Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = spine plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5306 KB  
Article
N-Stearidonoylethanolamine Restores CA1 Synaptic Integrity and Reduces Astrocytic Reactivity After Mild Traumatic Brain Injury
by Anastasia Egoraeva, Igor Manzhulo, Darya Ivashkevich and Anna Tyrtyshnaia
Int. J. Mol. Sci. 2026, 27(1), 471; https://doi.org/10.3390/ijms27010471 - 2 Jan 2026
Viewed by 224
Abstract
Mild traumatic brain injury (mTBI) disrupts hippocampal network function through coordinated alterations in glial reactivity, synaptic integrity, and adult neurogenesis. Effective therapeutic approaches targeting these interconnected processes remain limited. Lipid-derived molecules capable of modulating these mTBI-induced disturbances are emerging as promising neuroprotective candidates. [...] Read more.
Mild traumatic brain injury (mTBI) disrupts hippocampal network function through coordinated alterations in glial reactivity, synaptic integrity, and adult neurogenesis. Effective therapeutic approaches targeting these interconnected processes remain limited. Lipid-derived molecules capable of modulating these mTBI-induced disturbances are emerging as promising neuroprotective candidates. Here, we investigated the effects of N-stearidonylethanolamine (SDEA), an ω-3 ethanolamide, in a mouse model of mTBI. SDEA treatment attenuated astrocytic reactivity, restored Arc expression, and improved dendritic spine density and morphology in the CA1 hippocampal area. In the dentate gyrus, mTBI reduced Ki-67-indexed proliferation while leaving DCX-positive immature neurons unchanged, and SDEA partially rescued proliferative activity. These effects were accompanied by improvements in anxiety-like behavior and working-memory performance. Together, these findings demonstrate that SDEA modulates several key components of the glia-synapse-neurogenesis axis and supports functional recovery of hippocampal circuits following mTBI. These results suggest that ω-3 ethanolamides may represent promising candidates for multi-target therapeutic strategies in mTBI. Full article
Show Figures

Figure 1

25 pages, 1666 KB  
Review
Pridopidine, a Potent and Selective Therapeutic Sigma-1 Receptor (S1R) Agonist for Treating Neurodegenerative Diseases
by Noga Gershoni Emek, Andrew M. Tan, Michal Geva, Andrea Fekete, Carmen Abate and Michael R. Hayden
Pharmaceuticals 2025, 18(12), 1900; https://doi.org/10.3390/ph18121900 - 17 Dec 2025
Viewed by 858
Abstract
Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in clinical development for Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). The S1R is a ubiquitous chaperone protein enriched in the central nervous system and regulates multiple pathways critical for neuronal cell function [...] Read more.
Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in clinical development for Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). The S1R is a ubiquitous chaperone protein enriched in the central nervous system and regulates multiple pathways critical for neuronal cell function and survival, including cellular stress responses, mitochondrial function, calcium signaling, protein folding, and autophagy. S1R has a crucial role in the ER mitochondria-associated membrane (MAM), whose dysfunction is implicated in several neurodegenerative diseases. By activating the S1R, pridopidine corrects multiple cellular pathways necessary to the cell’s ability to respond to stress, which are disrupted in neurodegenerative diseases. Pridopidine restores MAM integrity; rescues Ca2+ homeostasis and autophagy; mitigates ER stress, mitochondrial dysfunction, and oxidative damage; and enhances brain-derived neurotrophic factor (BDNF) axonal transport and secretion, synaptic plasticity, and dendritic spine density. Pridopidine demonstrates neuroprotective effects in in vivo models of neurodegenerative diseases (NDDs). Importantly, pridopidine demonstrates the biphasic dose response characteristic of S1R agonists. In clinical trials in HD and ALS, pridopidine has shown benefits across multiple endpoints. Pridopidine’s mechanism of action, modulating core cellular survival pathways, positions it as a promising candidate for disease modification for different nervous system disorders. Its broad therapeutic potential includes neurodevelopmental disorders, and rare diseases including Wolfram syndrome, Rett syndrome, and Vanishing White Matter Disease. Here, we review the experimental data demonstrating pridopidine’s S1R-mediated neuroprotective effects. These findings underscore the therapeutic relevance of S1R activation and support further investigation of pridopidine for the treatment of different neurodegenerative diseases including ALS and HD. Full article
(This article belongs to the Special Issue Current Advances in Therapeutic Potential of Sigma Receptor Ligands)
Show Figures

Figure 1

15 pages, 700 KB  
Review
The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome
by Luis Molina Calistro, Yennyfer Arancibia, Javiera Alarcón and Rodrigo Flavio Torres
Int. J. Mol. Sci. 2025, 26(21), 10490; https://doi.org/10.3390/ijms262110490 - 29 Oct 2025
Viewed by 776
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized [...] Read more.
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized by dendritic spine dysgenesis and altered excitation–inhibition balance, drawing attention to the mechanisms that scale from mutations in a nuclear protein to altered neuronal connectivity. Although Mecp2 dysfunction disrupts multiple neuronal processes, emerging evidence highlights altered calcium (Ca2+) signaling as a central contributor to RTT pathophysiology. This review explores the link between Mecp2 and Ca2+ regulation by highlighting how Mecp2 affects Ca2+-dependent transcriptional pathways, while Ca2+ modulates Mecp2 function by inducing post-translational modifications. We discuss this crosstalk in light of evidence from RTT models, with a particular focus on the brain-derived neurotrophic factor BDNF-miR132-Mecp2 axis and the dysregulation of ryanodine receptors (RyRs). Additionally, we examine how these perturbations contribute to the reduced structural plasticity and the altered activity-driven gene expression that characterizes RTT. Understanding the intersection between Mecp2 function and Ca2+ homeostasis will provide critical insights into RTT pathogenesis and potential therapeutic targets aimed at restoring neuronal connectivity. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

17 pages, 877 KB  
Review
Synaptic Pathology in Traumatic Brain Injury and Therapeutic Insights
by Poojith Nuthalapati, Sophie E. Holmes, Hamada H. Altalib and Arman Fesharaki-Zadeh
Int. J. Mol. Sci. 2025, 26(19), 9604; https://doi.org/10.3390/ijms26199604 - 1 Oct 2025
Cited by 1 | Viewed by 1386
Abstract
Traumatic brain injury (TBI) results in a cascade of neuropathological events, which can significantly disrupt synaptic integrity. This review explores the acute, subacute and chronic phases of synaptic dysfunction and loss in trauma which commence post-TBI, and their contribution to the subsequent neurological [...] Read more.
Traumatic brain injury (TBI) results in a cascade of neuropathological events, which can significantly disrupt synaptic integrity. This review explores the acute, subacute and chronic phases of synaptic dysfunction and loss in trauma which commence post-TBI, and their contribution to the subsequent neurological sequelae. Central to these disruptions is the loss of dendritic spines and impaired synaptic plasticity, which compromise neuronal connectivity and signal transmission. During the acute phase of TBI, mechanical injury triggers presynaptic glutamate secretion and Ca2+ ion-mediated excitotoxic injury, accompanied by cerebral edema, mitochondrial dysfunction and the loss of the mushroom-shaped architecture of the dendritic spines. The subacute phase is marked by continued glutamate excitotoxicity and GABAergic disruption, along with neuroinflammatory pathology and autophagy. In the chronic phase, long-term structural remodeling and reduced synaptic densities are evident. These chronic alterations underlie persistent cognitive and memory deficits, mood disturbances and the development of post-traumatic epilepsy. Understanding the phase-specific progression of TBI-related synaptic dysfunction is essential for targeted interventions. Novel therapeutic strategies primarily focus on how to effectively counter acute excitotoxicity and neuroinflammatory cascades. Future approaches may benefit from boosting synaptic repair and modulating neurotransmitter systems in a phase-specific manner, thereby mitigating the long-term impact of TBI on neuronal function. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 4626 KB  
Article
Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation
by Jinchao Hou, Haowei Zhang, Xiaodong Huo, Ruili Guan, Boxuan Wang, Yuchen Wang, Fang Zhao, Xinqin Liu, Yang Hu, Congcong Zhuang and Yuankang Zou
Biomolecules 2025, 15(10), 1391; https://doi.org/10.3390/biom15101391 - 30 Sep 2025
Cited by 1 | Viewed by 881
Abstract
Exposure to hypoxia at high altitudes is significantly associated with impairments in learning and memory functions, as well as abnormalities in neuronal function and synaptic plasticity. Recent research has indicated that mitochondrial reactive oxygen species (mtROS) play a role in regulating microglial activation [...] Read more.
Exposure to hypoxia at high altitudes is significantly associated with impairments in learning and memory functions, as well as abnormalities in neuronal function and synaptic plasticity. Recent research has indicated that mitochondrial reactive oxygen species (mtROS) play a role in regulating microglial activation and mediating neurotoxic damage in the hippocampal CA1 region. Nicotinamide riboside (NR), upon absorption, is rapidly converted into nicotinamide adenine dinucleotide (NAD+), which is involved in the production of mitochondrial adenosine triphosphate (ATP). The potential of NR to protect dendritic spine plasticity in hippocampal CA1 neurons following hypoxia exposure, potentially through the inhibition of microglial activation, warrants further investigation. To this end, a mouse model simulating hypoxia at an altitude of 6000 m over a two-week period, along with a BV2 cells and conditional co-culture of BV2 cells and HT22 cells 1%O2 hypoxia model, was developed. Behavioral assessments indicated that, relative to the normoxia group, mice subjected to hypoxia exhibited a significant reduction in the time spent in the target quadrant, the distance traveled within the target quadrant, the number of platform crossings, and the novel object recognition index. Furthermore, Golgi staining revealed a marked decrease in the density of dendritic spines in the hippocampal CA1 region in the hypoxia-exposed mice compared to the normoxia group. Subsequently, A daily dosage of 400 mg/kg of NR was administered for two weeks and 0.5 mM NR was used in a conditional co-culture model. Results demonstrated that, in comparison to the hypoxia group, the group receiving combined hypoxia and NR treatment showed significant improvements in the time spent in the target quadrant, the distance traveled within the target quadrant, the number of platform crossings, the novel object recognition index, and the density of dendritic spines in the hippocampal CA1 region. Additionally, transmission electron microscopy indicated a significant increase in the synaptic density of hippocampal neurons in the combined hypoxia exposure and NR treatment group compared to the hypoxia exposure group. Simultaneously, when compared to the hypoxia group, the combination of hypoxia and NR treatment resulted in an increased concentration of mitochondrial ATP. This treatment also partially restored mitochondrial membrane integrity, reduced mtROS levels, decreased the percent of Iba1+CD68+Iba1+ microglia, and lowered the interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), and inducible nitric oxide synthase (iNOS) mRNA levels. These findings indicate that NR treatment may mitigate neurotoxic damage in the hippocampal CA1 region induced by hypoxia exposure, primarily through the attenuation of microglial activation and the reduction in mtROS production. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 1360 KB  
Review
Spaceflight and Ground-Based Microgravity Simulation Impact on Cognition and Brain Plasticity
by Jiaqi Hao, Jun Chang and Yulin Deng
Int. J. Mol. Sci. 2025, 26(19), 9521; https://doi.org/10.3390/ijms26199521 - 29 Sep 2025
Cited by 1 | Viewed by 2808
Abstract
Microgravity exposure during spaceflight has been linked to cognitive impairments, including deficits in attention, executive function, and spatial memory. Both space missions and ground-based analogs—such as head-down bed rest, dry immersion, and hindlimb unloading—consistently demonstrate that altered gravity disrupts brain structure and neural [...] Read more.
Microgravity exposure during spaceflight has been linked to cognitive impairments, including deficits in attention, executive function, and spatial memory. Both space missions and ground-based analogs—such as head-down bed rest, dry immersion, and hindlimb unloading—consistently demonstrate that altered gravity disrupts brain structure and neural plasticity. Neuroimaging data reveal significant changes in brain morphology, functional connectivity, and cerebrospinal fluid dynamics. At the cellular level, simulated microgravity impairs synaptic plasticity, alters dendritic spine architecture, and compromises neurotransmitter release. These changes are accompanied by dysregulation of neuroendocrine signaling, decreased expression of neurotrophic factors, and activation of oxidative stress and neuroinflammatory pathways. Molecular and omics-level analyses further point to mitochondrial dysfunction and disruptions in key signaling cascades governing synaptic integrity, energy metabolism, and neuronal survival. Despite these advances, discrepancies across studies—due to differences in models, durations, and endpoints—limit mechanistic clarity and translational relevance. Human data remain scarce, emphasizing the need for standardized, longitudinal, and multimodal investigations. This review provides an integrated synthesis of current evidence on the cognitive and neurobiological effects of microgravity, spanning behavioral, structural, cellular, and molecular domains. By identifying consistent patterns and unresolved questions, we highlight critical targets for future research and the development of effective neuroprotective strategies for long-duration space missions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 8295 KB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 1231
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 10678 KB  
Article
Effects of Angiotensin II Receptor 1 Inhibition by LCZ696 on the Acquisition and Relapse of Methamphetamine-Associated Contextual Memory
by Xiaofang Li, Zhiting Zou, Xiangdong Yang, Jinnan Lü, Xiaoyu Zhang, Jiahui Zhou, Dan Zhu, Xinshuang Gong, Shujun Lin, Zhaoying Yu, Zizhen Si, Wenting Wei, Yakai Xie and Yu Liu
Pharmaceuticals 2025, 18(7), 1016; https://doi.org/10.3390/ph18071016 - 8 Jul 2025
Viewed by 958
Abstract
Background/Objectives: Contextual memory associated with methamphetamine (METH) use contributes to relapse and persistence of addiction. Angiotensin II type 1 receptor (AT1R) signaling has been implicated in drug reinforcement. LCZ696, a clinically used combination of sacubitril (a neprilysin inhibitor) and valsartan (an AT1R antagonist), [...] Read more.
Background/Objectives: Contextual memory associated with methamphetamine (METH) use contributes to relapse and persistence of addiction. Angiotensin II type 1 receptor (AT1R) signaling has been implicated in drug reinforcement. LCZ696, a clinically used combination of sacubitril (a neprilysin inhibitor) and valsartan (an AT1R antagonist), may interfere with METH-associated memory through the modulation of dopaminergic pathways. Methods: Male C57BL/6J mice were tested in a conditioned place preference (CPP) paradigm to assess the effects of LCZ696, sacubitril (AHU377), and valsartan on METH-induced memory expression and reinstatement. Synaptic plasticity in the nucleus accumbens (NAc) was examined by assessing the levels of synaptophysin (Syp) and postsynaptic density protein 95 (Psd95), as well as dendritic spine density. Dopaminergic signaling in the ventral tegmental area (VTA) was evaluated via ELISA, Western blotting, and chromatin immunoprecipitation (ChIP), targeting cAMP response element-binding protein (Creb) binding to the tyrosine hydroxylase (Th) promoter. To further assess the role of Th, an adeno-associated virus (AAV9) carrying a CRISPR-Cas9-based sgRNA targeting Th (AAV9-Th-sgRNA) was microinjected into the VTA. Results: LCZ696 and valsartan significantly reduced METH-induced CPP and reinstatement. LCZ696 reversed METH-induced synaptic and dopaminergic alterations and suppressed Creb-mediated Th transcription. Th knockdown attenuated both CPP acquisition and relapse. Conclusions: LCZ696 disrupts METH-associated contextual memory by modulating dopaminergic signaling and Creb-dependent Th expression, supporting its potential as a treatment for METH use disorder. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 1037 KB  
Review
Spinoplastic Surgery: A Review of Techniques, Indications, and Optimal Patient Selection
by Daniel Vernik, Camryn Payne, Krishna Sinha, Casey Martinez, Walter Nicholas Jungbauer, Jonathan L. Jeger, Michael Bohl, Alexander E. Ropper, Sebastian Winocour and Edward Reece
Brain Sci. 2025, 15(7), 705; https://doi.org/10.3390/brainsci15070705 - 30 Jun 2025
Cited by 1 | Viewed by 1086
Abstract
Background/Objectives: Spinoplastic surgery is an emerging multidisciplinary field developed to address and reduce the complication of pseudoarthrosis following complex spinal reconstructions. While the number of spinal fusion procedures continues to rise every year, fusion failure rates remain as high as 40%. Although pseudoarthrosis [...] Read more.
Background/Objectives: Spinoplastic surgery is an emerging multidisciplinary field developed to address and reduce the complication of pseudoarthrosis following complex spinal reconstructions. While the number of spinal fusion procedures continues to rise every year, fusion failure rates remain as high as 40%. Although pseudoarthrosis may not always manifest clinically, it remains a leading cause of persistent pain and need for subsequent revision surgeries. The multidisciplinary collaboration between spine and plastic surgeons in spinoplastic surgery has therefore emerged as a proactive strategy aimed at preventing complications, particularly in patients identified as high-risk for pseudoarthrosis. As the patient population expands and spinoplastic surgery continues to evolve, refining patient selection criteria becomes essential for achieving optimal surgical outcomes. This review aims to provide a comprehensive overview of recent advancements in spinoplastic surgery, highlighting current indications, surgical techniques, recent case reports, and strategies for identifying suitable candidates. Methods: We performed a narrative review of English language literature through April 2025. Spinoplastic case reports and case series published within the last 20 years were included in the review. Results: Indications for use of a spinoplastic approach clustered into prior fusion failure, extensive oncologic resection, severe spinal deformity, procedures requiring extensive spinal involvement, and/or patients at risk for impaired bone healing. Succesful radiographic union and improvement of symptoms were widely reported across all 9 case reports/series. Conclusions: Although evidence is presently limited, spinoplastic surgery appears to achieve high bone graft fusion rates with acceptable morbidity and functional improvement in a carefully selected group of high-risk spinal reconstruction patients. Still, larger prospective studies are warranted to refine patient selection and validate functional benefit. Full article
Show Figures

Figure 1

15 pages, 2573 KB  
Article
Hysteresis in Neuron Models with Adapting Feedback Synapses
by Sebastian Thomas Lynch and Stephen Lynch
AppliedMath 2025, 5(2), 70; https://doi.org/10.3390/appliedmath5020070 - 13 Jun 2025
Viewed by 1928
Abstract
Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, [...] Read more.
Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research. Full article
Show Figures

Figure 1

20 pages, 1016 KB  
Review
Caffeine: A Neuroprotectant and Neurotoxin in Traumatic Brain Injury (TBI)
by Bharti Sharma, George Agriantonis, Sarah Dawson-Moroz, Rolanda Brown, Whenzdjyny Simon, Danielle Ebelle, Jessica Chapelet, Angie Cardona, Aditi Soni, Maham Siddiqui, Brijal Patel, Sittha Cheerasarn, Justin Chang, Lauren Cobb, Fanta John, Munirah M. Hasan, Carrie Garcia, Zahra Shaefee, Kate Twelker, Navin D. Bhatia and Jennifer Whittingtonadd Show full author list remove Hide full author list
Nutrients 2025, 17(11), 1925; https://doi.org/10.3390/nu17111925 - 4 Jun 2025
Cited by 1 | Viewed by 5702
Abstract
Caffeine is a weak, nonselective adenosine receptor antagonist. At low-to-moderate doses, caffeine has a stimulating effect; however, at higher doses, it can act as a depressant. It can function both as a neuroprotectant and a neurotoxin. In experimental Traumatic Brain Injury (TBI), administration [...] Read more.
Caffeine is a weak, nonselective adenosine receptor antagonist. At low-to-moderate doses, caffeine has a stimulating effect; however, at higher doses, it can act as a depressant. It can function both as a neuroprotectant and a neurotoxin. In experimental Traumatic Brain Injury (TBI), administration of this psychoactive drug has been associated with beneficial or detrimental effects, depending on the dose, model, and timing. In a healthy brain, caffeine can enhance alertness and promote wakefulness. However, its consumption during late adolescence and early adulthood disrupts normal pruning processes in the context of repetitive moderate TBI (mTBI), leading to changes in dendritic spine morphology, resulting in neurological and behavioral impairments. Caffeine can potentially reduce TBI-associated intracranial pressure, oxidative stress, lipid peroxidation, cytotoxic edema, inflammation, and apoptosis. It can enhance alertness and reduce mental fatigue, which is critical for the cognitive rehabilitation of TBI patients. Additionally, caffeine positively affects immune cells and aids recovery post-TBI. Antagonizing adenosine receptors involved in controlling synaptic transmission, synaptic plasticity, and synapse toxicity can improve cognitive function. Conversely, studies have also shown that caffeine consumers report significantly higher somatic discomfort compared to non-consumers. This review aims to explore various studies and thoroughly examine the positive and negative roles of caffeine in TBI. Full article
(This article belongs to the Special Issue Nutrition Interventions and Their Impact on Brain Health and Disease)
Show Figures

Figure 1

32 pages, 1676 KB  
Review
Serotonergic Regulation in Alzheimer’s Disease
by Lyudmila P. Dolgacheva, Valery P. Zinchenko, Alexander D. Nadeev and Nikolay V. Goncharov
Int. J. Mol. Sci. 2025, 26(11), 5218; https://doi.org/10.3390/ijms26115218 - 29 May 2025
Cited by 7 | Viewed by 3615
Abstract
Serotonin (5-HT) is a neurotransmitter that also plays an important role in the regulation of vascular tone and angiogenesis. This review focuses on the involvement of the 5-HT system in pathological processes leading to the development of Alzheimer’s disease (AD). There is evidence [...] Read more.
Serotonin (5-HT) is a neurotransmitter that also plays an important role in the regulation of vascular tone and angiogenesis. This review focuses on the involvement of the 5-HT system in pathological processes leading to the development of Alzheimer’s disease (AD). There is evidence that damage or dysfunction of the 5-HT system contributes to the development of AD, and different subtypes of 5-HT receptors are a potential target for the treatment of AD. A link has been established between AD, depression, stress, and 5-HT deficiency in the brain. There are new data on the role of circadian rhythms in modulating stress, depression, and the 5-HT system; amyloid β (Aβ) plaque clearance; and AD progression. Circadian disruption inhibits Aβ plaque clearance and modulates AD progression. The properties and functions of 5-HT, its receptors, and serotonergic neurons are presented. Special attention is paid to the central role of 5-HT in brain development, including neurite outgrowth, regulation of somatic morphology, motility, synaptogenesis, control of dendritic spine shape and density, neuronal plasticity determining its role in network regeneration, and changes in innervation after brain damage. The results of different studies indicate that the interaction of amyloid β oligomers (AβO) with mitochondria is a sufficient trigger for AD-related neurodegeneration. The action of 5-HT leads to an improvement in mitochondrial quality and the restoration of brain areas after traumatic brain injury, chronic stress, or developmental disorders in AD. The role of a healthy lifestyle and drugs acting on serotonin receptors in the prevention and treatment of AD is discussed. Full article
Show Figures

Figure 1

23 pages, 1843 KB  
Article
Fish Oil Supplementation Attenuates Offspring’s Neurodevelopmental Changes Induced by a Maternal High-Fat Diet in a Rat Model
by Yasna Muñoz, Heidy Kaune, Alexies Dagnino-Subiabre, Gonzalo Cruz, Jorge Toledo, Rodrigo Valenzuela, Renato Moraga, Luis Tabilo, Cristian Flores, Alfredo Muñoz, Nicolás Crisosto, Juan F. Montiel and Manuel Maliqueo
Nutrients 2025, 17(10), 1741; https://doi.org/10.3390/nu17101741 - 21 May 2025
Cited by 2 | Viewed by 2494
Abstract
Background/Objectives: A maternal high-fat diet (HFD) impairs brain structure in offspring. In turn, fish oil (FO) rich in n-3 polyunsaturated fatty acids (PUFAs) has neuroprotective effects. Therefore, we investigated whether maternal HFD exposure affected the neurological reflexes, neuron morphology, and n-3 [...] Read more.
Background/Objectives: A maternal high-fat diet (HFD) impairs brain structure in offspring. In turn, fish oil (FO) rich in n-3 polyunsaturated fatty acids (PUFAs) has neuroprotective effects. Therefore, we investigated whether maternal HFD exposure affected the neurological reflexes, neuron morphology, and n-3 PUFA levels in the cerebral cortex of the offspring and whether these effects were mitigated by maternal FO consumption. Methods: Female Sprague Dawley rats received a control diet (CD, 10% Kcal fat) or HFD (45% Kcal fat) five weeks before mating and throughout pregnancy and lactation. From mating, a subgroup of HFD was supplemented with 11.4% FO into the diet (HFD-FO). Neurological reflexes were evaluated from postnatal day (PND) 3 until PND20. Brains were removed at PND22 for neuron morphology analysis. Moreover, fatty acid composition and transcripts of genes encoding for factors associated with synapse transmission (SNAP-25), plasticity (BDNF), transport of DHA (MFSD2a), and inflammation (NF-κB and IL-1β) were quantified in prefrontal, motor, and auditory cortices. Results: FO diminished the effects of HFD on the number of thin and mushroom-shaped dendritic spines in the cerebral cortex in both sexes. It also reversed the HFD effects on the motor and auditory reflexes in female and male offspring, respectively. In males, FO up-regulated Bdnf transcript levels in the motor cortex compared with CD and HFD. In females, n-3 PUFAs were higher in HFD and HFD-FO than in CD in the auditory cortex. Conclusions: Our results highlight the protective role of maternal dietary n-3 PUFAs in counteracting the effects induced by HFD on the acquisition of neurological reflexes and neuronal morphology in the cerebral cortex of the offspring of both sexes. Full article
(This article belongs to the Special Issue Dietary Fatty Acids and Metabolic Health)
Show Figures

Figure 1

15 pages, 1752 KB  
Article
Modulation of Neurturin Expression by Lumbosacral Spinal Stenosis, Lifestyle Factors, and Glycemic Dysregulation
by Małgorzata Sobańska, Dawid Sobański, Rafał Staszkiewicz, Paweł Gogol, Damian Strojny, Tomasz Pawłaszek, Werner Dammerman and Beniamin Oskar Grabarek
Biomedicines 2025, 13(5), 1102; https://doi.org/10.3390/biomedicines13051102 - 1 May 2025
Cited by 2 | Viewed by 2741
Abstract
Background/Objectives: Lumbosacral spinal stenosis (LSS) is a degenerative condition characterized by narrowing of the spinal canal and associated neuropathic pain. While mechanical compression is well-characterized, the molecular mechanisms contributing to symptom severity remain poorly understood. Neurturin (NRTN), a member of the glial [...] Read more.
Background/Objectives: Lumbosacral spinal stenosis (LSS) is a degenerative condition characterized by narrowing of the spinal canal and associated neuropathic pain. While mechanical compression is well-characterized, the molecular mechanisms contributing to symptom severity remain poorly understood. Neurturin (NRTN), a member of the glial cell line-derived neurotrophic factor family, has emerged as a potential mediator of neural plasticity and nociception, but its role in spinal stenosis is largely unexplored. Methods: We analyzed NRTN mRNA and protein expression in ligamentum flavum samples from 96 patients undergoing surgery for LSS and 85 non-degenerative postmortem controls. Quantification was performed using real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), Western blotting, and immunohistochemistry. Pain severity Visual Analog Scale (VAS), body mass index (BMI), diabetes, smoking, and alcohol use were assessed as modulators of NRTN expression. Results: NRTN expression was significantly elevated in LSS patients versus controls at both transcript and protein levels (p < 0.05). NRTN levels positively correlated with pain intensity (VAS; ANOVA p = 0.032 for mRNA, p = 0.041 for protein). Multivariate regression identified BMI (β = 0.50, p = 0.015) and diabetes (β = 0.39, p = 0.017) as independent predictors of increased NRTN expression. Alcohol use also showed a positive association (p = 0.046), while smoking showed no significant independent effect. Conclusions: Neurturin is upregulated in ligamentum flavum tissue from LSS patients and correlates with pain severity and metabolic risk factors. These findings suggest NRTN as a potential biomarker and therapeutic target in degenerative spine disease. Further longitudinal and mechanistic studies are warranted to elucidate its role in chronic pain and neuroinflammation. Full article
Show Figures

Figure 1

24 pages, 4602 KB  
Article
GAL-201 as a Promising Amyloid-β-Targeting Small-Molecule Approach for Alzheimer’s Disease Treatment: Consistent Effects on Synaptic Plasticity, Behavior and Neuroinflammation
by Katrin Riemann, Jeldrik von Ahsen, Tamara Böhm, Martin Schlegel, Matthias Kreuzer, Thomas Fenzl, Hermann Russ, Christopher G. Parsons and Gerhard Rammes
Int. J. Mol. Sci. 2025, 26(9), 4167; https://doi.org/10.3390/ijms26094167 - 28 Apr 2025
Viewed by 1743
Abstract
Soluble oligomeric forms of Amyloid-β (Aβ) are considered the major toxic species leading to the neurodegeneration underlying Alzheimer’s disease (AD). Therefore, drugs that prevent oligomer formation might be promising. The atypical dipeptide GAL-201 is orally bioavailable and interferes as a modulator of Aβ [...] Read more.
Soluble oligomeric forms of Amyloid-β (Aβ) are considered the major toxic species leading to the neurodegeneration underlying Alzheimer’s disease (AD). Therefore, drugs that prevent oligomer formation might be promising. The atypical dipeptide GAL-201 is orally bioavailable and interferes as a modulator of Aβ aggregation. It binds to aggregation-prone, misfolded Aβ monomers with high selectivity and affinity, thereby preventing the formation of toxic oligomers. Here, we demonstrate that the previously observed protective effect of GAL-201 on synaptic plasticity occurs irrespective of shortages and post-translational modifications (tested isoforms: Aβ1–42, Aβ(p3-42), Aβ1–40 and 3NTyr(10)-Aβ). Interestingly, the neuroprotective activity of a single dose of GAL-201 was still present after one week and correlated with a prevention of Aβ-induced spine loss. Furthermore, we could observe beneficial effects on spine morphology as well as the significantly reduced activation of proinflammatory microglia and astrocytes in the presence of an Aβ1–42-derived toxicity. In line with these in vitro data, GAL-201 additionally improved hippocampus-dependent spatial learning in the “tgArcSwe” AD mouse model after a single subcutaneous administration. By this means, we observed changes in the deposition pattern: through the clustering of misfolded monomers as off-pathway non-toxic Aβ agglomerates, toxic oligomers are removed. Our results are in line with previously collected preclinical data and warrant the initiation of Investigational New Drug (IND)-enabling studies for GAL-201. By demonstrating the highly efficient detoxification of β-sheet monomers, leading to the neutralization of Aβ oligomer toxicity, GAL-201 represents a promising drug candidate against Aβ-derived pathophysiology present in AD. Full article
(This article belongs to the Special Issue Unraveling the Molecular Mechanisms of Neurodegeneration)
Show Figures

Figure 1

Back to TopTop