Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = splat investigations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14668 KB  
Article
Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting
by Dario Billi, Gabriella Caroti and Andrea Piemonte
Sensors 2025, 25(14), 4410; https://doi.org/10.3390/s25144410 - 15 Jul 2025
Viewed by 927
Abstract
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical [...] Read more.
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical methodology using existing tools to verify metric accuracy standards. The study compares three methods, conventional photogrammetry, 3D Gaussian splatting (3DGS), and 2D Gaussian splatting (2DGS), to assess their ability to produce complete and metrically reliable 3D models suitable for measurement and geometric analysis. A transparent glass artifact serves as the case study. Results show that 2DGS captures fine surface and internal details with better geometric consistency than 3DGS and photogrammetry. Although 3DGS offers high visual quality, it introduces surface artifacts that affect metric reliability. Photogrammetry fails to reconstruct the object entirely. The study highlights that visual quality does not ensure geometric accuracy, which is critical for measurement applications. In this work, ground truth comparisons confirm that 2DGS offers the best trade-off between accuracy and appearance, despite higher computational demands. These findings suggest extending the experimentation to other sets of images featuring transparent objects, and possibly also reflective ones. Full article
Show Figures

Figure 1

19 pages, 1492 KB  
Article
Metaverse and Digital Twins in the Age of AI and Extended Reality
by Ming Tang, Mikhail Nikolaenko, Ahmad Alrefai and Aayush Kumar
Architecture 2025, 5(2), 36; https://doi.org/10.3390/architecture5020036 - 30 May 2025
Viewed by 1235
Abstract
This paper explores the evolving relationship between Digital Twins (DT) and the Metaverse, two foundational yet often conflated digital paradigms in digital architecture. While DTs function as mirrored models of real-world systems—integrating IoT, BIM, and real-time analytics to support decision-making—Metaverses are typically fictional, [...] Read more.
This paper explores the evolving relationship between Digital Twins (DT) and the Metaverse, two foundational yet often conflated digital paradigms in digital architecture. While DTs function as mirrored models of real-world systems—integrating IoT, BIM, and real-time analytics to support decision-making—Metaverses are typically fictional, immersive, multi-user environments shaped by social, cultural, and speculative narratives. Through several research projects, the team investigate the divergence between DTs and Metaverses through the lens of their purpose, data structure, immersion, and interactivity, while highlighting areas of convergence driven by emerging technologies in Artificial Intelligence (AI) and Extended Reality (XR).This study aims to investigate the convergence of DTs and the Metaverse in digital architecture, examining how emerging technologies—such as AI, XR, and Large Language Models (LLMs)—are blurring their traditional boundaries. By analyzing their divergent purposes, data structures, and interactivity modes, as well as hybrid applications (e.g., data-integrated virtual environments and AI-driven collaboration), this study seeks to define the opportunities and challenges of this integration for architectural design, decision-making, and immersive user experiences. Our research spans multiple projects utilizing XR and AI to develop DT and the Metaverse. The team assess the capabilities of AI in DT environments, such as reality capture and smart building management. Concurrently, the team evaluates metaverse platforms for online collaboration and architectural education, focusing on features facilitating multi-user engagement. The paper presents evaluations of various virtual environment development pipelines, comparing traditional BIM+IoT workflows with novel approaches such as Gaussian Splatting and generative AI for content creation. The team further explores the integration of Large Language Models (LLMs) in both domains, such as virtual agents or LLM-powered Non-Player-Controlled Characters (NPC), enabling autonomous interaction and enhancing user engagement within spatial environments. Finally, the paper argues that DTs and Metaverse’s once-distinct boundaries are becoming increasingly porous. Hybrid digital spaces—such as virtual buildings with data-integrated twins and immersive, social metaverses—demonstrate this convergence. As digital environments mature, architects are uniquely positioned to shape these dual-purpose ecosystems, leveraging AI, XR, and spatial computing to fuse data-driven models with immersive and user-centered experiences. Full article
(This article belongs to the Special Issue Shaping Architecture with Computation)
Show Figures

Figure 1

22 pages, 64906 KB  
Article
Comparative Assessment of Neural Radiance Fields and 3D Gaussian Splatting for Point Cloud Generation from UAV Imagery
by Muhammed Enes Atik
Sensors 2025, 25(10), 2995; https://doi.org/10.3390/s25102995 - 9 May 2025
Viewed by 1728
Abstract
Point clouds continue to be the main data source in 3D modeling studies with unmanned aerial vehicle (UAV) images. Structure-from-Motion (SfM) and MultiView Stereo (MVS) have high time costs for point cloud generation, especially in large data sets. For this reason, state-of-the-art methods [...] Read more.
Point clouds continue to be the main data source in 3D modeling studies with unmanned aerial vehicle (UAV) images. Structure-from-Motion (SfM) and MultiView Stereo (MVS) have high time costs for point cloud generation, especially in large data sets. For this reason, state-of-the-art methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have emerged as powerful alternatives for point cloud generation. This paper explores the performance of NeRF and 3DGS methods in generating point clouds from UAV images. For this purpose, the Nerfacto, Instant-NGP, and Splatfacto methods developed in the Nerfstudio framework were used. The obtained point clouds were evaluated by taking the point cloud produced with the photogrammetric method as reference. In this study, the effects of image size and iteration number on the performance of the algorithms were investigated in two different study areas. According to the results, Splatfacto demonstrates promising capabilities in addressing challenges related to scene complexity, rendering efficiency, and accuracy in UAV imagery. Full article
(This article belongs to the Special Issue Stereo Vision Sensing and Image Processing)
Show Figures

Figure 1

39 pages, 49962 KB  
Review
Learning-Based 3D Reconstruction Methods for Non-Collaborative Surfaces—A Metrological Evaluation
by Ziyang Yan, Nazanin Padkan, Paweł Trybała, Elisa Mariarosaria Farella and Fabio Remondino
Metrology 2025, 5(2), 20; https://doi.org/10.3390/metrology5020020 - 3 Apr 2025
Cited by 1 | Viewed by 3320
Abstract
Non-collaborative (i.e., reflective, transparent, metallic, etc.) surfaces are common in industrial production processes, where 3D reconstruction methods are applied for quantitative quality control inspections. Although the use or combination of photogrammetry and photometric stereo performs well for well-textured or partially textured objects, it [...] Read more.
Non-collaborative (i.e., reflective, transparent, metallic, etc.) surfaces are common in industrial production processes, where 3D reconstruction methods are applied for quantitative quality control inspections. Although the use or combination of photogrammetry and photometric stereo performs well for well-textured or partially textured objects, it usually produces unsatisfactory 3D reconstruction results on non-collaborative surfaces. To improve 3D inspection performances, this paper investigates emerging learning-based surface reconstruction methods, such as Neural Radiance Fields (NeRF), Multi-View Stereo (MVS), Monocular Depth Estimation (MDE), Gaussian Splatting (GS) and image-to-3D generative AI as potential alternatives for industrial inspections. A comprehensive evaluation dataset with several common industrial objects was used to assess methods and gain deeper insights into the applicability of the examined approaches for inspections in industrial scenarios. In the experimental evaluation, geometric comparisons were carried out between the reference data and learning-based reconstructions. The results indicate that no method can outperform all the others across all evaluations. Full article
Show Figures

Figure 1

19 pages, 7384 KB  
Article
The Role of HVAF Nozzle Design and Process Parameters on In-Flight Particle Oxidation and Microstructure of NiCoCrAlY Coatings
by Aravind Kumar Thoutam, Murilo Sergio Lamana, Bruno C. N. M. de Castilho, Fadhel Ben Ettouil, Ritvij Chandrakar, Stephanie Bessette, Nicolas Brodusch, Raynald Gauvin, Ali Dolatabadi and Christian Moreau
Coatings 2025, 15(3), 355; https://doi.org/10.3390/coatings15030355 - 19 Mar 2025
Viewed by 565
Abstract
Increasing demand to deposit dense and oxidation-resistant bond coats requires reliable and efficient deposition techniques. High-Velocity Air-Fuel (HVAF), among other thermal spray processes, is showcasing consistent potential to optimize spraying techniques and deposition strategies for depositing NiCoCrAlY coatings. NiCoCrAlY coatings are sensitive to [...] Read more.
Increasing demand to deposit dense and oxidation-resistant bond coats requires reliable and efficient deposition techniques. High-Velocity Air-Fuel (HVAF), among other thermal spray processes, is showcasing consistent potential to optimize spraying techniques and deposition strategies for depositing NiCoCrAlY coatings. NiCoCrAlY coatings are sensitive to high-temperature oxidation, and preserving the aluminum reservoir in the bond coats is of the highest priority to potentially resist oxidation during thermal cycling. Contrary to the existing literature on comparing carbide-based HVAF deposition with other processes, this work investigates the specific role of nozzle configurations. It primarily focuses on in-flight particle characteristics using diagnostic tools and the corresponding inflight particle oxidation of NiCoCrAlY feedstock. This work details individual splat and coating characteristics, revealing the significant influence of nozzle configurations. A comprehensive understanding of process–material–microstructure correlations was established using a commercially available NiCoCrAlY coating system. Comprehensive discussions on nozzle configurations over various feedstock powder characteristics were carried out in this work. Advanced characterization techniques were employed to assess the in-flight particle oxidation and coating microstructure using focused ion beam (FIB), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Full article
Show Figures

Figure 1

22 pages, 5344 KB  
Article
Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting
by Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen and Radoslav Miltchev
J. Imaging 2025, 11(2), 65; https://doi.org/10.3390/jimaging11020065 - 18 Feb 2025
Cited by 1 | Viewed by 1651
Abstract
This study examines how different filming techniques can enhance the quality of 3D reconstructions with a particular focus on their use in indoor crime scene investigations. Using Neural Radiance Fields (NeRF) and Gaussian Splatting, we explored how factors like camera orientation, filming speed, [...] Read more.
This study examines how different filming techniques can enhance the quality of 3D reconstructions with a particular focus on their use in indoor crime scene investigations. Using Neural Radiance Fields (NeRF) and Gaussian Splatting, we explored how factors like camera orientation, filming speed, data layering, and scanning path affect the detail and clarity of 3D reconstructions. Through experiments in a mock crime scene apartment, we identified optimal filming methods that reduce noise and artifacts, delivering clearer and more accurate reconstructions. Filming in landscape mode, at a slower speed, with at least three layers and focused on key objects produced the most effective results. These insights provide valuable guidelines for professionals in forensics, architecture, and cultural heritage preservation, helping them capture realistic high-quality 3D representations. This study also highlights the potential for future research to expand on these findings by exploring other algorithms, camera parameters, and real-time adjustment techniques. Full article
(This article belongs to the Special Issue Geometry Reconstruction from Images (2nd Edition))
Show Figures

Figure 1

18 pages, 3855 KB  
Article
Impact of Camera Settings on 3D Reconstruction Quality: Insights from NeRF and Gaussian Splatting
by Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen and Radoslav Miltchev
Sensors 2024, 24(23), 7594; https://doi.org/10.3390/s24237594 - 28 Nov 2024
Cited by 3 | Viewed by 2635
Abstract
This paper explores the influence of various camera settings on the quality of 3D reconstructions, particularly in indoor crime scene investigations. Utilizing Neural Radiance Fields (NeRF) and Gaussian Splatting for 3D reconstruction, we analyzed the impact of ISO, shutter speed, and aperture settings [...] Read more.
This paper explores the influence of various camera settings on the quality of 3D reconstructions, particularly in indoor crime scene investigations. Utilizing Neural Radiance Fields (NeRF) and Gaussian Splatting for 3D reconstruction, we analyzed the impact of ISO, shutter speed, and aperture settings on the quality of the resulting 3D reconstructions. By conducting controlled experiments in a meeting room setup, we identified optimal settings that minimize noise and artifacts while maximizing detail and brightness. Our findings indicate that an ISO of 200, a shutter speed of 1/60 s, and an aperture of f/3.5 provide the best balance for high-quality 3D reconstructions. These settings are especially useful for forensic applications, architectural visualization, and cultural heritage preservation, offering practical guidelines for professionals in these fields. The study also highlights the potential for future research to expand on these findings by exploring other camera parameters and real-time adjustment techniques. Full article
Show Figures

Figure 1

12 pages, 30181 KB  
Article
Enhanced Fracture Toughness of WC-CoCr Thermally Sprayed Coatings by the Addition of NiCrFeSiBC and Mo and Its Influence on Sliding Wear Behavior
by José de Jesús Ibarra, Marco Aurelio González, Eduardo Rodríguez, Gabriel Israel Vásquez, Ariosto Medina, José Bernal, Claudio Aguilar and Eduardo Enrique Velez
Coatings 2024, 14(9), 1207; https://doi.org/10.3390/coatings14091207 - 19 Sep 2024
Cited by 1 | Viewed by 1465
Abstract
Wear is a major issue in industry, particularly with metal components. Therefore, it is crucial to investigate methods that offer increased resistance to this phenomenon. In this research, three coating systems (pure WC-CoCr and WC-CoCr/NiCrFeSiBC+Mo, 88:12 and 83:17 wt.%) were thermally sprayed on [...] Read more.
Wear is a major issue in industry, particularly with metal components. Therefore, it is crucial to investigate methods that offer increased resistance to this phenomenon. In this research, three coating systems (pure WC-CoCr and WC-CoCr/NiCrFeSiBC+Mo, 88:12 and 83:17 wt.%) were thermally sprayed on an AISI 1018 steel substrate through the High-Velocity Oxygen Fuel (HVOF) process. The coatings were characterized using a field emission scanning electron microscope (FESEM) equipped with the energy dispersive spectroscope (EDS) and X-ray diffractometry (XRD). An analysis of the wear rate for ball-on-flat linear reciprocating sliding tribological tests for the coatings was also carried out. The coating microstructure presents well-dispersed NiCrFeSiBC splats. The WC-CoCr/NiCrFeSiBC+Mo, 88:12, system has the highest wear resistance, decreasing by 30.2% at high loads compared to commercial WC-CoCr CERMETs, and also exhibits the highest fracture toughness. Analysis of wear tracks shows that the material removal at all charges occurred mainly by an abrasive wear mechanism. Full article
Show Figures

Figure 1

16 pages, 13078 KB  
Article
Metallization of Carbon Fiber-Reinforced Plastics (CFRP): Influence of Plasma Pretreatment on Mechanical Properties and Splat Formation of Atmospheric Plasma-Sprayed Aluminum Coatings
by Christian Semmler, Willi Schwan and Andreas Killinger
Coatings 2024, 14(9), 1169; https://doi.org/10.3390/coatings14091169 - 11 Sep 2024
Cited by 1 | Viewed by 1753
Abstract
Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs. Full article
Show Figures

Figure 1

15 pages, 16558 KB  
Article
Investigation on the Microstructure and Micro-Mechanical Properties of Thermal-Sprayed NiCoCrAlY High Entropy Alloy Coating
by Animesh Kumar Basak, Nachimuthu Radhika, Chander Prakash and Alokesh Pramanik
Designs 2024, 8(2), 37; https://doi.org/10.3390/designs8020037 - 20 Apr 2024
Cited by 7 | Viewed by 1875
Abstract
NiCoCrAlY high entropy alloy (HEA) coating (47.1 wt.% Ni, 23 wt.% Co, 17 wt.% Cr, 12.5 wt.% Al, and 0.4 wt.% Y) was deposited on a stainless steel subtract by atmospheric plasma spraying (APS). The as-deposited coating was about 300 μm thickness with [...] Read more.
NiCoCrAlY high entropy alloy (HEA) coating (47.1 wt.% Ni, 23 wt.% Co, 17 wt.% Cr, 12.5 wt.% Al, and 0.4 wt.% Y) was deposited on a stainless steel subtract by atmospheric plasma spraying (APS). The as-deposited coating was about 300 μm thickness with <1% porosity. The microstructure of the coating consisted of dispersed secondary phases/intermetallics in the solid solution. The stress–strain behaviour of this coating was investigated in micro-scale with the help of in situ micro-pillar compression. The experimental results show that yield and compressive stress in the cross-section of the coating was higher (1.27 ± 0.10 MPa and 2.19 ± 0.10 GPa, respectively) than that of the planar direction (0.85 ± 0.09 MPa and 1.20 ± 0.08 GPa, respectively). The various secondary/intermetallic phases (γ′–Ni3Al, β–NiAl) that were present in the coating microstructure hinder the lattice movement during compression, according to Orowan mechanism. In addition to that, the direction of the loading to that of the orientation of the phase/splat boundaries dictate the crack propagation architecture, which results in difference in the micro-mechanical properties. Full article
(This article belongs to the Special Issue Post-Manufacturing Testing and Characterization of Materials)
Show Figures

Figure 1

16 pages, 9462 KB  
Article
Effect of Heat Treatment on the Electrochemical and Tribological Properties of Aluminum-Bronze Coatings Deposited Used the Thermal Spraying Process
by Jose Alfredo Morales, Oscar Piamba, Jhon Olaya and Fabio Vallejo
Coatings 2024, 14(4), 423; https://doi.org/10.3390/coatings14040423 - 31 Mar 2024
Cited by 4 | Viewed by 1502
Abstract
The corrosion and wear resistance of aluminum-bronze coatings deposited by thermal flame spraying were investigated after a 10 h heat treatment at 500 °C in a nitrogen atmosphere. The coatings were characterized by SEM, EDS, XRD, and XRF. Corrosion resistance was evaluated by [...] Read more.
The corrosion and wear resistance of aluminum-bronze coatings deposited by thermal flame spraying were investigated after a 10 h heat treatment at 500 °C in a nitrogen atmosphere. The coatings were characterized by SEM, EDS, XRD, and XRF. Corrosion resistance was evaluated by Tafel and EIS tests, while wear resistance was assessed using a ball-on-disc test. Results showed the heat treatment compacted the coating microstructure, increased oxide content, and improved splat bonding through diffusion mechanisms. This led to enhanced corrosion resistance, evidenced by reduced corrosion current density in electrochemical tests, resulting from densification impeding electrolyte penetration. Heat treatment also increased wear resistance, as indicated by lower wear rates in ball-on-disc tests, attributable to increased hardness, reduced friction coefficients, and annealing-induced microstructural changes. Overall, the heat treatment optimizes the anticorrosive and tribological properties of thermally sprayed aluminum-bronze coatings via favorable alterations in composition, morphology, and physical characteristics. The research provides a new understanding of how thermal spray parameters and post-deposition heat treatment can be utilized to enhance the corrosion and wear resistance of aluminum-bronze coatings for marine applications. Full article
(This article belongs to the Special Issue Advanced Thermal Spraying Technology)
Show Figures

Figure 1

19 pages, 12167 KB  
Article
Numerical and Experimental Investigation Gas-Particle Two Phase Flow in Cold Spraying Nanostructured HA/Ti Composite Particle
by Xiao Chen, Zhijun Xi, Hao Liu, Xixi Duan, Qinqin Gao and Chengdi Li
Coatings 2023, 13(5), 818; https://doi.org/10.3390/coatings13050818 - 23 Apr 2023
Cited by 2 | Viewed by 1471
Abstract
HA composite coatings added reinforcement phases could improve the mechanical properties and bonding strength of the coatings. Cold spraying is a feasible surface technology for preparing HA composite coatings. In order to investigate the influence of cold spraying parameters on the deposition behavior [...] Read more.
HA composite coatings added reinforcement phases could improve the mechanical properties and bonding strength of the coatings. Cold spraying is a feasible surface technology for preparing HA composite coatings. In order to investigate the influence of cold spraying parameters on the deposition behavior of a single HA/Ti composite particle, numerical and experimental investigation of gas-particle two-phase flow in cold spraying nanostructured HA/Ti composite particle were investigated in this study. The results show that the influence of different temperatures and pressures on static pressure was not significant. The effects of gas pressure on the static temperature were tiny under the same inlet temperature and different pressure conditions; however, the static temperature in the entire spray gun cavity increased as the inlet temperature increased under the same pressure and different inlet temperature conditions. There is little effect of gas pressure on the axial velocity of gas flow in the spray gun cavity; however, the axial velocity of gas flow increased with the increase in gas temperature. Meanwhile, the axial velocity of gas flow gradually increases throughout the spraying process. At a gas temperature of 573 K and 973 K, the maximum axial velocities of a gas flow at gas pressure of 2.2 MPa were 778 m/s and 942 m/s, respectively. There is little effect of gas pressure on the axial velocity of HA/30 wt.% Ti particles under the same gas temperature. The axial velocity of HA/30 wt.% Ti particles increased with the increase in gas temperature under the same gas pressure condition. The axial velocity of composite particles decreased with the increase in the particle size under the same gas pressure and gas temperature. At a gas temperature of 573 K and 973 K, the minimum axial velocity of HA/30 wt.% Ti particles with a particle size of 30 μm at a gas pressure of 2.2 MPa was 435 m/s and 467 m/s, respectively. A certain deformation of splats occurred after impacting the substrate, and the splats adhered to the surface of the Ti6Al4Vsubstrate, clearly presenting a flat shape with a central hump surrounded by a ringy band. At a gas temperature of 973 K, particles generated more severe deformation with more cracks and ejecta phenomenon. The splats attached to the substrate were increased as the gas temperature increased. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology)
Show Figures

Figure 1

12 pages, 3626 KB  
Article
Effect of Thermochemical Boronizing of Alumina Surface on the Borate Crystals Growth and Interaction with Nickel and Nickel Alloy
by Jelena Škamat, Aleksandr Lebedev, Olegas Černašėjus and Rimvydas Stonys
Crystals 2023, 13(1), 4; https://doi.org/10.3390/cryst13010004 - 20 Dec 2022
Cited by 2 | Viewed by 2642
Abstract
Wettability at the metal-ceramic interface is highly important for the development of modern composite materials. Poor wettability by metal melts restricts the use of alumina in protective metal matrix composite (MMC) coatings. In the present experimental study, the possibility to modify wetting properties [...] Read more.
Wettability at the metal-ceramic interface is highly important for the development of modern composite materials. Poor wettability by metal melts restricts the use of alumina in protective metal matrix composite (MMC) coatings. In the present experimental study, the possibility to modify wetting properties of alumina by thermochemical surface boronizing was investigated. The results of SEM, EDS, XRD and XPS characterisation of surfaces revealed the formation of oxygen containing Al–B compounds identified as aluminium borates (Al18B4O33/Al4B2O9); no signs of non-oxide Al–B compounds were observed. The shape of the single splats deposited on the boronized alumina surface by the thermal spray and re-melted in the furnace revealed that significant wetting improvement by self-fluxing nickel alloy did not occur. However, the improvement of adhesion between the nickel/nickel alloy and Al2O3 surface was obtained due to formation of an intermediate layer consisting of B, O, Al and Si between the metal and ceramic surfaces at the presence of some silicon at the modified surfaces. The presented study demonstrates that the thermochemical boronizing of alumina in amorphous boron medium is a simple method to obtain a thin aluminium borate layer consisting of oriented nano-rod-like crystals, whose growing direction is predetermined by the orientation of the alumina grains’ faces at surface. Full article
(This article belongs to the Special Issue Metal Matrix Composite Materials and Coatings)
Show Figures

Figure 1

9 pages, 23493 KB  
Article
Numerical Investigation of Air Entrapment Dynamics for High-Speed Thermal Spraying
by Han Ge, Kaichuang Wang, Jiawang Chen, Ronghua Zhu, Marisa Lazarus and Dayun Yan
Appl. Sci. 2022, 12(23), 12039; https://doi.org/10.3390/app122312039 - 24 Nov 2022
Cited by 2 | Viewed by 1906
Abstract
For thermal spraying, bubble entrapments are highly undesired, as this would lead to pores in the final coating and lower its adhesion quality. This understanding warrants an investigation of the process behind their formation. Nevertheless, the air entrapment process is difficult to study [...] Read more.
For thermal spraying, bubble entrapments are highly undesired, as this would lead to pores in the final coating and lower its adhesion quality. This understanding warrants an investigation of the process behind their formation. Nevertheless, the air entrapment process is difficult to study via experimental methods since molten droplets are always opaque and hard to visualize. Most numerical models are focused on air entrapment at the moment of impact, which could only explain the pores observed around the center of the splat. Here, in this paper, the air entrapment of a micron-sized molten nickel droplet impacting on a stainless-steel substrate is numerically studied. The results show that, besides the air entrapped during the high-speed impacting (impacting air bubbles/IM bubbles), bubbles may also be entrapped due to the fallback of the pointed-out finger on the edge during the spreading process (spreading air bubbles/SP bubbles). The number and size of the entrapped SP bubbles are related to the solidification rate and spreading rate. Therefore, both low (50 m/s) and high (200 m/s) impacting speeds could achieve an entrapped bubble ratio that is about 10% lower than that of a medium one (100 m/s). However, the formed coating is thick for low impacting speeds, and the low entrapped bubble ratio is obtained due to the cut-off of the peripherical fingers, which is actually unwanted. Full article
Show Figures

Figure 1

20 pages, 15533 KB  
Article
Comparison of Microstructure, Microhardness, Fracture Toughness, and Abrasive Wear of WC-17Co Coatings Formed in Various Spraying Ways
by Xiao Chen, Chengdi Li, Qinqin Gao, Xixi Duan and Hao Liu
Coatings 2022, 12(6), 814; https://doi.org/10.3390/coatings12060814 - 10 Jun 2022
Cited by 16 | Viewed by 2624
Abstract
WC-Co cermet materials serving as protective coatings are widely used in many fields. Conventional WC-17Co coatings were formed in high-velocity oxygen-fuel (HVOF), warm spraying (WS), and cold spraying (CS), respectively. Deposition behavior of a single WC-17Co particle, as well as the microstructure, microhardness, [...] Read more.
WC-Co cermet materials serving as protective coatings are widely used in many fields. Conventional WC-17Co coatings were formed in high-velocity oxygen-fuel (HVOF), warm spraying (WS), and cold spraying (CS), respectively. Deposition behavior of a single WC-17Co particle, as well as the microstructure, microhardness, fracture toughness, and abrasive wear of WC-17Co coatings formed in various spraying ways were investigated. The results show that the deposition behavior of a single WC-17Co particle was different after it was deposited onto a Q235 steel substrate in various spraying ways. The WC-17Co splat deposited by HVOF showed a center hump and some molten areas, as well as some radial splashes presented at the edge of the splat. The WC-17Co splat deposited by WS presented a flattened morphology with no molten areas. However, the WC-17Co splat deposited by CS remained nearly spherical in shape and embedded into the substrate to a certain depth. All the WC-17Co coatings had the same phase compositions with that of feedstock. The microstructure of all the WC-17Co coatings was dense with no cracks or abscission phenomena between the coatings and substrate. Moreover, fine WC particles were formed in the coatings due to the fracture of coarse WC particles, and the content of fine WC particles in the cold-sprayed coating was significantly more than the other coatings. A stripe structure was formed by the slippage of fine WC particles with a plastic flow of Co binder in the warm-sprayed and cold-sprayed coatings. More fine WC particles, as well as the stripe structure, in the coatings were conducive to improve the microhardness and fracture toughness of the coating. The microhardness and fracture toughness of the cold-sprayed WC-17Co coating were the highest among the coatings. The main wear mechanism of all coatings was the groove and some peel-offs. The cold-sprayed WC-17Co coating with the lowest wear loss presented the highest wear resistance among the coatings. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

Back to TopTop