Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (728)

Search Parameters:
Keywords = space manipulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8223 KiB  
Article
Optimal Time–Jerk Trajectory Planning for Manipulators Based on a Constrained Multi-Objective Dream Optimization Algorithm
by Zhijun Wu, Fang Wang and Tingting Bao
Machines 2025, 13(8), 682; https://doi.org/10.3390/machines13080682 (registering DOI) - 2 Aug 2025
Abstract
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, [...] Read more.
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, achieving the C4 continuity of joint motion and satisfying dynamic, kinematic, geometric, synchronization, and boundary constraints. The interpolation reformulates the trajectory planning problem into an optimization problem, where the time intervals between desired adjacent waypoints serve as variables. Travelling time and the integral of the squared jerk along the entire trajectories comprise the multi-objective functions. A constrained multi-objective dream optimization algorithm is designed to solve the time–jerk optimal trajectory planning problem and generate Pareto solutions for optimized trajectories. Simulations conducted on 6-DOF manipulators validate the effectiveness and superiority of the proposed method in comparison with existing typical trajectory planning methods. Full article
(This article belongs to the Special Issue Cutting-Edge Automation in Robotic Machining)
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 253
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Viewed by 292
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

15 pages, 3200 KiB  
Article
Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio
by Bo Wang, Taiqi Wu, Weidong Gao, Gang Hu and Changjun Wang
Coatings 2025, 15(7), 848; https://doi.org/10.3390/coatings15070848 - 19 Jul 2025
Viewed by 303
Abstract
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of [...] Read more.
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of multilayer film stress a critical factor in enhancing optical surface figure accuracy. In this study, which addresses the process constraints and substrate damage risks associated with conventional annealing-based stress compensation for large-aperture optical components, we introduce an active stress engineering strategy rooted in in situ deposition process optimization. By systematically tailoring film deposition parameters and adjusting the thickness modulation ratio of TiO2 and SiO2, we achieve dynamic compensation of residual stress in multilayer structures. This approach demonstrates broad applicability across diverse optical coatings, where it effectively mitigates stress-induced surface distortions. Unlike annealing methods, this intrinsic stress polarity manipulation strategy obviates the need for high-temperature post-processing, eliminating risks of material decomposition or substrate degradation. By enabling precise nanoscale stress regulation in large-aperture films through controlled process parameters, it provides essential technical support for manufacturing ultra-precision optical devices, such as next-generation laser systems and space-based stress wave detection instruments, where minimal stress-induced deformation is paramount to functional performance. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

12 pages, 1891 KiB  
Article
Full-Space Three-Dimensional Holograms Enabled by a Reflection–Transmission Integrated Reconfigurable Metasurface
by Rui Feng, Yaokai Yu, Dongyang Wu, Qiulin Tan and Shah Nawaz Burokur
Nanomaterials 2025, 15(14), 1120; https://doi.org/10.3390/nano15141120 - 18 Jul 2025
Viewed by 253
Abstract
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage [...] Read more.
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage in reflection space and 180° phase coverage in transmission space. By adjusting the voltage applied to the constituting electronically tunable meta-atoms of the metasurface, an octahedron hologram constituted by three hologram images in different focal planes is generated in the reflection space at 6.25 GHz. Moreover, a diamond hologram, also composed of three hologram images in different focal planes, is achieved in the transmission space at 6.75 GHz. Both the numerical simulation and experimental measurement are performed to validate the full-space holograms implemented by the modified weighted Gerchberg–Saxton (WGS) algorithm with specific phase distribution in different imaging planes. The obtained results pave the way for a wide range of new applications, such as next-generation three-dimensional displays for immersive viewing experiences, high-capacity optical communication systems with enhanced data encoding capabilities, and ultra-secure anti-counterfeiting solutions that are extremely difficult to replicate. Full article
Show Figures

Graphical abstract

21 pages, 7868 KiB  
Article
Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning
by Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang and Jing Shi
Biomimetics 2025, 10(7), 469; https://doi.org/10.3390/biomimetics10070469 - 17 Jul 2025
Viewed by 490
Abstract
Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high [...] Read more.
Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot’s tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

25 pages, 4903 KiB  
Article
Intelligent Joint Space Path Planning: Enhancing Motion Feasibility with Goal-Driven and Potential Field Strategies
by Yuzhou Li, Yefeng Yang, Kang Liu and Chih-Yung Wen
Sensors 2025, 25(14), 4370; https://doi.org/10.3390/s25144370 - 12 Jul 2025
Viewed by 281
Abstract
Traditional path-planning algorithms for robotic manipulators typically focus on end-effector planning, often neglecting complete collision avoidance for the entire manipulator. Additionally, many existing approaches suffer from high time complexity and are easily trapped in local extremes. To address these challenges, this paper proposes [...] Read more.
Traditional path-planning algorithms for robotic manipulators typically focus on end-effector planning, often neglecting complete collision avoidance for the entire manipulator. Additionally, many existing approaches suffer from high time complexity and are easily trapped in local extremes. To address these challenges, this paper proposes a goal-biased bidirectional artificial potential field-based rapidly-exploring random tree* (GBAPF-RRT*) algorithm, which enhances both target guidance and obstacle avoidance capabilities of the manipulator. Firstly, we utilize a Gaussian distribution to add heuristic guidance into the exploration of the robotic manipulator, thereby accelerating the search speed of the RRT*. Then, we combine the modified repulsion function to prevent the random tree from trapping in a local extreme. Finally, sufficient numerical simulations and physical experiments are conducted in the joint space to verify the effectiveness and superiority of the proposed algorithm. Comparative results indicate that our proposed method achieves a faster search speed and a shorter path in complex planning scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

23 pages, 988 KiB  
Article
The Influence of Spatial Distance and Trade-Off Salience on Ethical Decision-Making: An Eye-Tracking Study Based on Embodied Cognition
by Yu Yang, Yirui Li, Qingsong Lin and Xuejun Bai
Behav. Sci. 2025, 15(7), 911; https://doi.org/10.3390/bs15070911 - 4 Jul 2025
Viewed by 359
Abstract
Research based on the theory of embodied cognition has revealed that the vertical position of target information in space influences individuals’ construal level, which in turn affects their ethical decision-making. However, previous studies have shown inconsistent effects of construal level on ethical decision-making, [...] Read more.
Research based on the theory of embodied cognition has revealed that the vertical position of target information in space influences individuals’ construal level, which in turn affects their ethical decision-making. However, previous studies have shown inconsistent effects of construal level on ethical decision-making, which may be moderated by factors such as the manipulation methods of construal level and the salience of trade-offs. This study examines how manipulating the vertical position (high/low) of target information in space—thereby altering perceived spatial distance—impacts ethical decision-making through the lens of embodied cognition, using eye-tracking technology. Experiment 1 isolated the effect of target verticality, while Experiment 2 introduced trade-off salience as an additional factor. Eye-tracking metrics in Experiment 1 revealed that lower target positions significantly increased late-stage cognitive processing difficulty. Experiment 2 demonstrated an interaction between target position and trade-off salience in ethical decision-making. These findings suggest that spatial positioning influences cognitive processing via construal level, with its effects on ethical decision-making moderated by trade-off cues. In summary, this study reveals the significant influence of trade-off salience as a contextual cue in individuals’ ethical decision-making while also providing an embodied cognition perspective to inform decision behavior in human–computer interaction contexts. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

21 pages, 1556 KiB  
Article
Hexic-Chebyshev Collocation Method for Solving Distributed-Order Time-Space Fractional Diffusion Equations
by Afshin Babaei, Sedigheh Banihashemi, Behrouz Parsa Moghaddam and Arman Dabiri
Axioms 2025, 14(7), 515; https://doi.org/10.3390/axioms14070515 - 3 Jul 2025
Viewed by 346
Abstract
This paper presents a spectral method to solve nonlinear distributed-order diffusion equations with both time-distributed-order and two-sided space-fractional terms. These are highly challenging to solve analytically due to the interplay between nonlinearity and the fractional distributed-order nature of the time and space derivatives. [...] Read more.
This paper presents a spectral method to solve nonlinear distributed-order diffusion equations with both time-distributed-order and two-sided space-fractional terms. These are highly challenging to solve analytically due to the interplay between nonlinearity and the fractional distributed-order nature of the time and space derivatives. For this purpose, Hexic-kind Chebyshev polynomials (HCPs) are used as the backbone of the method to transform the primary problem into a set of nonlinear algebraic equations, which can be efficiently solved using numerical solvers, such as the Newton–Raphson method. The primary reason of choosing HCPs is due to their remarkable recurrence relations, facilitating their efficient computation and manipulation in mathematical analyses. A comprehensive convergence analysis was conducted to validate the robustness of the proposed method, with an error bound derived to provide theoretical guarantees for the solution’s accuracy. The method’s effectiveness is further demonstrated through two test examples, where the numerical results are compared with existing solutions, confirming the approach’s accuracy and reliability. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Differential Equations and Inequalities)
Show Figures

Figure 1

12 pages, 17214 KiB  
Technical Note
A Prototype Crop Management Platform for Low-Tunnel-Covered Strawberries Using Overhead Power Cables
by Omeed Mirbod and Marvin Pritts
AgriEngineering 2025, 7(7), 210; https://doi.org/10.3390/agriengineering7070210 - 2 Jul 2025
Viewed by 312
Abstract
The continuous and reliable operation of autonomous systems is important for farm management decision making, whether such systems perform crop monitoring using imaging systems or crop handling in pruning and harvesting applications using robotic manipulators. Autonomous systems, including robotic ground vehicles, drones, and [...] Read more.
The continuous and reliable operation of autonomous systems is important for farm management decision making, whether such systems perform crop monitoring using imaging systems or crop handling in pruning and harvesting applications using robotic manipulators. Autonomous systems, including robotic ground vehicles, drones, and tractors, are major research efforts of precision crop management. However, these systems may be less effective or require specific customizations for planting systems in low tunnels, high tunnels, or other environmentally controlled enclosures. In this work, a compact and lightweight crop management platform is developed that uses overhead power cables for continuous operation over row crops, requiring less human intervention and independent of the ground terrain conditions. The platform does not carry batteries onboard for its operation, but rather pulls power from overhead cables, which it also uses to navigate over crop rows. It is developed to be modular, with the top section consisting of mobility and power delivery and the bottom section addressing a custom task, such as incorporating additional sensors for crop monitoring or manipulators for crop handling. This prototype illustrates the infrastructure, locomotive mechanism, and sample usage of the system (crop imaging) in the application of low-tunnel-covered strawberries; however, there is potential for other row crop systems with regularly spaced support structures to adopt this platform as well. Full article
Show Figures

Graphical abstract

22 pages, 4917 KiB  
Article
FVIII Trafficking Dynamics Across Subcellular Organelles Using CRISPR/Cas9 Specific Gene Knockouts
by Salime El Hazzouri, Rawya Al-Rifai, Nicole Surges, Melanie Rath, Heike Singer, Johannes Oldenburg and Osman El-Maarri
Int. J. Mol. Sci. 2025, 26(13), 6349; https://doi.org/10.3390/ijms26136349 - 1 Jul 2025
Viewed by 496
Abstract
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence [...] Read more.
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence FVIII secretion. Here, we further investigated the intracellular dynamics of FVIII using single and double CRISPR/Cas9 Knockout (KO) models of the abovementioned chaperones as well as the GABARAP proteins in HEK293 cells expressing FVIII. Cellular pathways were manipulated by Brefeldin A (BFA), Chloroquine (CQ), a Rab7 inhibitor, and subjected to glucose starvation. The effect of each KO on FVIII secretion and organelle distribution was assessed by a two-stage chromogenic assay and immunofluorescence (IF) microscopy, prior and upon cell treatments. Using these approaches, we first observed distinct effects of each studied protein on FVIII trafficking. Notably, intracellular localization patterns revealed clustering of FVIII phenotypes in GABARAPKO, CANXKO, and CALRKO cells together under both basal and treated conditions, an observation that was also reflected in their respective double KO combinations. Besides, a clear involvement of additional components of the endomembrane system was evident, specifically at the trans-Golgi space, as marked by FVIII colocalization with the Ras-like proteins in brain (Rab8 and Rab7) and with the Vesicle-Associated Membrane Protein (VAMP8), along with the observed impact of the selected cell treatments on FVIII phenotypes. These outcomes enhance our understanding of the molecular mechanisms regulating FVIII and pave the way for new perspectives, which could be further projected into FVIII replacement, cell and gene therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

26 pages, 2296 KiB  
Article
Novel Design of Three-Channel Bilateral Teleoperation with Communication Delay Using Wave Variable Compensators
by Bo Yang, Chao Liu, Lei Zhang, Long Teng, Jiawei Tian, Siyuan Xu and Wenfeng Zheng
Electronics 2025, 14(13), 2595; https://doi.org/10.3390/electronics14132595 - 27 Jun 2025
Viewed by 331
Abstract
Bilateral teleoperation systems have been widely used in many fields of robotics, such as industrial manipulation, medical treatment, space exploration, and deep-sea operation. Delays in communication, known as an inevitable issues in practical implementation, especially for long-distance operations and challenging communication situations, can [...] Read more.
Bilateral teleoperation systems have been widely used in many fields of robotics, such as industrial manipulation, medical treatment, space exploration, and deep-sea operation. Delays in communication, known as an inevitable issues in practical implementation, especially for long-distance operations and challenging communication situations, can destroy system passivity and potentially lead to system failure. In this work, we address the time-delayed three-channel teleoperation design problem to guarantee system passivity and achieve high transparency simultaneously. To realize this, the three-channel teleoperation structure is first reformulated to form a two-channel-like architecture. Then, the wave variable technique is used to handle the communication delay and guarantee system passivity. Two novel wave variable compensators are proposed to achieve delay-minimized system transparency, and energy reservoirs are employed to monitor and regulate the energy introduced via these compensators to preserve overall system passivity. Numerical studies confirm that the proposed method significantly improves both kinematic and force tracking performance, achieving near-perfect correspondence with only a single-trip delay. Quantitative analyses using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Dynamic Time Warping (DTW) metrics show substantial error reductions compared to conventional wave variable and direct transmission-based three-channel teleoperation approaches. Moreover, statistical validation via the Mann–Whitney U test further confirms the significance of these improvements in system performance. The proposed design guarantees passivity with any passive human operator and environment without requiring restrictive assumptions, offering a robust and generalizable solution for teleoperation tasks with communication time delay. Full article
(This article belongs to the Special Issue Intelligent Perception and Control for Robotics)
Show Figures

Figure 1

11 pages, 593 KiB  
Article
Probabilistic Modeling of Dust-Induced FSO Attenuation for 5G/6G Backhaul in Arid Regions
by Maged Abdullah Esmail
Appl. Sci. 2025, 15(12), 6775; https://doi.org/10.3390/app15126775 - 16 Jun 2025
Viewed by 329
Abstract
Free-Space Optical (FSO) communication systems operating in arid regions, especially those envisioned for current and future 5G/6G networks, are significantly affected by dust storms, which cause signal attenuation and service disruptions. While previous studies have proposed deterministic models to characterize attenuation in both [...] Read more.
Free-Space Optical (FSO) communication systems operating in arid regions, especially those envisioned for current and future 5G/6G networks, are significantly affected by dust storms, which cause signal attenuation and service disruptions. While previous studies have proposed deterministic models to characterize attenuation in both controlled and real environments, probabilistic modeling approaches remain largely unexplored, particularly for capturing the variability of FSO signal attenuation under dust conditions. This study proposes a probabilistic model for FSO signal attenuation developed from experiments conducted in a repeatable and well-characterized controlled dust chamber. The chamber-based setup allowed precise manipulation of dust visibility levels and consistent data collection, serving as a benchmark for statistical modeling. We analyzed the measurements to fit appropriate probability distributions for modeling the signal attenuation as a random variable. The empirical data were fitted to several candidate distributions, and the Johnson SB distribution consistently achieved superior performance with R20.95 and RMSE and MAE values close to zero across all dust conditions. The results offer a foundational framework for modeling dust-induced attenuation as a random process, providing statistical bounds for FSO link planning in desert environments. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

45 pages, 69760 KiB  
Article
Robotic Simulation Systems and Intelligent Offline Teaching for Urban Rail Transit Maintenance
by Changhao Sun, Haiteng Wu, Zihe Yang, Xujun Li, Haoran Jin and Shaohua Tian
Electronics 2025, 14(12), 2431; https://doi.org/10.3390/electronics14122431 - 14 Jun 2025
Viewed by 967
Abstract
Intelligent operation and maintenance of urban rail transit systems is essential for improving train safety and efficiency. This study focuses on reducing time, physical effort, and safety risks in deploying intelligent metro inspection robots. This study introduces a design approach for an undercarriage [...] Read more.
Intelligent operation and maintenance of urban rail transit systems is essential for improving train safety and efficiency. This study focuses on reducing time, physical effort, and safety risks in deploying intelligent metro inspection robots. This study introduces a design approach for an undercarriage robot simulation system and an offline teaching method. Gazebo and Isaac Sim are combined in this study. Gazebo is used for lightweight simulation in model development and algorithm testing. Isaac Sim is used for high-fidelity rendering and robust simulation in complex large-scale scenarios. This combined approach addresses critical aspects of system development. The research proposes environment data collection and processing methods for metro inspection scenarios. It also provides solutions for hole problems in point cloud mesh models and approaches for robot modeling and sensor configuration. Additionally, it involves developing a target vector labeling platform. Using these elements, an offline teaching system for undercarriage inspection robots has been designed with simulation tools. Offline teaching is unrestricted by on-site space and time. It reduces physical demands and boosts robot teaching efficiency. Experimental results indicate that it takes about 30 s to program a single manipulator motion offline. In contrast, manual on-site teaching takes about 5 min. This represents a significant efficiency improvement. While offline teaching results have some errors, high success rates can still be achieved through error correction. Despite challenges in modeling accuracy and sensor data precision, the simulation system and offline teaching approach decrease metro vehicle operation risks and enhance robot deployment efficiency. They offer a novel solution for intelligent rail transit operation and maintenance. Future research will focus on high-quality environmental point cloud data collection and processing, high-precision model development, and enhancing and expanding simulation system functionality. Full article
Show Figures

Figure 1

22 pages, 5111 KiB  
Article
Multibody Simulation of 1U CubeSat Passive Attitude Stabilisation Using a Robotic Arm
by Filippo Foiani, Giulia Morettini, Massimiliano Palmieri, Stefano Carletta, Filippo Cianetti and Marco Dionigi
Machines 2025, 13(6), 509; https://doi.org/10.3390/machines13060509 - 11 Jun 2025
Viewed by 979
Abstract
Robotics plays a pivotal role in contemporary space missions, particularly in the development of robotic manipulators for operations in environments that are inaccessible to humans. In accordance with the trend of integrating multiple functionalities into a single system, this study evaluates the feasibility [...] Read more.
Robotics plays a pivotal role in contemporary space missions, particularly in the development of robotic manipulators for operations in environments that are inaccessible to humans. In accordance with the trend of integrating multiple functionalities into a single system, this study evaluates the feasibility of using a robotic manipulator, termed a C-arm, for passive attitude control of a 1U CubeSat. A simplified multibody model of the CubeSat system was employed to assess the robotic arm’s functionality as a gravity gradient boom and subsequently as a passive magnetic control mechanism by utilising a permanent magnet at its extremity. The effectiveness of the C-arm as a gravitational boom is constrained by size and weight, as evidenced by the simulations; the pitch angle oscillated around ±40°, while roll and yaw angles varied up to 30° and 35°, respectively. Subsequent evaluations sought to enhance pointing accuracy through the utilisation of permanent magnets. However, the absence of dissipative forces resulted in attitude instabilities. In conclusion, the integration of a robotic arm into a 1U CubeSat for passive attitude control shows potential, especially for missions where pointing accuracy can tolerate a certain range, as is typical of CubeSat nanosatellite missions. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

Back to TopTop