [...] Read more.
Carbon and metal-oxide nanoparticles (NP) are currently synthesized worldwide for various applications in the solar-energy, optical, pharmaceutical, and biomedical industries, among many others. Gas phase methods comprise flame synthesis and flame spray pyrolysis (FSP), which provide high efficiency, low cost, and the possibility of large-scale applications. The variation of combustion operation parameters exerts significant effects on the properties of the NPs. An analysis of the latest research results relevant to NP flame synthesis can provide new insight into the optimization of these methods and the development of these techniques for a large scale. This review offers insight into the current status of flame synthesis for carbon and metal-oxide NPs—specifically containing analysis and comparison of the most common carbon and metal-oxide NP production techniques. The burner configurations used at the laboratory scale and large scale are also discussed, followed by the assessment of the influence of combustion parameters on the properties of NPs. Finally, the features of the measurement techniques applied for determining NP properties were described. Full article
(This article belongs to the Special Issue Structure and Properties of Nanoparticles in Flame/Combustion)
Show Figures

Figure 1

Back to TopTop