Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = species association labeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4664 KB  
Article
Unveiling the Potential of Plant-Derived Exosome-like Extracellular Vesicles from Phalaenopsis aphrodite as Skin-Conditioning Ingredients in Cosmetic Applications
by Kai-An Chuang, Kuei-Chang Li, Hsin-Jan Yao, Pei-Yin Tsai, I Huang Lu, Chu Hung Lin, Hira Umbreen, Chi-Chien Lin and I-Hong Pan
Cosmetics 2026, 13(1), 15; https://doi.org/10.3390/cosmetics13010015 - 12 Jan 2026
Viewed by 249
Abstract
Plant-derived exosome-like extracellular vesicles (PELVs) have recently emerged as novel bioactive materials. Although members of the Orchidaceae family have been reported to possess various biological activities and are widely used as cosmetic ingredients, no studies to date have investigated exosome-like extracellular vesicles derived [...] Read more.
Plant-derived exosome-like extracellular vesicles (PELVs) have recently emerged as novel bioactive materials. Although members of the Orchidaceae family have been reported to possess various biological activities and are widely used as cosmetic ingredients, no studies to date have investigated exosome-like extracellular vesicles derived from Phalaenopsis species. In the present study, we report for the first time a novel exosome-like extracellular vesicles preparation isolated from Phalaenopsis aphrodite (called Exorigin® OR) and characterize its physical and biological properties. The purified vesicles exhibited a spherical shape surrounded by a bilayered membrane with an average particle size of approximately 98 nm and expressed a CD9 marker. Fluorescent labeling with BODIPY TR indicated that Exorigin® OR can be internalized by cells. In in vitro assays, Exorigin® OR alleviated hydrogen peroxide-induced damage in keratinocytes and inhibited melanin production in melanocytes, possibly associated with the downregulation of Tyrp1 expression as shown by qPCR analysis. Moreover, reconstructed human epidermis and cornea-like epithelium models demonstrated that Exorigin® OR is non-irritant. Collectively, these findings suggest that Exorigin® OR represent a promising and safe bioactive ingredient for promoting skin health in cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

8 pages, 1220 KB  
Article
First Annotated DNA Barcodes for Four Saproxylophagous Beetle Species (Coleoptera: Buprestidae, Cerambycidae) from the Central Valleys of Oaxaca, Mexico
by Jose Guadalupe Martinez-Hernandez, Matthias Rös, Sonia Trujillo-Argueta, Roberto Reyes-Gonzalez, Paola A. Gonzalez-Vanegas and RF del Castillo
Taxonomy 2026, 6(1), 1; https://doi.org/10.3390/taxonomy6010001 - 19 Dec 2025
Viewed by 624
Abstract
DNA barcode sequences remain unavailable for many species of Mexican Coleoptera. This study presents the first COI barcode records for four saproxylophagous beetle species (Coleoptera: Buprestidae, Cerambycidae) from the Central Valleys of Oaxaca, Mexico: Acmaeodera scalaris, Placosternus erythropus, Parevander xanthomelas, [...] Read more.
DNA barcode sequences remain unavailable for many species of Mexican Coleoptera. This study presents the first COI barcode records for four saproxylophagous beetle species (Coleoptera: Buprestidae, Cerambycidae) from the Central Valleys of Oaxaca, Mexico: Acmaeodera scalaris, Placosternus erythropus, Parevander xanthomelas, and Stenaspis castaneipennis. The sequences, together with their associated metadata, were deposited in the Barcode of Life Data System (BOLD) under the project Oaxaca Central Valley Insect Diversity (OCVID). A. scalaris is newly barcoded for Mexico, while the other three species are newly represented in global barcode databases. The P. xanthomelas barcode differs by approximately 8% from a GenBank sequence labeled with the same name, suggesting either a misidentified reference or a cryptic mitochondrial lineage. These data expand the molecular reference coverage for Neotropical Buprestidae and Cerambycidae and highlight the need for additional taxonomic work to refine species boundaries within Cerambycidae. Full article
Show Figures

Figure 1

24 pages, 367 KB  
Article
Medicinal Plants in Food Supplements for Gastrointestinal Disorders: Critical Assessment of Health Claims on Gastric Acid Regulation
by Renāte Teterovska, Rūta Elvīra Skotele, Baiba Maurina and Inga Sile
Nutrients 2025, 17(23), 3674; https://doi.org/10.3390/nu17233674 - 24 Nov 2025
Viewed by 3050
Abstract
Background: Gastrointestinal (GI) disorders associated with increased gastric acid secretion, such as gastroesophageal reflux, dyspepsia, bloating, and abdominal pain, significantly impair quality of life and present a substantial healthcare burden. Conventional therapies may have limited efficacy or undesirable side effects, underscoring the need [...] Read more.
Background: Gastrointestinal (GI) disorders associated with increased gastric acid secretion, such as gastroesophageal reflux, dyspepsia, bloating, and abdominal pain, significantly impair quality of life and present a substantial healthcare burden. Conventional therapies may have limited efficacy or undesirable side effects, underscoring the need for safe complementary approaches. This study systematically identifies and reviews the medicinal plants used in food supplements (FSs) marketed in Latvia for digestive health, focusing on the conditions linked to excess gastric acid. Methods: A structured literature search was conducted to identify European plant species with proven protective effects on the digestive system or the ability to influence gastric acid levels. A market analysis was performed using the Latvian Food and Veterinary Service FS Register. Results: A total of 218 FS-containing medicinal plants were identified, of which 15 species were included in at least ten products. The most frequently used plants were peppermint (Mentha piperita), artichoke (Cynara cardunculus), fennel (Foeniculum vulgare), Milk thistle (Silybum marianum), dandelion (Taraxacum officinale), chamomile (Matricaria chamomilla), psyllium (Plantago ovata), licorice (Glycyrrhiza glabra), caraway (Carum carvi), lemon balm (Melissa officinalis), and chicory (Cichorium intybus). Label claims most often referred to supporting digestion, relieving bloating, and maintaining normal GI function. However, the majority of claims lacked robust clinical substantiation, and were based primarily on traditional use. Discrepancies between product information and available scientific evidence highlight regulatory and consumer protection challenges. Conclusions: This work contributes to the critical evaluation of plant-based FSs for digestive health, emphasizing the need for standardized preparations, harmonized health claim assessment, and further clinical research to establish efficacy and safety. Full article
(This article belongs to the Special Issue Preventive and Therapeutic Nutraceuticals)
Show Figures

Graphical abstract

19 pages, 2399 KB  
Article
Xingkai Lake Topmouth Culter (Culter alburnus) Exhibits Biochemical and Histopathological Alterations upon Acute Ammonia Exposure
by Junfei Yu, Hongling Yang, Guohe Cai, Jianming Xu, Banghua Xia and Yunzhang Sun
Antioxidants 2025, 14(11), 1318; https://doi.org/10.3390/antiox14111318 - 31 Oct 2025
Viewed by 688
Abstract
The Xingkai Lake topmouth culter (Culter alburnus) is an endemic, economically valuable fish in Heilongjiang that is highly sensitive to ammonia. However, the systemic effects of acute ammonia stress on its liver have not been determined. The objective of this study [...] Read more.
The Xingkai Lake topmouth culter (Culter alburnus) is an endemic, economically valuable fish in Heilongjiang that is highly sensitive to ammonia. However, the systemic effects of acute ammonia stress on its liver have not been determined. The objective of this study was to elucidate the changes in and relationships among stress biomarkers, antioxidant defense mechanisms, apoptosis indicators, and histopathological alterations in the liver of C. alburnus, a fish species native to Xingkai Lake, China, under acute ammonia exposure. Guided by the findings of a 96 h-LC50 assay, the researchers subjected the fish to 48 h of acute exposure at specified total ammonia nitrogen (TAN) concentrations of 30 mg/L, 36 mg/L, and 40 mg/L. A comprehensive assessment of physiological and biochemical markers, including cortisol (COR), blood ammonia (Amm), blood glucose (Glu), aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), revealed pronounced physiological stress and oxidative damage, particularly in the high-concentration groups. The physiological effects of ammonia exposure on C. alburnus showed a clear concentration and time dependence. Notably, elevated ammonia levels significantly upregulated apoptosis-associated genes such as P53, Bax, and Caspase-3. These findings were further substantiated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and histopathological examinations. Overall, the study demonstrated that acute ammonia exposure exerted substantial impacts on the physiological, biochemical, and genetic expression profiles of C. alburnus in Xingkai Lake, leading to sustained stress and oxidative damage, especially at elevated concentrations (30–40 mg/L). Full article
(This article belongs to the Special Issue Reactive Oxygen Species Signalling and Oxidative Stress in Fish)
Show Figures

Graphical abstract

13 pages, 3000 KB  
Article
Influence of Cushion Plant Androsace tapete on Nitrogen Uptake Strategies of Associated Alpine Plants
by Shuo Xing, Yong-Tao He, Pei-Li Shi and Xing-Liang Xu
Plants 2025, 14(20), 3232; https://doi.org/10.3390/plants14203232 - 21 Oct 2025
Viewed by 765
Abstract
In alpine ecosystems, plant growth is often constrained by multiple environmental factors, especially the infertile soils with lower temperature that decelerate the rate of nutrient turnover, thus leading to a diminished availability of nutrients in the soil, notably nitrogen (N), and its different [...] Read more.
In alpine ecosystems, plant growth is often constrained by multiple environmental factors, especially the infertile soils with lower temperature that decelerate the rate of nutrient turnover, thus leading to a diminished availability of nutrients in the soil, notably nitrogen (N), and its different forms, which is a pivotal factor for limiting plant growth and species coexistence in these alpine areas. Androsace tapete (A. tapete) is an endemic species and the most widely distributed cushion plant on the Qinghai–Tibet Plateau (QTP). Its positive interactions can facilitate other associated plants to deal with severe environmental conditions in the alpine grassland ecosystem. The change in soil nutrient availability is one of the main positive interactions, but little is known about how A. tapete changes soil nutrient availability and affects the N uptake pattern of associated plants. This study investigated the N utilization patterns of three associated plant species —Carex atrofusca (C. atrofusca), Cyananthus incanus (C. incanus), and Potentilla saundersiana (P. saundersiana)— growing inside the cushion area A. tapete (CA) and the ambient grassland without cushion plants (CK), using a 15N labeling method to clarify the effect of A. tapete on the N uptake strategies with NH4+, NO3, and organic N of its associated species. The results showed the following: (1) compared to CK, the soil total C, total N, and available NH4+ contents under the A. tapete showed a significant 47.82%, 40.96%, and 47.33% increase, respectively; (2) A. tapete showed a stronger preference for NH4+ (>80%), whereas the associated species in CK exhibited a more balanced uptake, deriving 39.29–55.59% of N from NO3, 25.72–44.00% from NH4+, and 16.15–18.69% from glycine. (3) The three associated plants possessing A. tapete significantly reduced their uptake of glycine by 9.76%, 12.55%, and 7.15%, respectively, while the absorption of NH4+ by C. atrofusca and C. incanus increased by 18.46% and 36.11%; meanwhile, NO3 uptake decreased by 8.70% in C. atrofusca and 23.55% in C. incanus. These findings indicated that the A. tapete can change the N uptake pattern of the associated plants growing inside the cushion body, such as enhancing the absorption of inorganic N and decreasing the organic N. This adaptive strategy of the associated plants with cushion plant enables them to counteract the N-limited conditions prevalent in alpine environments, and, as a consequence, facilitates their growth and promotes local plant community diversity in the alpine environment. Full article
Show Figures

Figure 1

22 pages, 2027 KB  
Article
Agri-DSSA: A Dual Self-Supervised Attention Framework for Multisource Crop Health Analysis Using Hyperspectral and Image-Based Benchmarks
by Fatema A. Albalooshi
AgriEngineering 2025, 7(10), 350; https://doi.org/10.3390/agriengineering7100350 - 17 Oct 2025
Viewed by 736
Abstract
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a [...] Read more.
Recent advances in hyperspectral imaging (HSI) and multimodal deep learning have opened new opportunities for crop health analysis; however, most existing models remain limited by dataset scope, lack of interpretability, and weak cross-domain generalization. To overcome these limitations, this study introduces Agri-DSSA, a novel Dual Self-Supervised Attention (DSSA) framework that simultaneously models spectral and spatial dependencies through two complementary self-attention branches. The proposed architecture enables robust and interpretable feature learning across heterogeneous data sources, facilitating the estimation of spectral proxies of chlorophyll content, plant vigor, and disease stress indicators rather than direct physiological measurements. Experiments were performed on seven publicly available benchmark datasets encompassing diverse spectral and visual domains: three hyperspectral datasets (Indian Pines with 16 classes and 10,366 labeled samples; Pavia University with 9 classes and 42,776 samples; and Kennedy Space Center with 13 classes and 5211 samples), two plant disease datasets (PlantVillage with 54,000 labeled leaf images covering 38 diseases across 14 crop species, and the New Plant Diseases dataset with over 30,000 field images captured under natural conditions), and two chlorophyll content datasets (the Global Leaf Chlorophyll Content Dataset (GLCC), derived from MERIS and OLCI satellite data between 2003–2020, and the Leaf Chlorophyll Content Dataset for Crops, which includes paired spectrophotometric and multispectral measurements collected from multiple crop species). To ensure statistical rigor and spatial independence, a block-based spatial cross-validation scheme was employed across five independent runs with fixed random seeds. Model performance was evaluated using R2, RMSE, F1-score, AUC-ROC, and AUC-PR, each reported as mean ± standard deviation with 95% confidence intervals. Results show that Agri-DSSA consistently outperforms baseline models (PLSR, RF, 3D-CNN, and HybridSN), achieving up to R2=0.86 for chlorophyll content estimation and F1-scores above 0.95 for plant disease detection. The attention distributions highlight physiologically meaningful spectral regions (550–710 nm) associated with chlorophyll absorption, confirming the interpretability of the model’s learned representations. This study serves as a methodological foundation for UAV-based and field-deployable crop monitoring systems. By unifying hyperspectral, chlorophyll, and visual disease datasets, Agri-DSSA provides an interpretable and generalizable framework for proxy-based vegetation stress estimation. Future work will extend the model to real UAV campaigns and in-field spectrophotometric validation to achieve full agronomic reliability. Full article
Show Figures

Figure 1

21 pages, 7859 KB  
Article
Arabinogalactan Proteins Mark the Generative Cell–Vegetative Cell Interface in Monocotyledonous Pollen Grains
by Małgorzata Kapusta, Magdalena Narajczyk and Bartosz J. Płachno
Cells 2025, 14(19), 1549; https://doi.org/10.3390/cells14191549 - 3 Oct 2025
Cited by 1 | Viewed by 1326
Abstract
Arabinogalactan proteins (AGPs: hydroxyproline-rich glycoproteins) are ubiquitous in plants and play various functions in cases of development and reproduction. In Arabidopsis thaliana some AGPs can work as markers for gametophytic cell differentiation (among others embryological structures they mark generative cell wall and/or plasma [...] Read more.
Arabinogalactan proteins (AGPs: hydroxyproline-rich glycoproteins) are ubiquitous in plants and play various functions in cases of development and reproduction. In Arabidopsis thaliana some AGPs can work as markers for gametophytic cell differentiation (among others embryological structures they mark generative cell wall and/or plasma membrane, and also sperm cells). However, apart from Arabidopsis, this labeling of generative cell and sperm cells in pollen grains has only been observed in a few flowering plant species belonging to dicotyledons. No such studies are available in monocotyledons. The main aim of our study was to see whether AGPs would be present at the generative cell–vegetative cell interface in different monocotyledons (representatives of Asparagaceae, Amarylidaceae and Liliaceae), and we also wanted to test whether they would be the same AGPs as in dicotyledons. For the study, we selected Gagea lutea (L.) Ker Gawl., Ornithogalum nutans L. and Galanthus nivalis L. species that differ in shape and size of generative cells. Antibodies against arabinogalactan proteins AGPs were used, including JIM8, JIM13, JIM14, MAC207, LM2, LM14, JIM15 and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques. The key finding was that AGPs (detected with JIM8 and JIM13 antibodies) consistently mark the boundary between the generative cell and the surrounding vegetative cytoplasm, suggesting their association with the generative cell–vegetative cell interface in all species studied. Identifying such molecular markers in male gametophyte may enhance the understanding of gametophytic cell fate, sperm cell identity and the molecular mechanisms underlying fertilization. Such labeling may also be useful in studies on pollen development, species comparisons, or responses to environmental stresses. Full article
Show Figures

Figure 1

20 pages, 7380 KB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 890
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

16 pages, 4235 KB  
Article
Feasibility of Xenogeneic Mitochondrial Transplantation in Neuronal Systems: An Exploratory Study
by Eriko Nakamura, Tomoaki Aoki, Cyrus E. Kuschner, Yusuke Endo, Jacob S. Kazmi, Tai Yin, Ryosuke Takegawa, Lance B. Becker and Kei Hayashida
Life 2025, 15(7), 998; https://doi.org/10.3390/life15070998 - 23 Jun 2025
Cited by 1 | Viewed by 1661
Abstract
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria [...] Read more.
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria in mouse neuronal systems. HT-22 hippocampal neuronal cells and a murine model of cardiac arrest-induced global cerebral ischemia were used to assess mitochondrial uptake, gene expression, and mitochondrial DNA presence. Donor mitochondria were isolated from rat pectoralis muscle and labeled with MitoTracker dyes. Flow cytometry and confocal microscopy revealed a dose-dependent increase in donor mitochondrial uptake in vitro. Quantitative PCR demonstrated a corresponding increase in rat-specific mitochondrial DNA and upregulation of Mfn2 and Bak1, with no changes in other fusion, fission, or apoptotic genes. Inhibitor studies indicated that mitochondrial internalization may involve actin-dependent macropinocytosis and cholesterol-sensitive endocytic pathways. In vivo, rat mitochondrial DNA was detected in mouse brains post–xeno-MTx, confirming donor mitochondrial delivery to ischemic tissue. These findings support the feasibility of xeno-MTx and its dose-responsive biological effects in neuronal systems while underscoring the need for further research to determine long-term functional outcomes and clinical applicability. Full article
(This article belongs to the Special Issue Advances in Cardiac Arrest: Prognostic Performance and Management)
Show Figures

Figure 1

16 pages, 1811 KB  
Article
Exceptional Heme Tolerance in Serratia plymuthica: Proteomic Insights into Oxidative Stress Adaptation in the Aedes aegypti Midgut
by Sâmella da Hora Machado, Rívea Cristina Custódio Rodrigues, Maria Aparecida Aride Bertonceli, Analiz de Oliveira Gaio, Gabriela Petroceli-Mota, Ricardo de Souza Reis, Marília Amorim Berbert-Molina, Vanildo Silveira and Francisco José Alves Lemos
Life 2025, 15(6), 950; https://doi.org/10.3390/life15060950 - 13 Jun 2025
Viewed by 1088
Abstract
Serratia plymuthica, isolated from the midgut of Aedes aegypti, displays remarkable resilience to hemin, a toxic hemoglobin byproduct generated during blood digestion. This study explores its proteomic adaptations under oxidative stress induced by 5 mM hemin, mimicking midgut conditions. Growth assays [...] Read more.
Serratia plymuthica, isolated from the midgut of Aedes aegypti, displays remarkable resilience to hemin, a toxic hemoglobin byproduct generated during blood digestion. This study explores its proteomic adaptations under oxidative stress induced by 5 mM hemin, mimicking midgut conditions. Growth assays demonstrated that S. plymuthica tolerated hemin concentrations ranging from 5 µM to 1 mM, reaching the stationary phase within approximately 10 h. Colonies exhibited morphological changes—darkened peripheries and translucent halos—suggesting heme accumulation and detoxification. Label-free quantitative proteomics identified 436 proteins, among which 28 were significantly upregulated—including universal stress proteins (USPs), ABC transporters, and flavodoxin—while 54 were downregulated, including superoxide dismutase and several ribosomal proteins. Upregulated proteins were associated with antioxidant defense, heme transport, and redox regulation, whereas downregulated proteins suggested metabolic reprogramming to conserve energy under stress. Functional enrichment analysis revealed significant alterations in transmembrane transport, oxidative stress response, and central metabolism. These findings suggest that S. plymuthica contributes to redox homeostasis in the mosquito gut by mitigating reactive oxygen species (ROS) and detoxifying excess heme, supporting its role as a beneficial symbiont. The observed stress tolerance mechanisms may influence mosquito physiology and vector competence, offering novel insights into mosquito–microbiota interactions and potential microbiota-based strategies for vector control. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

27 pages, 9881 KB  
Article
Anti-TNFα and Anti-IL-1β Monoclonal Antibodies Preserve BV-2 Microglial Homeostasis Under Hypoxia by Mitigating Inflammatory Reactivity and ATF4/MAPK-Mediated Apoptosis
by Linglin Zhang, Chaoqiang Guan, Sudena Wang, Norbert Pfeiffer and Franz H. Grus
Antioxidants 2025, 14(3), 363; https://doi.org/10.3390/antiox14030363 - 19 Mar 2025
Cited by 1 | Viewed by 1969
Abstract
The disruption of microglial homeostasis and cytokine release are critical for neuroinflammation post-injury and strongly implicated in retinal neurodegenerative diseases like glaucoma. This study examines microglial responses to chemical hypoxia induced by cobalt chloride (CoCl2) in BV-2 murine microglial cells, focusing [...] Read more.
The disruption of microglial homeostasis and cytokine release are critical for neuroinflammation post-injury and strongly implicated in retinal neurodegenerative diseases like glaucoma. This study examines microglial responses to chemical hypoxia induced by cobalt chloride (CoCl2) in BV-2 murine microglial cells, focusing on signaling pathways and proteomic alterations. We assessed the protective effects of monoclonal antibodies against TNFα and IL-1β. CoCl2 exposure led to decreased cell viability, reduced mitochondrial membrane potential, increased lactate dehydrogenase release, elevated reactive oxygen species generation, and activation of inflammatory pathways, including nitric oxide synthase (iNOS), STAT1, and NF-κB/NLRP3. These responses were significantly mitigated by treatment with anti-TNFα and anti-IL-1β, suggesting their dual role in reducing microglial damage and inhibiting inflammatory reactivity. Additionally, these treatments reduced apoptosis by modulating ATF4 and the p38 MAPK/caspase-3 pathways. Label-free quantitative mass spectrometry-based proteomics and Gene Ontology revealed that CoCl2 exposure led to the upregulation of proteins primarily involved in endoplasmic reticulum and catabolic processes, while downregulated proteins are associated with biosynthesis. Anti-TNFα and anti-IL-1β treatments partially restored the proteomic profile toward normalcy, with network analysis identifying heat shock protein family A member 8 (HSPA8) as a central mediator in recovery. These findings offer insights into the pathogenesis of hypoxic microglial impairment and suggest potential therapeutic targets. Full article
Show Figures

Figure 1

21 pages, 2279 KB  
Article
Chlorination of Antivirals in Wastewater: Effects of Microplastics and Ecotoxicity on Aquatic and Terrestrial Species
by Nilay Bilgin-Saritas, Emel Topuz and Elif Pehlivanoglu
Processes 2025, 13(3), 866; https://doi.org/10.3390/pr13030866 - 15 Mar 2025
Viewed by 1313
Abstract
The presence of pharmaceuticals in wastewater raises concerns about the toxicological risks associated with its discharge and reuse. During the COVID-19 pandemic, widespread use of antivirals (ATVs), along with plastic gloves and masks, further contributed to pharmaceuticals in wastewater. Chlorination, commonly used for [...] Read more.
The presence of pharmaceuticals in wastewater raises concerns about the toxicological risks associated with its discharge and reuse. During the COVID-19 pandemic, widespread use of antivirals (ATVs), along with plastic gloves and masks, further contributed to pharmaceuticals in wastewater. Chlorination, commonly used for wastewater disinfection, may alter the toxicity of antivirals in the presence of microplastics (MPs) and complex organics in secondarily treated wastewater. To investigate this, synthetic secondary effluent containing Favipiravir (FAV) and Oseltamivir (OSE) was exposed to various chlorination conditions, both with and without MPs. The changes in the concentrations of FAV and OSE were measured using LC-MS/MS with isotopically labeled standards. Chlorination was more effective in removing Favipiravir (42 ± 4%) than Oseltamivir (26 ± 3%). The ecotoxicological effects were assessed on two species—Aliivibrio fischeri (a bacterium) and Enchytraeus crypticus (a soil invertebrate)—to evaluate potential impacts on aquatic and soil environments, though discharge of or irrigation with treated wastewater, respectively. Results indicated that chlorination of wastewater itself increased toxicity more significantly than the chlorination of antivirals to either species, suggesting that chlorination may not be as beneficial despite its cost-effectiveness. The effects of MPs in chlorinated wastewater on toxicity highlighted the importance of sample matrices in environmental toxicity studies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

22 pages, 11880 KB  
Article
Procyanidin A1 from Peanut Skin Exerts Anti-Aging Effects and Attenuates Senescence via Antioxidative Stress and Autophagy Induction
by Yajing Li, Lan Xiang and Jianhua Qi
Antioxidants 2025, 14(3), 322; https://doi.org/10.3390/antiox14030322 - 7 Mar 2025
Cited by 3 | Viewed by 2768
Abstract
The aging population is steadily increasing, with aging and age-related diseases serving as major risk factors for morbidity, mortality, and economic burden. Peanuts, known as the “longevity nut” in China, have been shown to offer various health benefits, with peanut skin extract (PSE) [...] Read more.
The aging population is steadily increasing, with aging and age-related diseases serving as major risk factors for morbidity, mortality, and economic burden. Peanuts, known as the “longevity nut” in China, have been shown to offer various health benefits, with peanut skin extract (PSE) emerging as a key compound of interest. This study investigates the bioactive compound in PSE with anti-aging potential and explores its underlying mechanisms of action. Procyanidin A1 (PC A1) was isolated from PSE, guided by the K6001 yeast replicative lifespan model. PC A1 prolonged the replicative lifespan of yeast and the yeast-like chronological lifespan of PC12 cells. To further confirm its anti-aging effect, cellular senescence, a hallmark of aging, was assessed. In senescent cells induced by etoposide (Etop), PC A1 alleviated senescence by reducing ROS levels, decreasing the percentage of senescent cells, and restoring proliferative capacity. Transcriptomics analysis revealed that PC A1 induced apoptosis, reduced senescence-associated secretory phenotype (SASP) factors, and modulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The antioxidative capacity of PC A1 was also evaluated, showing enhanced resistance to oxidative stress in PC12 cells by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) activity. Moreover, PC A1 induced autophagy, as evidenced by an increase in fluorescence-labeled autophagic compartments and confirmation via Western blot analysis of autophagy-related proteins. In addition, the treatment of an autophagy inhibitor abolished the antioxidative stress and senescence-alleviating effects of PC A1. These findings reveal that PC A1 extended lifespans and alleviated cellular senescence by enhancing oxidative stress resistance and inducing autophagy, positioning it as a promising candidate for further exploration as a geroprotective agent. Full article
(This article belongs to the Special Issue Crosstalk between Autophagy and Oxidative Stress)
Show Figures

Figure 1

29 pages, 31666 KB  
Article
Meningeal Lymphatic and Glymphatic Structures in a Pelagic Delphinid (Delphinus delphis)
by Olivia N. Jackson, Tiffany F. Keenan, Nathan P. Nelson-Maney, Sentiel A. Rommel, William A. McLellan, D. Ann Pabst, Alexander M. Costidis, Kathleen M. Caron, Dawn N. Kernagis, David S. Rotstein, Victoria G. Thayer, Craig A. Harms, Marina A. Piscitelli-Doshkov, Paul Doshkov, Lorian E. Schweikert, Kara E. Yopak, Molly Braun and Michael S. Tift
Animals 2025, 15(5), 729; https://doi.org/10.3390/ani15050729 - 4 Mar 2025
Cited by 1 | Viewed by 4212
Abstract
The glymphatic system, an analog of the peripheral lymphatic system in the brain, and the meningeal lymphatic system are critical to central nervous system health. The glymphatic system functions to distribute cerebrospinal fluid and important compounds throughout the brain and to remove metabolic [...] Read more.
The glymphatic system, an analog of the peripheral lymphatic system in the brain, and the meningeal lymphatic system are critical to central nervous system health. The glymphatic system functions to distribute cerebrospinal fluid and important compounds throughout the brain and to remove metabolic waste. The flow of cerebrospinal fluid through this system is affected by changes in cerebral blood flow, intracranial pressure, and vascular tone. Cetaceans experience profound cardiorespiratory alterations while diving that can directly affect cerebrospinal fluid and blood flow and, thus, glymphatic function. Our goal was to investigate glymphatic and lymphatic system structures, including perivascular spaces, aquaporin-4 water channels, meningeal lymphatic, and dural venous sinus vessels in the common dolphin (Delphinus delphis), using immunofluorescent labeling, histochemical staining, and postmortem computed tomography (CT) angiography. We highlight perivascular spaces and aquaporin-4 water channels surrounding blood vessels in the parenchyma and demonstrate evidence of meningeal lymphatic vessels and associated dural venous sinuses. These results demonstrate that common dolphins possess the key anatomical structures required for functional glymphatic and meningeal lymphatic systems. Future studies can build upon these anatomical discoveries to study the function and role of these systems in brain health in this species. Full article
(This article belongs to the Special Issue Recent Progress in Anatomy and Pathology of Marine Mammals)
Show Figures

Graphical abstract

14 pages, 2970 KB  
Article
Disorders of Iron Metabolism: A “Sharp Edge” of Deoxynivalenol-Induced Hepatotoxicity
by Haoyue Guan, Yujing Cui, Zixuan Hua, Youtian Deng, Huidan Deng and Junliang Deng
Metabolites 2025, 15(3), 165; https://doi.org/10.3390/metabo15030165 - 1 Mar 2025
Cited by 1 | Viewed by 1313
Abstract
Background/Objectives: Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen [...] Read more.
Background/Objectives: Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen species. Although it has been demonstrated that DON can induce ferroptosis in the liver, the specific mechanisms and pathways are still unknown. The aim of this experiment was to investigate that DON can induce iron metabolism disorders in the livers of mice, thereby triggering ferroptosis and causing toxic damage to the liver. Methods: Male C57 mice were treated with DON at a 5 mg/kg BW concentration as an in vivo model. After sampling, organ coefficient monitoring, liver function test, histopathological analysis, liver Fe2+ content test, and oxidative stress-related indexes were performed. The mRNA and protein expression of Nrf2 and its downstream genes were also detected using a series of methods including quantitative real-time PCR, immunofluorescence double-labeling, and Western blotting analysis. Results: DON can cause damage to the liver of a mouse. Specifically, we found that mouse livers in the DON group exhibited pathological damage in cell necrosis, inflammatory infiltration, cytoplasmic vacuolization, elevated relative liver weight, and significant changes in liver function indexes. Meanwhile, the substantial reduction in the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the DON group indicated that DON also caused oxidative stress in the liver. Notably, DON exposure increased the levels of Fe2+ and Malondialdehyde (MDA) in the liver, which provides strong evidence for the occurrence of iron metabolism and ferroptosis disorders. Most importantly, mRNA and protein expression of Nrf2, an important pathway for iron metabolism and ferroptosis, along with its downstream genes, heme oxygenase (HO-1), quinone oxidoreductase (NQO1), glutathione peroxidase (GPX4), and solute carrier gene (SLC7a11), were significantly inhibited in the DON group. Conclusions: Based on our results, the Nrf2 pathway is closely associated with DON-induced iron metabolism disorders and ferroptosis in mouse livers, suggesting that maintaining hepatic iron homeostasis and activating the Nrf2 pathway may be a potential target for mitigating DON hepatotoxicity in the future. Full article
(This article belongs to the Special Issue Animal Nutritional Metabolism and Toxicosis Disease)
Show Figures

Figure 1

Back to TopTop