Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = spheroplasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2631 KiB  
Article
Characterization of a Periplasmic D-Malate:Cytochrome c Oxidoreductase from Ectopseudomonas oleovorans CECT 5344 and Its Role in Extracytoplasmic Respiration and Cyanide Detoxification
by Faustino Merchán, Ana G. Población, María Isabel Guijo, Mar Gómez-Ortega, Felipe Morales-Durán, Irene Alonso-Ríos, Rubén Sánchez-Clemente and Rafael Blasco
Int. J. Mol. Sci. 2025, 26(14), 6575; https://doi.org/10.3390/ijms26146575 - 8 Jul 2025
Viewed by 231
Abstract
A periplasmic D-malate:cytochrome c oxidoreductase (DMCO) was identified in Ectopseudomonas oleovorans CECT5344, utilizing 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT) as an artificial electron acceptor. The assay was adapted for a spectrophotometric or native polyacrylamide gel electrophoresis (PAGE) analysis. The DMCO-encoding gene (BN5_4044) was cloned and [...] Read more.
A periplasmic D-malate:cytochrome c oxidoreductase (DMCO) was identified in Ectopseudomonas oleovorans CECT5344, utilizing 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT) as an artificial electron acceptor. The assay was adapted for a spectrophotometric or native polyacrylamide gel electrophoresis (PAGE) analysis. The DMCO-encoding gene (BN5_4044) was cloned and expressed in Escherichia coli, enabling a partial purification and biochemical characterization. In addition to D-malate, the enzyme oxidizes D-2-hydroxyglutarate and, to a lesser extent, D-lactate, with cytochrome c also serving as an electron acceptor. DMCO requires Zn2+ for activity and exists as a dimer, as determined by gel filtration. The in vitro reconstitution of the electron transfer from D-malate to oxygen was achieved using spheroplasts, enriched periplasmic fractions, and cytochrome c. This extracytoplasmic respiration, unique among homologs of this protein, may eliminate the need for a dedicated inner membrane transporter, thereby avoiding potential upstream respiratory bottlenecks. In the context of bioremediation, and particularly regarding the cyanide metabolism, this D-malate oxidation to oxaloacetate facilitates detoxification by forming the corresponding cyanohydrin, which can be subsequently assimilated for growth. Full article
(This article belongs to the Special Issue Current Advances and Perspectives in Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 6826 KiB  
Article
Involvement of the Cell Division Protein DamX in the Infection Process of Bacteriophage T4
by Sabrina Wenzel, Renate Hess, Dorothee Kiefer and Andreas Kuhn
Viruses 2024, 16(4), 487; https://doi.org/10.3390/v16040487 - 22 Mar 2024
Cited by 1 | Viewed by 1734
Abstract
The molecular mechanism of how the infecting DNA of bacteriophage T4 passes from the capsid through the bacterial cell wall and enters the cytoplasm is essentially unknown. After adsorption, the short tail fibers of the infecting phage extend from the baseplate and trigger [...] Read more.
The molecular mechanism of how the infecting DNA of bacteriophage T4 passes from the capsid through the bacterial cell wall and enters the cytoplasm is essentially unknown. After adsorption, the short tail fibers of the infecting phage extend from the baseplate and trigger the contraction of the tail sheath, leading to a puncturing of the outer membrane by the tail tip needle composed of the proteins gp5.4, gp5 and gp27. To explore the events that occur in the periplasm and at the inner membrane, we constructed T4 phages that have a modified gp27 in their tail tip with a His-tag. Shortly after infection with these phages, cells were chemically cross-linked and solubilized. The cross-linked products were affinity-purified on a nickel column and the co-purified proteins were identified by mass spectrometry, and we found that predominantly the inner membrane proteins DamX, SdhA and PpiD were cross-linked. The same partner proteins were identified when purified gp27 was added to Escherichia coli spheroplasts, suggesting a direct protein–protein interaction. Full article
(This article belongs to the Special Issue Phage Assembly Pathways — to the Memory of Lindsay Black 2.0)
Show Figures

Figure 1

16 pages, 2774 KiB  
Article
AgTx2-GFP, Fluorescent Blocker Targeting Pharmacologically Important Kv1.x (x = 1, 3, 6) Channels
by Alexandra L. Primak, Nikita A. Orlov, Steve Peigneur, Jan Tytgat, Anastasia A. Ignatova, Kristina R. Denisova, Sergey A. Yakimov, Mikhail P. Kirpichnikov, Oksana V. Nekrasova and Alexey V. Feofanov
Toxins 2023, 15(3), 229; https://doi.org/10.3390/toxins15030229 - 18 Mar 2023
Cited by 4 | Viewed by 2527
Abstract
The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced [...] Read more.
The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0–8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity. Full article
Show Figures

Figure 1

21 pages, 2550 KiB  
Article
“Force-From-Lipids” Dependence of the MscCG Mechanosensitive Channel Gating on Anionic Membranes
by Yoshitaka Nakayama, Paul R. Rohde and Boris Martinac
Microorganisms 2023, 11(1), 194; https://doi.org/10.3390/microorganisms11010194 - 12 Jan 2023
Cited by 2 | Viewed by 3203
Abstract
Mechanosensory transduction in Corynebacterium glutamicum plays a major role in glutamate efflux for industrial MSG, whose production depends on the activation of MscCG-type mechanosensitive channels. Dependence of the MscCG channel activation by membrane tension on the membrane lipid content has to date not [...] Read more.
Mechanosensory transduction in Corynebacterium glutamicum plays a major role in glutamate efflux for industrial MSG, whose production depends on the activation of MscCG-type mechanosensitive channels. Dependence of the MscCG channel activation by membrane tension on the membrane lipid content has to date not been functionally characterized. Here, we report the MscCG channel patch clamp recording from liposomes fused with C. glutamicum membrane vesicles as well as from proteoliposomes containing the purified MscCG protein. Our recordings demonstrate that mechanosensitivity of MscCG channels depends significantly on the presence of negatively charged lipids in the proteoliposomes. MscCG channels in liposome preparations fused with native membrane vesicles exhibited the activation threshold similar to the channels recorded from C. glutamicum giant spheroplasts. In comparison, the activation threshold of the MscCG channels reconstituted into azolectin liposomes was higher than the activation threshold of E. coli MscL, which is gated by membrane tension close to the bilayer lytic tension. The spheroplast-like activation threshold was restored when the MscCG channels were reconstituted into liposomes made of E. coli polar lipid extract. In liposomes made of polar lipids mixed with synthetic phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin, the activation threshold of MscCG was significantly reduced compared to the activation threshold recorded in azolectin liposomes, which suggests the importance of anionic lipids for the channel mechanosensitivity. Moreover, the micropipette aspiration technique combined with patch fluorometry demonstrated that membranes containing anionic phosphatidylglycerol are softer than membranes containing only polar non-anionic phosphatidylcholine and phosphatidylethanolamine. The difference in mechanosensitivity between C. glutamicum MscCG and canonical MscS of E. coli observed in proteoliposomes explains the evolutionary tuning of the force from lipids sensing in various bacterial membrane environments. Full article
Show Figures

Figure 1

16 pages, 1002 KiB  
Brief Report
Improving Drug Sensitivity of HIV-1 Protease Inhibitors by Restriction of Cellular Efflux System in a Fission Yeast Model
by Jiantao Zhang, Qi Li, Shigehiro A. Kawashima, Mohamed Nasr, Fengtian Xue and Richard Y. Zhao
Pathogens 2022, 11(7), 804; https://doi.org/10.3390/pathogens11070804 - 16 Jul 2022
Cited by 2 | Viewed by 2187
Abstract
Fission yeast can be used as a cell-based system for high-throughput drug screening. However, higher drug concentrations are often needed to achieve the same effect as in mammalian cells. Our goal here was to improve drug sensitivity so reduced drugs could be used. [...] Read more.
Fission yeast can be used as a cell-based system for high-throughput drug screening. However, higher drug concentrations are often needed to achieve the same effect as in mammalian cells. Our goal here was to improve drug sensitivity so reduced drugs could be used. Three different methods affecting drug uptakes were tested using an FDA-approved HIV-1 protease inhibitor (PI) drug Darunavir (DRV). First, we tested whether spheroplasts without cell walls increase the drug sensitivity. Second, we examined whether electroporation could be used. Although small improvements were observed, neither of these two methods showed significant increase in the EC50 values of DRV compared with the traditional method. In contrast, when DRV was tested in a mutant strain PR836 that lacks key proteins regulating cellular efflux, a significant increase in the EC50 was observed. A comparison of nine FDA-approved HIV-1 PI drugs between the wild-type RE294 strain and the mutant PR836 strain showed marked enhancement of the drug sensitivities ranging from an increase of 0.56 log to 2.48 logs. Therefore, restricting cellular efflux through the adaption of the described fission yeast mutant strain enhances the drug sensitivity, reduces the amount of drug used, and increases the chance of success in future drug discovery. Full article
Show Figures

Figure 1

14 pages, 1961 KiB  
Article
Bioengineered System for High Throughput Screening of Kv1 Ion Channel Blockers
by George V. Sharonov, Oksana V. Nekrasova, Ksenia S. Kudryashova, Mikhail P. Kirpichnikov and Alexey V. Feofanov
Bioengineering 2021, 8(11), 187; https://doi.org/10.3390/bioengineering8110187 - 16 Nov 2021
Cited by 2 | Viewed by 3435
Abstract
Screening drug candidates for their affinity and selectivity for a certain binding site is a crucial step in developing targeted therapy. Here, we created a screening assay for receptor binding that can be easily scaled up and automated for the high throughput screening [...] Read more.
Screening drug candidates for their affinity and selectivity for a certain binding site is a crucial step in developing targeted therapy. Here, we created a screening assay for receptor binding that can be easily scaled up and automated for the high throughput screening of Kv channel blockers. It is based on the expression of the KcsA-Kv1 hybrid channel tagged with a fluorescent protein in the E. coli membrane. In order to make this channel accessible for the soluble compounds, E. coli were transformed into spheroplasts by disruption of the cellular peptidoglycan envelope. The assay was evaluated using a hybrid KcsA-Kv1.3 potassium channel tagged with a red fluorescent protein (TagRFP). The binding of Kv1.3 channel blockers was measured by flow cytometry either by using their fluorescent conjugates or by determining the ability of unconjugated compounds to displace fluorescently labeled blockers with a known affinity. A fraction of the occupied receptor was calculated with a dedicated pipeline available as a Jupyter notebook. Measured binding constants for agitoxin-2, charybdotoxin and kaliotoxin were in firm agreement with the earlier published data. By using a mid-range flow cytometer with manual sample handling, we measured and analyzed up to ten titration curves (eight data points each) in one day. Finally, we considered possibilities for multiplexing, scaling and automation of the assay. Full article
(This article belongs to the Special Issue Biomedical Applications of Ionic Liquids and Deep Eutectic Solvents)
Show Figures

Figure 1

18 pages, 10789 KiB  
Article
Involvement of a Multidrug Efflux Pump and Alterations in Cell Surface Structure in the Synergistic Antifungal Activity of Nagilactone E and Anethole against Budding Yeast Saccharomyces cerevisiae
by Yuki Ueda, Yuhei O. Tahara, Makoto Miyata, Akira Ogita, Yoshihiro Yamaguchi, Toshio Tanaka and Ken-ichi Fujita
Antibiotics 2021, 10(5), 537; https://doi.org/10.3390/antibiotics10050537 - 6 May 2021
Cited by 7 | Viewed by 3332
Abstract
Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the [...] Read more.
Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the combinatorial effect and underlying mechanisms of action of nagilactone E and anethole against the budding yeast Saccharomyces cerevisiae. Analyses using gene-deficient strains showed that the multidrug efflux pump PDR5 is associated with nagilactone E resistance; its transcription was gradually restricted in cells treated with the drug combination for a prolonged duration but not in nagilactone-E-treated cells. Green-fluorescent-protein-tagged Pdr5p was intensively expressed and localized on the plasma membrane of nagilactone-E-treated cells but not in drug-combination-treated cells. Quick-freeze deep-etch electron microscopy revealed the smoothening of intertwined fiber structures on the cell surface of drug-combination-treated cells and spheroplasts, indicating a decline in cell wall components and loss of cell wall strength. Anethole enhanced the antifungal activity of nagilactone E by enabling its retention within cells, thereby accelerating cell wall damage. The combination of nagilactone E and anethole can be employed in clinical settings as an antifungal, as well as a food preservative to restrict food spoilage. Full article
Show Figures

Figure 1

13 pages, 1620 KiB  
Article
Rescue of Infectious Sindbis Virus by Yeast Spheroplast-Mammalian Cell Fusion
by Lin Ding, David M. Brown and John I. Glass
Viruses 2021, 13(4), 603; https://doi.org/10.3390/v13040603 - 1 Apr 2021
Cited by 6 | Viewed by 3662
Abstract
Sindbis virus (SINV), a positive-sense single stranded RNA virus that causes mild symptoms in humans, is transmitted by mosquito bites. SINV reverse genetics have many implications, not only in understanding alphavirus transmission, replication cycle, and virus-host interactions, but also in biotechnology and biomedical [...] Read more.
Sindbis virus (SINV), a positive-sense single stranded RNA virus that causes mild symptoms in humans, is transmitted by mosquito bites. SINV reverse genetics have many implications, not only in understanding alphavirus transmission, replication cycle, and virus-host interactions, but also in biotechnology and biomedical applications. The rescue of SINV infectious particles is usually achieved by transfecting susceptible cells (BHK-21) with SINV-infectious mRNA genomes generated from cDNA constructed via in vitro translation (IVT). That procedure is time consuming, costly, and relies heavily on reagent quality. Here, we constructed a novel infectious SINV cDNA construct that expresses its genomic RNA in yeast cells controlled by galactose induction. Using spheroplasts made from this yeast, we established a robust polyethylene glycol-mediated yeast: BHK-21 fusion protocol to rescue infectious SINV particles. Our approach is timesaving and utilizes common lab reagents for SINV rescue. It could be a useful tool for the rescue of large single strand RNA viruses, such as SARS-CoV-2. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

15 pages, 4829 KiB  
Article
Analyses of the Effect of Peptidoglycan on Photocatalytic Bactericidal Activity Using Different Growth Phases Cells of Gram-Positive Bacterium and Spheroplast Cells of Gram-Negative Bacterium
by Akane Saikachi, Kotone Sugasawara and Tomonori Suzuki
Catalysts 2021, 11(2), 147; https://doi.org/10.3390/catal11020147 - 20 Jan 2021
Cited by 11 | Viewed by 3358
Abstract
We conducted photocatalytic experiments focusing on the peptidoglycan layer to elucidate the details of the mechanism of photocatalytic sterilization. The previous study of our laboratory suggested that the presence of the peptidoglycan layer increases the bactericidal effect. To further verify it, the following [...] Read more.
We conducted photocatalytic experiments focusing on the peptidoglycan layer to elucidate the details of the mechanism of photocatalytic sterilization. The previous study of our laboratory suggested that the presence of the peptidoglycan layer increases the bactericidal effect. To further verify it, the following experiments were performed: experiments on cells with different peptidoglycan layer thickness used Lactobacillus plantarum cells with different growth phases, experiments on cells with the thin peptidoglycan layer used Escherichia coli cells and spheroplast cells from which the peptidoglycan layer was removed from E. coli cells. The bactericidal effects increased as the growth progresses of L. plantarum. It was confirmed by TEM that the thickness of the peptidoglycan layer increased with cell growth. The survival rates of E. coli intact cells were significantly lower than those of spheroplast cells. These results strongly suggest that the peptidoglycan layer enhances the photocatalytic bactericidal effect. As a result of allowing the photocatalytic reaction to act on peptidoglycan, the amount of hydroxyl radical was smaller, and the amount of hydrogen peroxide was higher than in the absence of peptidoglycan. It is suggested that peptidoglycan may convert produced hydroxyl radical to hydrogen peroxide. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Akira Fujishima)
Show Figures

Figure 1

10 pages, 1601 KiB  
Article
Targeting Nanodiamonds to the Nucleus in Yeast Cells
by Aryan Morita, Thamir Hamoh, Alina Sigaeva, Neda Norouzi, Andreas Nagl, Kiran J. van der Laan, Emily P. P. Evans and Romana Schirhagl
Nanomaterials 2020, 10(10), 1962; https://doi.org/10.3390/nano10101962 - 2 Oct 2020
Cited by 13 | Viewed by 3562
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In [...] Read more.
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

11 pages, 906 KiB  
Review
Factors That Affect the Enlargement of Bacterial Protoplasts and Spheroplasts
by Hiromi Nishida
Int. J. Mol. Sci. 2020, 21(19), 7131; https://doi.org/10.3390/ijms21197131 - 27 Sep 2020
Cited by 8 | Viewed by 6142
Abstract
Cell enlargement is essential for the microinjection of various substances into bacterial cells. The cell wall (peptidoglycan) inhibits cell enlargement. Thus, bacterial protoplasts/spheroplasts are used for enlargement because they lack cell wall. Though bacterial species that are capable of gene manipulation are limited, [...] Read more.
Cell enlargement is essential for the microinjection of various substances into bacterial cells. The cell wall (peptidoglycan) inhibits cell enlargement. Thus, bacterial protoplasts/spheroplasts are used for enlargement because they lack cell wall. Though bacterial species that are capable of gene manipulation are limited, procedure for bacterial cell enlargement does not involve any gene manipulation technique. In order to prevent cell wall resynthesis during enlargement of protoplasts/spheroplasts, incubation media are supplemented with inhibitors of peptidoglycan biosynthesis such as penicillin. Moreover, metal ion composition in the incubation medium affects the properties of the plasma membrane. Therefore, in order to generate enlarged cells that are suitable for microinjection, metal ion composition in the medium should be considered. Experiment of bacterial protoplast or spheroplast enlargement is useful for studies on bacterial plasma membrane biosynthesis. In this paper, we have summarized the factors that influence bacterial cell enlargement. Full article
(This article belongs to the Special Issue Bacterial Plasma Membrane Dynamics)
Show Figures

Figure 1

16 pages, 4970 KiB  
Article
A Novel Weissella cibaria Strain UTNGt21O Isolated from Wild Solanum quitoense Fruit: Genome Sequence and Characterization of a Peptide with Highly Inhibitory Potential toward Gram-Negative Bacteria
by Gabriela N. Tenea, Pamela Hurtado and Clara Ortega
Foods 2020, 9(9), 1242; https://doi.org/10.3390/foods9091242 - 5 Sep 2020
Cited by 13 | Viewed by 3598
Abstract
A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, [...] Read more.
A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, with a total length of 1,924,087 bases, 20 contig hits match the core genome of different groups within Weissella, while for 11 contigs no match was found in the database. The GT content was 39.53% and the genome repeats sequences constitute around 186,760 bases of the assembly. The UTNGt21O matches the W. cibaria genome with 83% identity and no gaps (0). The sequencing data were deposited in the NCBI Database (BioProject accessions: PRJNA639289). The antibacterial activity and interaction mechanism of the peptide UTNGt21O on target bacteria were investigated by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with different concentrations (1×, 1.5× and 2× MIC) of the peptide applied alone or in combination with chelating agent ethylenediaminetetraacetic acid (EDTA) at 20 mM. The results indicated a bacteriolytic effect at both early and late target growth at 3 h of incubation and total cell death at 6 h when EDTA was co-inoculated with the peptide. Based on BAGEL 4 (Bacteriocin Genome Mining Tool) a putative bacteriocin having 33.4% sequence similarity to enterolysin A was detected within the contig 12. The interaction between the peptide UTNGt21O and the target strains caused permeability in a dose-, time- response manner, with Salmonella (3200 AU/mL) more susceptible than E. coli (6400 AU/mL). The results indicated that UTNGt21O may damage the integrity of the cell target, leading to release of cytoplasmic components followed by cell death. Differences in membrane shape changes in target cells treated with different doses of peptide were observed by transmission electronic microscopy (TEM). Spheroplasts with spherical shapes were detected in Salmonella while larger shaped spheroplasts with thicker and deformed membranes along with filamentous cells were observed in E. coli upon the treatment with the UTNGt21O peptide. These results indicate the promising potential of the putative bacteriocin released by the novel W. cibaria strain UTNGt21O to be further tested as a new antimicrobial substance. Full article
(This article belongs to the Special Issue Advanced Research of Lactic Acid Bacteria in Food Field)
Show Figures

Graphical abstract

10 pages, 4693 KiB  
Article
Regeneration of Escherichia coli Giant Protoplasts to Their Original Form
by Kazuhito V. Tabata, Takao Sogo, Yoshiki Moriizumi and Hiroyuki Noji
Life 2019, 9(1), 24; https://doi.org/10.3390/life9010024 - 1 Mar 2019
Cited by 2 | Viewed by 7617
Abstract
The spheroplasts and protoplasts of cell wall-deficient (CWD) bacteria are able to revert to their original cellular morphologies through the regeneration of their cell walls. However, whether this is true for giant protoplasts (GPs), which can be as large as 10 μm in [...] Read more.
The spheroplasts and protoplasts of cell wall-deficient (CWD) bacteria are able to revert to their original cellular morphologies through the regeneration of their cell walls. However, whether this is true for giant protoplasts (GPs), which can be as large as 10 μm in diameter, is unknown. GPs can be prepared from various bacteria, including Escherichia coli and Bacillus subtilis, and also from fungi, through culture in the presence of inhibitors for cell wall synthesis or mitosis. In this report, we prepared GPs from E. coli and showed that they can return to rod-shaped bacterium, and that they are capable of colony formation. Microscopic investigation revealed that the regeneration process took place through a variety of morphological pathways. We also report the relationship between GP division and GP volume. Finally, we show that FtsZ is crucial for GP division. These results indicate that E. coli is a highly robust organism that can regenerate its original form from an irregular state, such as GP. Full article
(This article belongs to the Special Issue Approaches toward Artificial Cell Construction and Applications)
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Obtaining Spheroplasts of Armored Dinoflagellates and First Single-Channel Recordings of Their Ion Channels Using Patch-Clamping
by Ilya Pozdnyakov, Olga Matantseva, Yuri Negulyaev and Sergei Skarlato
Mar. Drugs 2014, 12(9), 4743-4755; https://doi.org/10.3390/md12094743 - 5 Sep 2014
Cited by 18 | Viewed by 7168
Abstract
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, [...] Read more.
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented. Full article
(This article belongs to the Special Issue Marine Dinoflagellates)
Show Figures

Graphical abstract

14 pages, 708 KiB  
Article
Adapting Yeast as Model to Study Ricin Toxin A Uptake and Trafficking
by Björn Becker and Manfred J. Schmitt
Toxins 2011, 3(7), 834-847; https://doi.org/10.3390/toxins3070834 - 5 Jul 2011
Cited by 6 | Viewed by 9418
Abstract
The plant A/B toxin ricin represents a heterodimeric glycoprotein belonging to the family of ribosome inactivating proteins, RIPs. Its toxicity towards eukaryotic cells results from the depurination of 28S rRNA due to the N-glycosidic activity of ricin toxin A chain, RTA. Since [...] Read more.
The plant A/B toxin ricin represents a heterodimeric glycoprotein belonging to the family of ribosome inactivating proteins, RIPs. Its toxicity towards eukaryotic cells results from the depurination of 28S rRNA due to the N-glycosidic activity of ricin toxin A chain, RTA. Since the extention of RTA by a mammalian-specific endoplasmic reticulum (ER) retention signal (KDEL) significantly increases RTA in vivo toxicity against mammalian cells, we here analyzed the phenotypic effect of RTA carrying the yeast-specific ER retention motif HDEL. Interestingly, such a toxin (RTAHDEL) showed a similar cytotoxic effect on yeast as a corresponding RTAKDEL variant on HeLa cells. Furthermore, we established a powerful yeast bioassay for RTA in vivo uptake and trafficking which is based on the measurement of dissolved oxygen in toxin-treated spheroplast cultures of S. cerevisiae. We show that yeast spheroplasts are highly sensitive against external applied RTA and further demonstrate that its toxicity is greatly enhanced by replacing the C-terminal KDEL motif by HDEL. Based on the RTA resistant phenotype seen in yeast knock-out mutants defective in early steps of endocytosis (∆end3) and/or in RTA depurination activity on 28S rRNA (∆rpl12B) we feel that the yeast-based bioassay described in this study is a powerful tool to dissect intracellular A/B toxin transport from the plasma membrane through the endosomal compartment to the ER. Full article
(This article belongs to the Special Issue Ricin Toxin)
Show Figures

Figure 1

Back to TopTop