Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = spontaneous neurotransmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1835 KiB  
Article
Dual Mechanisms of the Diazepine-Benzimidazole Derivative, DAB-19, in Modulating Glutamatergic Neurotransmission
by Maxim V. Nikolaev, Irina M. Fedorova, Oxana V. Chistyakova, Tatiana Yu. Postnikova, Kira Kh. Kim, Mikhail Yu. Dron, Aleksey V. Zaitsev and Denis B. Tikhonov
Int. J. Mol. Sci. 2025, 26(11), 5299; https://doi.org/10.3390/ijms26115299 - 30 May 2025
Viewed by 526
Abstract
The search for novel compounds with anticonvulsant properties remains a key focus in neuropharmacology. Recently, the diazepine-benzimidazole derivative, DAB-19, has emerged as a promising candidate due to its demonstrated anxiolytic and analgesic effects. In this study, we investigate the mechanisms underlying DAB-19’s activity, [...] Read more.
The search for novel compounds with anticonvulsant properties remains a key focus in neuropharmacology. Recently, the diazepine-benzimidazole derivative, DAB-19, has emerged as a promising candidate due to its demonstrated anxiolytic and analgesic effects. In this study, we investigate the mechanisms underlying DAB-19’s activity, focusing on its impact on glutamatergic transmission, a key target in the pathophysiology of various central nervous system disorders. Intriguingly, while DAB-19 suppressed evoked glutamatergic transmission in rat brain slices, it simultaneously enhanced spontaneous neurotransmission. Further experiments on glutamatergic neuromuscular synapses in fly larvae revealed two distinct mechanisms: calcium-dependent potentiation of glutamate release and inhibition of spike propagation via blockade of voltage-gated sodium channels. The latter effect was directly confirmed in rat brain neurons. Given its action on sodium channels, we tested DAB-19 in the pentylenetetrazole model, where it delayed seizure onset but did not prevent seizures. These findings position DAB-19 as a multifaceted compound with significant therapeutic potential. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy, 2nd Edition)
Show Figures

Figure 1

24 pages, 2331 KiB  
Article
Auditory Event-Related Potentials in Two Rat Models of Attention-Deficit Hyperactivity Disorder: Evidence of Automatic Attention Deficits in Spontaneously Hypertensive Rats but Not in Latrophilin-3 Knockout Rats
by Logan M. Brewer, Jankiben Patel, Frank Andrasik, Jeffrey J. Sable, Michael T. Williams, Charles V. Vorhees and Helen J. K. Sable
Genes 2025, 16(6), 672; https://doi.org/10.3390/genes16060672 - 30 May 2025
Viewed by 581
Abstract
Background/Objectives: Variations of the latrophilin-3 (Lphn3) gene have been associated with attention-deficit hyperactivity disorder (ADHD). To explore the functional influence of this gene, Lphn3 knockout (KO) rats were generated and have thus far demonstrated deficits in ADHD-relevant phenotypes, including working memory, [...] Read more.
Background/Objectives: Variations of the latrophilin-3 (Lphn3) gene have been associated with attention-deficit hyperactivity disorder (ADHD). To explore the functional influence of this gene, Lphn3 knockout (KO) rats were generated and have thus far demonstrated deficits in ADHD-relevant phenotypes, including working memory, impulsivity, and hyperactivity. However, inattention remains unexplored. Methods: We assessed automatic attention in Lphn3 KO (n = 19) and their control line (wildtype/WT, n = 20) through use of the following auditory event-related potentials (ERPs): P1, N1, P2, and N2. We also extended this exploratory study by comparing these same ERPs in spontaneously hypertensive rats (SHRs, n = 16), the most commonly studied animal model of ADHD, to their control line (Wistar–Kyoto/WKY, n = 20). Electroencephalograms (EEG) were recorded using subdermal needle electrodes at frontocentral sites while freely moving rats were presented with five-tone trains (50 ms tones, 400 ms tone onset asynchronies) with varying short (1 s) and long (5 s) inter-train intervals. Peak amplitudes and latencies were analyzed using GLM-mixed ANOVAs to assess differences across genotypes (KO vs. WTs) and strains (SHRs vs. WKYs). Results: The KOs did not demonstrate any significant differences in peak amplitudes relative to the WT controls, suggesting that the null expression of Lphn3 does not result in the development of inefficiencies in automatic attention. However, the SHRs exhibited significantly reduced peak P1 (and peak-to-peak P1–N1) values relative to the WKYs. These attenuations likely reflect inefficiencies in bottom-up arousal networks that are necessary for efficient automatic processing. Conclusions: Distinct findings between these animal models likely reflect differing alterations in dopamine and noradrenaline neurotransmission that may underlie ADHD-relevant phenotypes. Full article
(This article belongs to the Special Issue Genetics of Neuropsychiatric Disorders)
Show Figures

Figure 1

85 pages, 24685 KiB  
Review
Adaptogens in Long-Lasting Brain Fatigue: An Insight from Systems Biology and Network Pharmacology
by Alexander Panossian, Terrence Lemerond and Thomas Efferth
Pharmaceuticals 2025, 18(2), 261; https://doi.org/10.3390/ph18020261 - 15 Feb 2025
Cited by 1 | Viewed by 8370
Abstract
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine [...] Read more.
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine cycle imbalance, glucose metabolism, and ATP energy supply, which are associated with multiple molecular targets and signaling pathways in neuroendocrine-immune and blood circulation systems. Regeneration of damaged brain tissue is a long-lasting multistage process, including spontaneously regulating hypothalamus-pituitary (HPA) axis-controlled anabolic–catabolic homeostasis to recover harmonized sympathoadrenal system (SAS)-mediated function, brain energy supply, and deregulated gene expression in rehabilitation. The driving mechanism of spontaneous recovery and regeneration of brain tissue is a cross-talk of mediators of neuronal, microglia, immunocompetent, and endothelial cells collectively involved in neurogenesis and angiogenesis, which plant adaptogens can target. Adaptogens are small molecules of plant origin that increase the adaptability of cells and organisms to stress by interaction with the HPA axis and SAS of the stress system (neuroendocrine-immune and cardiovascular complex), targeting multiple mediators of adaptive GPCR signaling pathways. Two major groups of adaptogens comprise (i) phenolic phenethyl and phenylpropanoid derivatives and (ii) tetracyclic and pentacyclic glycosides, whose chemical structure can be distinguished as related correspondingly to (i) monoamine neurotransmitters of SAS (epinephrine, norepinephrine, and dopamine) and (ii) steroid hormones (cortisol, testosterone, and estradiol). In this narrative review, we discuss (i) the multitarget mechanism of integrated pharmacological activity of botanical adaptogens in stress overload, ischemic stroke, and long-lasting brain fatigue; (ii) the time-dependent dual response of physiological regulatory systems to adaptogens to support homeostasis in chronic stress and overload; and (iii) the dual dose-dependent reversal (hormetic) effect of botanical adaptogens. This narrative review shows that the adaptogenic concept cannot be reduced and rectified to the various effects of adaptogens on selected molecular targets or specific modes of action without estimating their interactions within the networks of mediators of the neuroendocrine-immune complex that, in turn, regulates other pharmacological systems (cardiovascular, gastrointestinal, reproductive systems) due to numerous intra- and extracellular communications and feedback regulations. These interactions result in polyvalent action and the pleiotropic pharmacological activity of adaptogens, which is essential for characterizing adaptogens as distinct types of botanicals. They trigger the defense adaptive stress response that leads to the extension of the limits of resilience to overload, inducing brain fatigue and mental disorders. For the first time, this review justifies the neurogenesis potential of adaptogens, particularly the botanical hybrid preparation (BHP) of Arctic Root and Ashwagandha, providing a rationale for potential use in individuals experiencing long-lasting brain fatigue. The review provided insight into future research on the network pharmacology of adaptogens in preventing and rehabilitating long-lasting brain fatigue following stroke, trauma, and viral infections. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

14 pages, 3034 KiB  
Article
HERC1 E3 Ubiquitin Ligase Is Necessary for Autophagy Processes and for the Maintenance and Homeostasis of Vesicles in Motor Nerve Terminals, but Not for Proteasomal Activity
by Miguel Ángel Pérez-Castro, Francisco Hernández-Rasco, Isabel María Alonso-Bellido, María S. Letrán-Sánchez, Eva María Pérez-Villegas, Joana Vitallé, Luis Miguel Real, Ezequiel Ruiz-Mateos, José Luis Venero, Lucía Tabares, Ángel Manuel Carrión, José Ángel Armengol, Sara Bachiller and Rocío Ruiz
Int. J. Mol. Sci. 2025, 26(2), 793; https://doi.org/10.3390/ijms26020793 - 18 Jan 2025
Viewed by 1170
Abstract
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection [...] Read more.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein. Using this model, we analyzed the implication of HERC1 E3 ubiquitin ligase in the activity of UPS, autophagy, and synaptic homeostasis in brain and muscle tissues. Regarding UPS, no differences were found in its activity nor in the specific gene expression in both brain and muscle tissues from tbl compared with the control littermates. Furthermore, the use of the specific UPS inhibitor (MG-132), did not alter the evoked neurotransmitter release in the levator auris longus (LAL) muscle. Interestingly, the expression of the autophagy-related gene p62 was significantly increased in the muscle of tbl compared to the control littermates. Indeed, impaired evoked neurotransmitter release was observed with the autophagy inhibitor Wortmannin. Finally, altered levels of Clathrin and Synaptophysin were detected in muscle tissues. Altogether, our findings show that HERC1 E3 ubiquitin ligase mutation found in tbl mice alters autophagy and vesicular recycling without affecting proteasomal function. Full article
(This article belongs to the Special Issue Molecular and Neuromuscular Mechanisms in Skeletal Muscle Aging)
Show Figures

Figure 1

23 pages, 4823 KiB  
Article
Alleviation of Autophagic Deficits and Neuroinflammation by Histamine H3 Receptor Antagonist E159 Ameliorates Autism-Related Behaviors in BTBR Mice
by Shilu Deepa Thomas, Petrilla Jayaprakash, Nurfirzana Z. H. J. Marwan, Ezzatul A. B. A. Aziz, Kamil Kuder, Dorota Łażewska, Katarzyna Kieć-Kononowicz and Bassem Sadek
Pharmaceuticals 2024, 17(10), 1293; https://doi.org/10.3390/ph17101293 - 28 Sep 2024
Cited by 1 | Viewed by 1936
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer’s disease. Methods: This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. Results: E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. Conclusions: These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors. Full article
Show Figures

Graphical abstract

23 pages, 1454 KiB  
Review
Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review
by Abel A. Oldoni, André D. Bacchi, Fúlvio R. Mendes, Paula A. Tiba and Sérgio Mota-Rolim
Brain Sci. 2024, 14(5), 426; https://doi.org/10.3390/brainsci14050426 - 25 Apr 2024
Cited by 2 | Viewed by 10006
Abstract
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, [...] Read more.
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, we aim to review the literature on neuropsychopharmacological induction of LD. First, we describe the circadian and homeostatic processes of sleep regulation and the mechanisms that control REM sleep with a focus on neurotransmission systems. We then discuss the neurophysiology and phenomenology of LD to understand the main cortical oscillations and brain areas involved in the emergence of lucidity during REM sleep. Finally, we review possible exogenous substances—including natural plants and artificial drugs—that increase metacognition, REM sleep, and/or dream recall, thus with the potential to induce LD. We found that the main candidates are substances that increase cholinergic and/or dopaminergic transmission, such as galantamine. However, the main limitation of this technique is the complexity of these neurotransmitter systems, which challenges interpreting results in a simple way. We conclude that, despite these promising substances, more research is necessary to find a reliable way to pharmacologically induce LD. Full article
Show Figures

Figure 1

22 pages, 3397 KiB  
Article
Neurosteroid Modulation of Synaptic and Extrasynaptic GABAA Receptors of the Mouse Nucleus Accumbens
by Scott J. Mitchell, Grant D. Phillips, Becks Tench, Yunkai Li, Delia Belelli, Stephen J. Martin, Jerome D. Swinny, Louise Kelly, John R. Atack, Michael Paradowski and Jeremy J. Lambert
Biomolecules 2024, 14(4), 460; https://doi.org/10.3390/biom14040460 - 9 Apr 2024
Cited by 4 | Viewed by 3063
Abstract
The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this [...] Read more.
The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2βγ2) and extrasynaptic (α4βδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed. Full article
(This article belongs to the Special Issue Role of Neuroactive Steroids in Health and Disease)
Show Figures

Figure 1

32 pages, 8958 KiB  
Article
Serotonergic and Adrenergic Neuroreceptor Manipulation Ameliorates Core Symptoms of ADHD through Modulating Dopaminergic Receptors in Spontaneously Hypertensive Rats
by Sampath Madhyastha, Muddanna S. Rao and Waleed M. Renno
Int. J. Mol. Sci. 2024, 25(4), 2300; https://doi.org/10.3390/ijms25042300 - 15 Feb 2024
Cited by 3 | Viewed by 3850
Abstract
The core symptoms of attention deficit hyperactivity disorder (ADHD) are due to the hypofunction of the brain’s adrenergic (NE) and dopamine (DA) systems. Drugs that enhance DA and NE neurotransmission in the brain by blocking their transporters or receptors are the current therapeutic [...] Read more.
The core symptoms of attention deficit hyperactivity disorder (ADHD) are due to the hypofunction of the brain’s adrenergic (NE) and dopamine (DA) systems. Drugs that enhance DA and NE neurotransmission in the brain by blocking their transporters or receptors are the current therapeutic strategies. Of late, the emerging results point out the serotonergic (5-HT) system, which indirectly modulates the DA activity in reducing the core symptoms of ADHD. On this basis, second-generation antipsychotics, which utilize 5-HT receptors, were prescribed to children with ADHD. However, it is not clear how serotonergic receptors modulate the DA activity to minimize the symptoms of ADHD. The present study investigates the efficacy of serotonergic and alpha-2 adrenergic receptor manipulation in tackling the core symptoms of ADHD and how it affects the DA neuroreceptors in the brain regions involved in ADHD. Fifteen-day-old male spontaneously hypertensive rats (SHRs) received 5-HT1A agonist (ipsapirone) or 5-HT2A antagonist (MDL 100907) (i.p.) or alpha-2 agonist (GFC) from postnatal days 15 to 42 along with age-matched Wistar Kyoto rats (WKY) (n = 8 in each group). ADHD-like behaviors were assessed using a battery of behavioral tests during postnatal days 44 to 65. After the behavioral tests, rat brains were processed to estimate the density of 5-HT1A, 5-HT2A, DA-D1, and DA-D2 neuroreceptors in the prefrontal cortex, the striatum, and the substantia nigra. All three neuroreceptor manipulations were able to minimize the core symptoms of ADHD in SHRs. The positive effect was mainly associated with the upregulation of 5-HT2A receptors in all three areas investigated, while 5-HT1A was in the prefrontal cortex and the substantia nigra. Further, the DA-D1 receptor expression was downregulated by all three neuroreceptor manipulations except for alpha-2 adrenergic receptor agonists in the striatum and 5-HT2A antagonists in the substantia nigra. The DA-D2 expression was upregulated in the striatum while downregulated in the prefrontal cortex and the substantia nigra. In this animal model study, the 5-HT1A agonist or 5-HT2A antagonist monotherapies were able to curtail the ADHD symptoms by differential expression of DA receptors in different regions of the brain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 6549 KiB  
Article
Glucagon-like Peptide-2 Depresses Ileal Contractility in Preparations from Mice through Opposite Modulatory Effects on Nitrergic and Cholinergic Neurotransmission
by Eglantina Idrizaj, Cristina Biagioni, Chiara Traini, Maria Giuliana Vannucchi and Maria Caterina Baccari
Int. J. Mol. Sci. 2024, 25(3), 1855; https://doi.org/10.3390/ijms25031855 - 3 Feb 2024
Cited by 3 | Viewed by 1638
Abstract
Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile [...] Read more.
Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption. Full article
(This article belongs to the Special Issue Gut Hormone: Molecular Mechanism and Its Biological Functions)
Show Figures

Figure 1

12 pages, 1044 KiB  
Article
Regulation of Hippocampal GABAergic Transmission by Fluoxetine and Its Metabolite Norfluoxetine
by Elizabeth Vázquez-Gómez, Andy Hernández-Abrego, Jassiel Mejía-Piedras and Jesús García-Colunga
Receptors 2024, 3(1), 1-12; https://doi.org/10.3390/receptors3010001 - 4 Jan 2024
Viewed by 2516
Abstract
Major depression is related to dysfunction of the GABAergic pathway. Interestingly, the antidepressant fluoxetine modifies GABAergic neurotransmission in human and animal models of depression. However, the effects of norfluoxetine (the main metabolite of fluoxetine) on GABAergic neurotransmission have not yet been studied. Therefore, [...] Read more.
Major depression is related to dysfunction of the GABAergic pathway. Interestingly, the antidepressant fluoxetine modifies GABAergic neurotransmission in human and animal models of depression. However, the effects of norfluoxetine (the main metabolite of fluoxetine) on GABAergic neurotransmission have not yet been studied. Therefore, we explored whether fluoxetine and/or norfluoxetine may regulate GABAergic transmission and whether these substances interact with GABAA receptors in hippocampal CA1 stratum radiatum interneurons. For these purposes, we recorded the firing profile, GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs), and currents induced by GABA puffs in stratum radiatum interneurons using both whole-cell current- and voltage-clamp techniques. Interneurons were selected according with their high firing profile. We found that both fluoxetine and norfluoxetine (at 20 µM) significantly decreased the frequency of sIPSCs without modifying their amplitude and decreased the amplitude of GABA-induced currents. These results indicate that fluoxetine and norfluoxetine decrease GABA release from neurons contacting stratum radiatum interneurons and negatively modulate GABAA receptors in these interneurons, resulting in their disinhibition, which in turn may contribute to increasing the inhibition of hippocampal CA1 pyramidal neurons. Full article
Show Figures

Figure 1

28 pages, 7387 KiB  
Article
Injury to Cone Synapses by Retinal Detachment: Differences from Rod Synapses and Protection by ROCK Inhibition
by Ellen Townes-Anderson, Éva Halász, Ilene Sugino, Amy L. Davidow, Laura J. Frishman, Luke Fritzky, Fawad A. K. Yousufzai and Marco Zarbin
Cells 2023, 12(11), 1485; https://doi.org/10.3390/cells12111485 - 27 May 2023
Cited by 8 | Viewed by 3140
Abstract
Attachment of a detached retina does not always restore vision to pre-injury levels, even if the attachment is anatomically successful. The problem is due in part to long-term damage to photoreceptor synapses. Previously, we reported on damage to rod synapses and synaptic protection [...] Read more.
Attachment of a detached retina does not always restore vision to pre-injury levels, even if the attachment is anatomically successful. The problem is due in part to long-term damage to photoreceptor synapses. Previously, we reported on damage to rod synapses and synaptic protection using a Rho kinase (ROCK) inhibitor (AR13503) after retinal detachment (RD). This report documents the effects of detachment, reattachment, and protection by ROCK inhibition on cone synapses. Conventional confocal and stimulated emission depletion (STED) microscopy were used for morphological assessment and electroretinograms for functional analysis of an adult pig model of RD. RDs were examined 2 and 4 h after injury or two days later when spontaneous reattachment had occurred. Cone pedicles respond differently than rod spherules. They lose their synaptic ribbons, reduce invaginations, and change their shape. ROCK inhibition protects against these structural abnormalities whether the inhibitor is applied immediately or 2 h after the RD. Functional restoration of the photopic b-wave, indicating cone-bipolar neurotransmission, is also improved with ROCK inhibition. Successful protection of both rod and cone synapses with AR13503 suggests this drug will (1) be a useful adjunct to subretinal administration of gene or stem cell therapies and (2) improve recovery of the injured retina when treatment is delayed. Full article
(This article belongs to the Special Issue Retinal Cell Biology in Health and Disease)
Show Figures

Figure 1

17 pages, 2366 KiB  
Article
Nifedipine Ameliorates Cellular Differentiation Defects of Smn-Deficient Motor Neurons and Enhances Neuromuscular Transmission in SMA Mice
by Rocio Tejero, Mohammad Alsakkal, Luisa Hennlein, Ana M. Lopez-Cabello, Sibylle Jablonka and Lucia Tabares
Int. J. Mol. Sci. 2023, 24(8), 7648; https://doi.org/10.3390/ijms24087648 - 21 Apr 2023
Cited by 2 | Viewed by 2379
Abstract
In spinal muscular atrophy (SMA), mutations in or loss of the Survival Motor Neuron 1 (SMN1) gene reduce full-length SMN protein levels, which leads to the degeneration of a percentage of motor neurons. In mouse models of SMA, the development and [...] Read more.
In spinal muscular atrophy (SMA), mutations in or loss of the Survival Motor Neuron 1 (SMN1) gene reduce full-length SMN protein levels, which leads to the degeneration of a percentage of motor neurons. In mouse models of SMA, the development and maintenance of spinal motor neurons and the neuromuscular junction (NMJ) function are altered. Since nifedipine is known to be neuroprotective and increases neurotransmission in nerve terminals, we investigated its effects on cultured spinal cord motor neurons and motor nerve terminals of control and SMA mice. We found that application of nifedipine increased the frequency of spontaneous Ca2+ transients, growth cone size, cluster-like formations of Cav2.2 channels, and it normalized axon extension in SMA neurons in culture. At the NMJ, nifedipine significantly increased evoked and spontaneous release at low-frequency stimulation in both genotypes. High-strength stimulation revealed that nifedipine increased the size of the readily releasable pool (RRP) of vesicles in control but not SMA mice. These findings provide experimental evidence about the ability of nifedipine to prevent the appearance of developmental defects in SMA embryonic motor neurons in culture and reveal to which extent nifedipine could still increase neurotransmission at the NMJ in SMA mice under different functional demands. Full article
Show Figures

Graphical abstract

17 pages, 4306 KiB  
Article
Fatal Epileptic Seizures in Mice Having Compromised Glutathione and Ascorbic Acid Biosynthesis
by Ying Chen, Katherine D. Holland, Howard G. Shertzer, Daniel W. Nebert and Timothy P. Dalton
Antioxidants 2023, 12(2), 448; https://doi.org/10.3390/antiox12020448 - 10 Feb 2023
Cited by 2 | Viewed by 2939
Abstract
Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10–40% of normal tissue [...] Read more.
Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10–40% of normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascorbic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures and brain pathology in young DKO mice could be prevented with AA supplementation in drinking water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for 2–3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures, with death occurring between 12 and 21 days later. These results provide direct evidence for an indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain function and neuronal health. We speculate that the functional crosstalk between GSH and AA plays an important role in regulating glutamatergic neurotransmission and in protecting against excitotoxicity-induced brain damage. Full article
(This article belongs to the Topic Antioxidants and Oxidative Stress in Brain Health)
Show Figures

Graphical abstract

12 pages, 2664 KiB  
Article
Differential Modulation of the Excitatory and Inhibitory Synaptic Circuits of Retinal Ganglion Cells via Asiatic Acid in a Chronic Glaucoma Rat Model
by Yinglei Zhang, Chunyan Hu, Cong Niu, Jiaxu Hong and Xujiao Zhou
J. Clin. Med. 2023, 12(3), 1056; https://doi.org/10.3390/jcm12031056 - 29 Jan 2023
Cited by 1 | Viewed by 1940
Abstract
Purpose: To investigate whether asiatic acid (AA) can improve the quantity and function of retinal ganglion cells (RGCs), as well as how AA regulates synaptic pathways in rat models with chronic glaucoma. Methods: In our study, a rat model of chronic glaucoma was [...] Read more.
Purpose: To investigate whether asiatic acid (AA) can improve the quantity and function of retinal ganglion cells (RGCs), as well as how AA regulates synaptic pathways in rat models with chronic glaucoma. Methods: In our study, a rat model of chronic glaucoma was prepared via the electrocoagulation of the episcleral veins. The numbers of surviving RGCs were counted via retrograde Fluorogold labeling, and a whole-cell patch clamp was used to clamp RGCs in normal retinal sections and in retinal sections 4 weeks after glaucoma induction. Results: Retrograde-Fluorogold-labeled RGC loss caused by persistent glaucoma was decreased by AA. Additionally, AA reduced the postsynaptic current produced by N-methyl-D-aspartate (NMDA) and diminished miniature glutamatergic excitatory neurotransmission to RGCs. On the other hand, AA increased miniature gamma-aminobutyric acid (GABA)-ergic inhibitory neurotransmission to RGCs and enhanced the GABA-induced postsynaptic current. The excitability of the RGC itself was also decreased by AA. RGCs in glaucomatous slices were less excitable because AA decreased their spontaneous action potential frequency and membrane potential, which led to a hyperpolarized condition. Conclusions: AA directly protected RGCs in a chronic glaucoma rat model by lowering their hyperexcitability. To enhance RGCs’ survival and function in glaucoma, AA may be a viable therapeutic drug. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

28 pages, 4869 KiB  
Article
Cognitive Healthy Aging in Mice: Boosting Memory by an Ergothioneine-Rich Hericium erinaceus Primordium Extract
by Elisa Roda, Fabrizio De Luca, Daniela Ratto, Erica Cecilia Priori, Elena Savino, Maria Grazia Bottone and Paola Rossi
Biology 2023, 12(2), 196; https://doi.org/10.3390/biology12020196 - 28 Jan 2023
Cited by 24 | Viewed by 6981
Abstract
Brain aging is a crucial risk factor for several neurodegenerative disorders and dementia. The most affected cognitive function is memory, worsening early during aging. Inflammation and oxidative stress are known to have a role in pathogenesis of cognitive impairments, and a link exists [...] Read more.
Brain aging is a crucial risk factor for several neurodegenerative disorders and dementia. The most affected cognitive function is memory, worsening early during aging. Inflammation and oxidative stress are known to have a role in pathogenesis of cognitive impairments, and a link exists between aging/frailty and immunosenescence/inflammaging. Based on anti-aging properties, medicinal mushrooms represent a source to develop medicines and functional foods. In particular, Hericium erinaceus (He) displays several actions ranging from boosting the immune system to fighting senescence, due to its active ingredients/metabolites. Among these, Ergothioneine (ERGO) is known as the longevity vitamin. Currently, we demonstrated the efficacy of an ERGO-rich He primordium extract (He2) in preventing cognitive decline in a murine model of aging. We focused on recognition memory deterioration during aging, monitored through spontaneous behavioral tests assessing both memory components and frailty index. A parallel significant decrease in key markers of inflammation and oxidative stress, i.e., IL6, TGFβ1, GFAP, Nrf2, SOD1, COX2, NOS2, was revealed in the hippocampus by immunohistochemistry, accompanied by an enhancement of NMDAR1and mGluR2, crucially involved in glutamatergic neurotransmission. In summary, we disclosed a selective, preventive and neuroprotective effect of He2 on aged hippocampus, both on recognition memory as well on inflammation/oxidative stress/glutamate receptors expression. Full article
(This article belongs to the Collection Molecular Mechanisms of Aging)
Show Figures

Figure 1

Back to TopTop