Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,275)

Search Parameters:
Keywords = space–time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 351 KiB  
Article
Special Curves and Tubes in the BCV-Sasakian Manifold
by Tuba Ağırman Aydın and Ensar Ağırman
Symmetry 2025, 17(8), 1215; https://doi.org/10.3390/sym17081215 (registering DOI) - 1 Aug 2025
Abstract
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The [...] Read more.
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The general equations of canal and tubular surfaces are provided within this geometric framework. Additionally, the curvature properties of the tubular surface constructed around a non-vertex focal curve are computed and analyzed. All of these results are presented for the first time in the literature within the context of the BCV-Sasakian geometry. Thus, this study makes a substantial contribution to the differential geometry of contact metric manifolds by extending classical concepts into a more generalized and complex geometric structure. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 622 KiB  
Article
Distributed Diffusion Multi-Distribution Filter with IMM for Heavy-Tailed Noise
by Guannan Chang, Changwu Jiang, Wenxing Fu, Tao Cui and Peng Dong
Signals 2025, 6(3), 37; https://doi.org/10.3390/signals6030037 (registering DOI) - 1 Aug 2025
Abstract
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise [...] Read more.
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise Interacting Multiple Model (IMM) filter for maneuvering target tracking in heavy-tailed noise. The proposed approach leverages parallel Gaussian and Student-t filters to enhance robustness against non-Gaussian process and measurement noise. This hybrid filter is implemented as a node within a distributed network, where the diffusion algorithm leads to the global state asymptotically reaching consensus as the filtering time progresses. Furthermore, a fusion of multiple motion models within the IMM algorithm enables robust tracking of maneuvering targets across the distributed network and process outlier caused by maneuver compared to previous studies. Simulation results demonstrate the effectiveness of the proposed filter in tracking maneuvering targets. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

31 pages, 9518 KiB  
Article
FPGA Implementation of Secure Image Transmission System Using 4D and 5D Fractional-Order Memristive Chaotic Oscillators
by Jose-Cruz Nuñez-Perez, Opeyemi-Micheal Afolabi, Vincent Ademola Adeyemi, Yuma Sandoval-Ibarra and Esteban Tlelo-Cuautle
Fractal Fract. 2025, 9(8), 506; https://doi.org/10.3390/fractalfract9080506 (registering DOI) - 31 Jul 2025
Abstract
With the rapid proliferation of real-time digital communication, particularly in multimedia applications, securing transmitted image data has become a vital concern. While chaotic systems have shown strong potential for cryptographic use, most existing approaches rely on low-dimensional, integer-order architectures, limiting their complexity and [...] Read more.
With the rapid proliferation of real-time digital communication, particularly in multimedia applications, securing transmitted image data has become a vital concern. While chaotic systems have shown strong potential for cryptographic use, most existing approaches rely on low-dimensional, integer-order architectures, limiting their complexity and resistance to attacks. Advances in fractional calculus and memristive technologies offer new avenues for enhancing security through more complex and tunable dynamics. However, the practical deployment of high-dimensional fractional-order memristive chaotic systems in hardware remains underexplored. This study addresses this gap by presenting a secure image transmission system implemented on a field-programmable gate array (FPGA) using a universal high-dimensional memristive chaotic topology with arbitrary-order dynamics. The design leverages four- and five-dimensional hyperchaotic oscillators, analyzed through bifurcation diagrams and Lyapunov exponents. To enable efficient hardware realization, the chaotic dynamics are approximated using the explicit fractional-order Runge–Kutta (EFORK) method with the Caputo fractional derivative, implemented in VHDL. Deployed on the Xilinx Artix-7 AC701 platform, synchronized master–slave chaotic generators drive a multi-stage stream cipher. This encryption process supports both RGB and grayscale images. Evaluation shows strong cryptographic properties: correlation of −6.1081 × 10−5, entropy of 7.9991, NPCR of 99.9776%, UACI of 33.4154%, and a key space of 21344, confirming high security and robustness. Full article
22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

20 pages, 1942 KiB  
Article
Dispatch Instruction Disaggregation for Virtual Power Plants Using Multi-Parametric Programming
by Zhikai Zhang and Yanfang Wei
Energies 2025, 18(15), 4060; https://doi.org/10.3390/en18154060 (registering DOI) - 31 Jul 2025
Abstract
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP [...] Read more.
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP dispatch instruction disaggregation often require solving complex optimization problems for each instruction, posing challenges for real-time applications. To address this issue, we propose a multi-parametric programming-based method that yields an explicit mapping from any given dispatch instruction to an optimal DER-level deployment strategy. In our approach, a parametric optimization model is formulated to minimize the dispatch cost subject to DER operational constraints. By applying Karush–Kuhn–Tucker (KKT) conditions and recursively partitioning the DERs’ adjustable capacity space into critical regions, we derive analytical expressions that directly map dispatch instructions to their corresponding resource allocation strategies and optimal scheduling costs. This explicit solution eliminates the need to repeatedly solve the optimization problem for each new instruction, enabling fast real-time dispatch decisions. Case study results verify that the proposed method effectively achieves the cost-efficient and computationally efficient disaggregation of dispatch signals in a VPP, thereby improving its operational performance. Full article
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 (registering DOI) - 31 Jul 2025
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2894 KiB  
Article
Technology Roadmap Methodology and Tool Upgrades to Support Strategic Decision in Space Exploration
by Giuseppe Narducci, Roberta Fusaro and Nicole Viola
Aerospace 2025, 12(8), 682; https://doi.org/10.3390/aerospace12080682 (registering DOI) - 30 Jul 2025
Abstract
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available [...] Read more.
Technological roadmaps are essential tools for managing and planning complex projects, especially in the rapidly evolving field of space exploration. Defined as dynamic schedules, they support strategic and long-term planning while coordinating current and future objectives with particular technology solutions. Currently, the available methodologies are mostly built on experts’ opinions and in just few cases, methodologies and tools have been developed to support the decision makers with a rational approach. In any case, all the available approaches are meant to draw “ideal” maturation plans. Therefore, it is deemed essential to develop an integrate new algorithms able to decision guidelines on “non-nominal” scenarios. In this context, Politecnico di Torino, in collaboration with the European Space Agency (ESA) and Thales Alenia Space–Italia, developed the Technology Roadmapping Strategy (TRIS), a multi-step process designed to create robust and data-driven roadmaps. However, one of the main concerns with its initial implementation was that TRIS did not account for time and budget estimates specific to the space exploration environment, nor was it capable of generating alternative development paths under constrained conditions. This paper discloses two main significant updates to TRIS methodology: (1) improved time and budget estimation to better reflect the specific challenges of space exploration scenarios and (2) the capability of generating alternative roadmaps, i.e., alternative technological maturation paths in resource-constrained scenarios, balancing financial and temporal limitations. The application of the developed routines to available case studies confirms the tool’s ability to provide consistent planning outputs across multiple scenarios without exceeding 20% deviation from expert-based judgements available as reference. The results demonstrate the potential of the enhanced methodology in supporting strategic decision making in early-phase mission planning, ensuring adaptability to changing conditions, optimized use of time and financial resources, as well as guaranteeing an improved flexibility of the tool. By integrating data-driven prioritization, uncertainty modeling, and resource-constrained planning, TRIS equips mission planners with reliable tools to navigate the complexities of space exploration projects. This methodology ensures that roadmaps remain adaptable to changing conditions and optimized for real-world challenges, supporting the sustainable advancement of space exploration initiatives. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 91001 KiB  
Article
PONet: A Compact RGB-IR Fusion Network for Vehicle Detection on OrangePi AIpro
by Junyu Huang, Jialing Lian, Fangyu Cao, Jiawei Chen, Renbo Luo, Jinxin Yang and Qian Shi
Remote Sens. 2025, 17(15), 2650; https://doi.org/10.3390/rs17152650 (registering DOI) - 30 Jul 2025
Abstract
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them [...] Read more.
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them unsuitable for deployment on resource-constrained edge devices. To address this limitation, we propose PONet, a lightweight and efficient multi-modal vehicle detection network tailored for real-time edge inference. PONet incorporates Polarized Self-Attention to improve feature adaptability and representation with minimal computational overhead. In addition, a novel fusion module is introduced to effectively integrate RGB and IR modalities while preserving efficiency. Experimental results on the VEDAI dataset demonstrate that PONet achieves a competitive detection accuracy of 82.2% mAP@0.5 while sustaining a throughput of 34 FPS on the OrangePi AIpro 20T device. With only 3.76 M parameters and 10.2 GFLOPs (Giga Floating Point Operations), PONet offers a practical solution for edge-oriented remote sensing applications requiring a balance between detection precision and computational cost. Full article
Show Figures

Figure 1

14 pages, 9867 KiB  
Article
Recurrence Patterns After Resection of Sacral Chordoma: Toward an Optimized Postoperative Target Volume Definition
by Hanna Waldsperger, Burkhard Lehner, Andreas Geisbuesch, Felix Jotzo, Eva Meixner, Laila König, Sebastian Regnery, Katharina Kozyra, Lars Wessel, Sandro Krieg, Klaus Herfarth, Jürgen Debus and Katharina Seidensaal
Cancers 2025, 17(15), 2521; https://doi.org/10.3390/cancers17152521 (registering DOI) - 30 Jul 2025
Abstract
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing [...] Read more.
Background: Postoperative recurrence of sacrococcygeal chordomas presents significant clinical challenges due to unusual recurrence patterns. This study aimed to characterize these patterns of recurrence to inform improved adjuvant radiotherapy planning. Methods: We retrospectively analyzed 31 patients with recurrent sacrococcygeal chordoma following surgery, assessing recurrence locations considering initial tumor extent, resection levels, and postoperative anatomical changes on MRI. In 18 patients, pre- and postoperative imaging enabled the spatial mapping of early recurrence origins relative to the initial tumor volume using isotropic expansions. The median initial gross tumor volume was 113 mL. Results: Recurrences were mostly multifocal and predominantly involved soft tissues (e.g., mesorectal/perirectal space (80.6%), piriformis and gluteal muscles (80.6% and 67.7%, respectively) and osseous structures, particularly the sacrum (87.1%)). The median time to recurrence was 15 months. The initial surgery was R0 in 17 patients (55%). The highest infiltrated sacral vertebra was S1 in 3%, S2 in 10%, S3 in 35%, S4 in 23%, S5 in 10%, and coccygeal in 19%. Anatomical changes post-resection, including rectal herniation into gluteal and subcutaneous tissues, significantly affected radiotherapy planning. Expansion of the initial tumor volume by 2 cm failed to encompass all recurrence origins in 72% of cases. A 5 cm expansion was required to achieve full coverage in 56% of patients, though 22% of recurrences still lay beyond this margin and the remaining were covered only partially. Conclusions: Recurrent sacrococcygeal chordomas exhibit complex, soft-tissue-dominant patterns and are influenced by significant anatomical displacement post-surgery. Standard target volume expansions are often insufficient to cover the predominantly multifocal recurrences. Full article
(This article belongs to the Special Issue Advanced Research on Spine Tumor)
Show Figures

Figure 1

27 pages, 2829 KiB  
Article
A Study of Emergency Aircraft Control During Landing
by Mariusz Paweł Dojka and Marian Wysocki
Appl. Sci. 2025, 15(15), 8472; https://doi.org/10.3390/app15158472 - 30 Jul 2025
Abstract
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation [...] Read more.
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation control characteristics, a review of existing control systems, and a detailed description of the development process, including the research platform configuration, identification of the aircraft state-space model, control law design, integration of system components within the MATLAB and Simulink environment, and software-in-the-loop testing conducted in the X-Plane 11 flight simulator using a Boeing 757-200 model. The study also investigates the issue of control channel cross-coupling and its impact on simultaneous control of the aircraft’s longitudinal and lateral dynamics. The simulation results demonstrate that the proposed emergency system provides adequate controllability, with settling times of approximately 12 s for achieving a flight path angle setpoint of +5°, and 13 s for attaining a maximum (limited) roll angle of 20°, achieved in separate manoeuvres. Furthermore, simulated landing attempts suggest that the system could potentially enable successful landings at approach speeds significantly higher than standard recommendations. However, further investigation is required to address decoupling of control channels, ensure system stability, and evaluate control performance across a broader range of aircraft configurations. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 241 KiB  
Article
Changes in Family Spirituality in Response to Family Intervention Utilizing the Family Life Review
by Naohiro Hohashi and Haruka Yano
Nurs. Rep. 2025, 15(8), 277; https://doi.org/10.3390/nursrep15080277 - 30 Jul 2025
Abstract
Background/Objectives: Family spirituality is an important concept in family nursing that reinforces the meaning of the family’s existence. However, no studies on specific family intervention methods have been conducted to date. The purpose of this study was to verify the effect of [...] Read more.
Background/Objectives: Family spirituality is an important concept in family nursing that reinforces the meaning of the family’s existence. However, no studies on specific family intervention methods have been conducted to date. The purpose of this study was to verify the effect of family interventions using the family life review (FLR) program on changes to family spirituality. Methods: An FLR was conducted on six families having older adult members and undergoing family spiritual suffering, with two sessions spaced one week apart. The FLR was conducted using the Plot of Family Story (PFS), a tool for reviewing family history based on the concentric sphere family environment theory (CSFET). Semi-structured interviews and scoring using the Family Spirituality Index were conducted based on CSFET at three points in time: first before, and then after, the FLR, then again one month later, and changes in family spirituality were analyzed using mixed methods. Results: The families encountered family spiritual suffering in the family internal environment system, family system unit, and chrono system according to the CSFET. The FLR, when used with the PFS, was able to maintain, enhance, confer, and actualize family spirituality corresponding to the spiritual suffering being experienced by the target families. Conclusions: Family intervention through an FLR using the PFS can improve family spirituality in families undergoing family spiritual suffering. In this study, the PFS became a legacy for the family and raised awareness of the value of their existence. Full article
19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

30 pages, 8619 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
25 pages, 3785 KiB  
Article
Evolutionary Algorithms for the Optimal Design of Robotic Cells: A Dual Approximation for Space and Time
by Raúl-Alberto Sánchez-Sosa and Ernesto Chavero-Navarrete
Appl. Sci. 2025, 15(15), 8455; https://doi.org/10.3390/app15158455 - 30 Jul 2025
Abstract
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of [...] Read more.
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of real-world applications. In response, this study presents a dual approach to optimize both spatial design and traversal time in robotic cells, using bioinspired evolutionary algorithms. Initially, a genetic algorithm is employed to optimize the layout of the cell elements, reducing space usage and avoiding interferences between workstations. Subsequently, an ant colony optimization algorithm is used to optimize the robots’ trajectories, minimizing cycle time. Through simulations and a digital model of the cell, key metrics such as total space reduction, operational time improvement, and productivity increase are evaluated. The results demonstrate that the combination of both approaches achieves significant improvements, enabling an average reduction of 21.19% in the occupied area and up to 20.15% in operational cycle time, consistently outperforming traditional methods. This approach has the potential to be applied in various industrial configurations, representing a relevant contribution in the integration of artificial intelligence techniques for the enhancement of robotic systems. Full article
Show Figures

Figure 1

Back to TopTop