Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = soybean cyst nematode (SCN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2688 KiB  
Article
GmLac55 Enhanced Soybean Resistance Against Soybean Cyst Nematodes Through Lignin Biosynthesis
by Hui Wang, Shumei Liu, Han Wang, Dige Luo, Chuanwen Yang, Songjie Qi, Min Wang, Yubo Jia, Yuxi Duan, Chen Liu and Qiumin Chen
Int. J. Mol. Sci. 2025, 26(13), 6304; https://doi.org/10.3390/ijms26136304 - 30 Jun 2025
Viewed by 256
Abstract
Soybean cyst nematodes (SCNs) are a significant disease that causes yield loss and reducing seed quality in soybeans (Glycine max). Developing SCN-resistant soybean varieties can minimize the need for insecticide use and reduce yield loss. Cinnamate-4-hydroxylase (C4H) and laccase (Lac) are [...] Read more.
Soybean cyst nematodes (SCNs) are a significant disease that causes yield loss and reducing seed quality in soybeans (Glycine max). Developing SCN-resistant soybean varieties can minimize the need for insecticide use and reduce yield loss. Cinnamate-4-hydroxylase (C4H) and laccase (Lac) are key enzymes in the lignin synthesis pathway. In this study, SCN stress significantly promoted lignin accumulation in soybean roots and upregulated the expression of lignin signaling pathway genes GmC4H (Glyma.02G236500), GmLac55 (Glyma.13G076900), and GmLac85 (Glyma.20G051900). Using Agrobacterium rhizogenes-mediated transformation, the pNI900 expression vector was introduced into the soybean cultivar Williams 82 to generate GmLac55-overexpressing plants. The overexpression of GmLac55 enhanced soybean roots resistance to SCN and inhibited the further development of J2 larvae. Our study presents a strategy for increasing SCN resistance in soybean through Agrobacterium-mediated targeted mutagenesis of the GmLac55 gene. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 2566 KiB  
Article
Gene Localization and Functional Validation of GmPDH1 in Soybean Against Cyst Nematode Race 4
by Yuehua Dai, Yue Zhang, Chuhui Li, Kun Wan, Yan Chen, Mengen Nie and Haiping Zhang
Plants 2025, 14(12), 1877; https://doi.org/10.3390/plants14121877 - 19 Jun 2025
Viewed by 478
Abstract
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a [...] Read more.
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a genome-wide association study (GWAS), a genomic region (Gm18:1,223,546–1,782,241) on chromosome 18 was mapped, yielding 14 candidate genes. GmPDH1 was validated as a critical resistance gene using reverse transcription quantitative PCR (RT-qPCR) and Kompetitive Allele Specific PCR (KASP) marker M0526. RT-qPCR revealed that GmPDH1 expression in HPD roots was upregulated 9 days post-inoculation with SCN4 compared to uninoculated controls. KASP genotyping showed that marker M0526 efficiently distinguished between resistant and susceptible plants in natural populations: 71.05% of the resistant accessions exhibited resistant or moderately resistant genotypes, whereas 81.03% of the susceptible accessions showed susceptible or highly susceptible genotypes. Functional validation demonstrated that overexpression of GmPDH1 significantly enhanced SCN4 resistance in the susceptible cultivars JD23 and Jack, whereas CRISPR/Cas9-mediated knockout of GmPDH1 in HPD attenuated its resistance. This study confirmed GmPDH1 as a key gene governing SCN4 resistance and developed an efficient molecular marker, M0526, providing theoretical insights and technical tools for dissecting nematode resistance mechanisms and advancing soybean disease-resistant breeding. Full article
Show Figures

Figure 1

15 pages, 3644 KiB  
Article
Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection
by Wenshu Kang, Zicheng Sun, Jiayao Xu, Nawei Qi and Piao Lei
Agronomy 2025, 15(4), 957; https://doi.org/10.3390/agronomy15040957 - 14 Apr 2025
Viewed by 525
Abstract
Plant small peptides are critical regulators of various biological processes, including development and stress responses. Polypeptides within the DUF3774 family, known as wound-induced polypeptides (WIPs), have been identified as key players in pattern-triggered immunity (PTI) and defense mechanisms in Arabidopsis. In this [...] Read more.
Plant small peptides are critical regulators of various biological processes, including development and stress responses. Polypeptides within the DUF3774 family, known as wound-induced polypeptides (WIPs), have been identified as key players in pattern-triggered immunity (PTI) and defense mechanisms in Arabidopsis. In this study, the genome-wide identification of WIP genes in Glycine max was performed, followed by gene structure correction and validation using second-generation and full-length RNA sequencing data. A total of 31 GmWIP genes were identified and validated, mapped to chromosomes Gm06, Gm12, Gm13, and Gm06_scaffold_301. Phylogenetic analysis grouped these genes into five distinct clusters, with tandem duplication emerging as the primary mechanism for their expansion in the soybean genome. qRT-PCR analysis revealed dynamic and significant changes in GmWIP expression during soybean cyst nematode (SCN) infection in a susceptible soybean cultivar. Remarkably, 90% of the GmWIP genes were downregulated at the early stage of SCN infection (1 dpi), and further corroborated by the pGmWIPs::GUS reporter system. These findings suggest that GmWIP genes may act as regulators in the defense responses of susceptible soybean cultivars, providing a foundation for future functional studies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 5838 KiB  
Article
In Silico Characterization of GmbHLH18 and Its Role in Improving Soybean Cyst Nematode Resistance via Genetic Manipulation
by Shuo Qu, Shihao Hu, Miaoli Zhang, Gengchen Song, Fang Liu, Weili Teng, Yuhang Zhan, Yongguang Li, Haiyan Li, Xue Zhao and Yingpeng Han
Agronomy 2025, 15(3), 574; https://doi.org/10.3390/agronomy15030574 - 26 Feb 2025
Viewed by 611
Abstract
Soybean is crucial to food processing and agricultural output. However, pests and diseases can easily impact soybeans, reducing their production. Soybean cyst nematode (SCN) is a soilborne pathogen that has a large geographic range, a long lifespan, and the potential to inflict substantial [...] Read more.
Soybean is crucial to food processing and agricultural output. However, pests and diseases can easily impact soybeans, reducing their production. Soybean cyst nematode (SCN) is a soilborne pathogen that has a large geographic range, a long lifespan, and the potential to inflict substantial harm to the soybean industry. Persistent use of major resistance genes leads to a progressive loss of resistance; therefore, continuous identification of new soybean strains and genes is essential for continued sustainable soybean production. In this research, the SCN-resistant and SCN-sensitive germplasm DN-L10 and Heinong 37 were inoculated with SCN 3. After stress treatment, the stressed roots were collected for RNA-Seq analysis. The sequencing results screened out the differentially expressed gene GmbHLH18. The GmbHLH18 gene was cloned, and the overexpression vector pCAMBIA3300-GmbHLH18 was constructed. Agrobacterium infected soybean hairy roots and genetically modified the roots of DN50 soybeans, and transgenic root seedlings were obtained. The transgenically identified root seedlings were transplanted in soil infested with SCN 3, and resistance to root nematodes was determined by magenta staining. The secondary and tertiary structures of the protein, phosphorylation sites, as well as the hydrophilicity related to the GmbHLH18 gene were analyzed. Subsequently, the recombinant subcellular localization vector pCAMBIA1302-GmbHLH18 was employed. Agrobacterium was injected into tobacco leaves, and organelle-specific expression was observed. Finally, stress resistance-related indexes of the roots of overexpressing plants and WT plants under SCN 3 stress were measured. The results showed that overexpression and subcellular localization vectors were successfully constructed and transformed into Agrobacterium K599 and GV3101, respectively. The encoded protein had 1149 amino acids, a molecular weight of 95.76 kDa, an isoelectric point of 5.04, 60 phosphorylation sites, a tertiary structure of a-helix (36.39%), random coil (53.40%), extended chain (8.64%), and corner (1.57%), and was hydrophilic. The protein that the gene encoded was a nuclear-localized protein, according to the results of subcellular localization analysis. Moreover, the Agrobacterium-induced hairy root test revealed that the number of overexpressed pCAMBIA3300-GmbHLH18 transgenic roots in the unit area of DN50 was substantially lower than in the control group, which at first suggested that the gene had partial resistance to SCN 3. Stress resistance-related indexes suggest that the contents of POD, SOD, and proline in the overexpressing root significantly increase after SCN 3 stress, demonstrating that this gene can enhance the plant’s resistance to the SCN 3 pathogen. Future research could focus on further elucidating the molecular mechanism underlying the gene’s resistance to SCN 3 and exploring its potential application in breeding soybean varieties with enhanced resistance. Full article
Show Figures

Figure 1

13 pages, 2756 KiB  
Article
Resistance Analysis of a Soybean Cultivar, Nongqing 28 against Soybean Cyst Nematode, Heterodera glycines Ichinohe 1952
by Changjun Zhou, Yanfeng Hu, Yingpeng Han, Gang Chen, Bing Liu, Jidong Yu, Yaokun Wu, Jianying Li, Lan Ma and Jian Wei
Agronomy 2024, 14(9), 1964; https://doi.org/10.3390/agronomy14091964 - 30 Aug 2024
Viewed by 1370
Abstract
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, 1952, is one of the most destructive plant-parasitic nematodes in soybean production worldwide. The use of resistant soybean is the most effective alternative for its management. However, SCN-resistant soybean cultivars with increased yield and favorable [...] Read more.
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, 1952, is one of the most destructive plant-parasitic nematodes in soybean production worldwide. The use of resistant soybean is the most effective alternative for its management. However, SCN-resistant soybean cultivars with increased yield and favorable agronomic traits remain limited in the market. Here, we developed a new SCN-resistant soybean cultivar Nongqing 28 from the cross of the female parent cultivar An 02-318 and a male parent line F2 (Hei 99-980 × America Xiaoheidou). Resistance evaluation suggested that Nongqing 28 displayed stable resistance to SCN race 3 in pot assays and the 5-year field experiments, including inhibition of SCN development and reduction in female and cyst numbers. The average yields of Nongqing 28 were 2593 kg/ha and 2660 kg/ha in the 2-year regional trails and the 1-year production trials, with a yield increase of 6.2% and 8.1% compared with the local cultivar Nengfeng 18, respectively. The average seed fat contents in Nongqing 28 reached 21.26%. Additionally, RNA-seq analysis revealed that the resistance of Nongqing 28 to SCN infection is involved in pathogen perception and defense activation, such as reactive oxygen species burst, calcium-mediated defense signaling, hormonal signaling, the MAPK signaling cascade, and phenylpropanoid biosynthesis. In summary, this study provides a detailed characterization of a novel SCN-resistant soybean cultivar with high oil and yield potential. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Soybeans)
Show Figures

Figure 1

19 pages, 4865 KiB  
Article
Impact Assessment of Nematode Infestation on Soybean Crop Production Using Aerial Multispectral Imagery and Machine Learning
by Pius Jjagwe, Abhilash K. Chandel and David B. Langston
Appl. Sci. 2024, 14(13), 5482; https://doi.org/10.3390/app14135482 - 24 Jun 2024
Cited by 1 | Viewed by 1697
Abstract
Accurate and prompt estimation of geospatial soybean yield (SY) is critical for the producers to determine key factors influencing crop growth for improved precision management decisions. This study aims to quantify the impacts of soybean cyst nematode (SCN) infestation on soybean production and [...] Read more.
Accurate and prompt estimation of geospatial soybean yield (SY) is critical for the producers to determine key factors influencing crop growth for improved precision management decisions. This study aims to quantify the impacts of soybean cyst nematode (SCN) infestation on soybean production and the yield of susceptible and resistant seed varieties. Susceptible varieties showed lower yield and crop vigor recovery, and high SCN population (20 to 1080) compared to resistant varieties (SCN populations: 0 to 340). High-resolution (1.3 cm/pixel) aerial multispectral imagery showed the blue band reflectance (r = 0.58) and Green Normalized Difference Vegetation Index (GNDVI, r = −0.6) have the best correlation with the SCN populations. While GDNVI, Green Chlorophyll Index (GCI), and Normalized Difference Red Edge Index (NDRE) were the best differentiators of plant vigor and had the highest correlation with SY (r = 0.59–0.75). Reflectance (REF) and VIs were then used for SY estimation using two statistical and four machine learning (ML) models at 10 different train–test data split ratios (50:50–95:5). The ML models and train–test data split ratio had significant impacts on SY estimation accuracy. Random forest (RF) was the best and consistently performing model (r: 0.84–0.97, rRMSE: 8.72–20%), while a higher train–test split ratio lowered the performances of the ML models. The 95:5 train–test ratio showed the best performance across all the models, which may be a suitable ratio for modeling over smaller or medium-sized datasets. Such insights derived using high spatial resolution data can be utilized to implement precision crop protective operations for enhanced soybean yield and productivity. Full article
Show Figures

Figure 1

13 pages, 1893 KiB  
Article
Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management
by Ping Yates, Juddy Janiol, Changbao Li and Bao-Hua Song
Plants 2024, 13(2), 319; https://doi.org/10.3390/plants13020319 - 21 Jan 2024
Cited by 6 | Viewed by 2332
Abstract
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose [...] Read more.
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

15 pages, 4571 KiB  
Article
No Pairwise Interactions of GmSNAP18, GmSHMT08 and AtPR1 with Suppressed AtPR1 Expression Enhance the Susceptibility of Arabidopsis to Beet Cyst Nematode
by Liuping Zhang, Jie Zhao, Lingan Kong, Wenkun Huang, Huan Peng, Deliang Peng, Khalid Meksem and Shiming Liu
Plants 2023, 12(24), 4118; https://doi.org/10.3390/plants12244118 - 9 Dec 2023
Cited by 2 | Viewed by 1399
Abstract
GmSNAP18 and GmSHMT08 are two major genes conferring soybean cyst nematode (SCN) resistance in soybean. Overexpression of either of these two soybean genes would enhance the susceptibility of Arabidopsis to beet cyst nematode (BCN), while overexpression of either of their corresponding orthologs in [...] Read more.
GmSNAP18 and GmSHMT08 are two major genes conferring soybean cyst nematode (SCN) resistance in soybean. Overexpression of either of these two soybean genes would enhance the susceptibility of Arabidopsis to beet cyst nematode (BCN), while overexpression of either of their corresponding orthologs in Arabidopsis, AtSNAP2 and AtSHMT4, would suppress it. However, the mechanism by which these two pairs of orthologous genes boost or inhibit BCN susceptibility of Arabidopsis still remains elusive. In this study, Arabidopsis with simultaneously overexpressed GmSNAP18 and GmSHMT0 suppressed the growth of underground as well as above-ground parts of plants. Furthermore, Arabidopsis that simultaneously overexpressed GmSNAP18 and GmSHMT08 substantially stimulated BCN susceptibility and remarkably suppressed expression of AtPR1 in the salicylic acid signaling pathway. However, simultaneous overexpression of GmSNAP18 and GmSHMT08 did not impact the expression of AtJAR1 and AtHEL1 in the jasmonic acid and ethylene signaling pathways. GmSNAP18, GmSHMT08, and a pathogenesis-related (PR) protein, GmPR08-Bet VI, in soybean, and AtSNAP2, AtSHMT4, and AtPR1 in Arabidopsis could interact pair-wisely for mediating SCN and BCN resistance in soybean and Arabidopsis, respectively. Both AtSNAP2 and AtPR1 were localized on the plasma membrane, and AtSHMT4 was localized both on the plasma membrane and in the nucleus of cells. Nevertheless, after interactions, AtSNAP2 and AtPR1 could partially translocate into the cell nucleus. GmSNAP18 interacted with AtSHMT4, and GmSHMT4 interacted with AtSNAP2. However, neither GmSNAP18 nor GmSHMT08 interacted with AtPR1. Thus, no pairwise interactions among α-SNAPs, SHMTs, and AtPR1 occurred in Arabidopsis overexpressing either GmSNAP18 or GmSHMT08, or both of them. Transgenic Arabidopsis overexpressing either GmSNAP18 or GmSHMT08 substantially suppressed AtPR1 expression, while transgenic Arabidopsis overexpressing either AtSNAP2 or AtSHMT4 remarkably enhanced it. Taken together, no pairwise interactions of GmSNAP18, GmSHMT08, and AtPR1 with suppressed expression of AtPR1 enhanced BCN susceptibility in Arabidopsis. This study may provide a clue that nematode-resistant or -susceptible functions of plant genes likely depend on both hosts and nematode species. Full article
(This article belongs to the Special Issue Germplasm Resources and Molecular Breeding of Soybean)
Show Figures

Figure 1

14 pages, 952 KiB  
Article
Evaluation of Soil Suppressiveness of Various Japanese Soils against the Soybean Cyst Nematode Heterodera glycines and Its Relation with the Soil Chemical and Biological Properties
by Yanyan Yang, Junnan Wu, Roland N. Perry and Koki Toyota
Agronomy 2023, 13(11), 2826; https://doi.org/10.3390/agronomy13112826 - 16 Nov 2023
Cited by 2 | Viewed by 1679
Abstract
This study aimed to evaluate the suppressive potential of different soils on soybean cyst nematodes (SCN) and to estimate the suppressive mechanism. Fifteen soils (designated as soil A to O) from different agricultural fields with varying organic inputs were added with SCN-infested soil [...] Read more.
This study aimed to evaluate the suppressive potential of different soils on soybean cyst nematodes (SCN) and to estimate the suppressive mechanism. Fifteen soils (designated as soil A to O) from different agricultural fields with varying organic inputs were added with SCN-infested soil and grown with a green soybean variety. The SCN density in the soil at 6 weeks of soybean growth was markedly different depending on the soils used, indicating a different level of disease suppressiveness. No significant correlation was observed between the SCN density and any of the soil physicochemical and biological characteristics tested. Then, to estimate a suppression mechanism, F-soil that showed the lowest density of SCN was added to the SCN-infested soil with or without streptomycin to kill bacteria and grown with soybean. SCN density was not increased by the addition of streptomycin, indicating that soil bacteria may not be involved in the suppressiveness of F-soil. In total, 128 fungal strains were isolated from the rhizosphere of F-soil and inoculated in a combination or singly in the SCN-infested soil. After repeated screenings, five strains were selected since the SCN density was consistently decreased by them. Sequence analysis showed that they were closest to Clonostachys rosea, Aspergillus niger, Aspergillus fumigatus, Fusarium oxysporum, and Cylindrodendrum alicantinum. All five strains significantly reduced the mobility of second-stage juveniles (J2). Further, C. rosea a2, A. niger a8, and F. oxysporum a25 significantly decreased hatching. Overall, the present study demonstrated that soil fungi played an important role in SCN suppression in F-soil. Full article
(This article belongs to the Special Issue Effects of Nematodes on Crops—2nd Edition)
Show Figures

Figure 1

23 pages, 3212 KiB  
Article
Soybean–SCN Battle: Novel Insight into Soybean’s Defense Strategies against Heterodera glycines
by Sepideh Torabi, Soren Seifi, Jennifer Geddes-McAlister, Albert Tenuta, Owen Wally, Davoud Torkamaneh and Milad Eskandari
Int. J. Mol. Sci. 2023, 24(22), 16232; https://doi.org/10.3390/ijms242216232 - 12 Nov 2023
Cited by 5 | Viewed by 3093
Abstract
Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants’ response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction [...] Read more.
Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants’ response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean–SCN interactions and offer potential targets for nematode disease management. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Strategic Crops)
Show Figures

Figure 1

18 pages, 2177 KiB  
Article
Single Nematode Transcriptomic Analysis, Using Long-Read Technology, Reveals Two Novel Virulence Gene Candidates in the Soybean Cyst Nematode, Heterodera glycines
by Dave T. Ste-Croix, Richard R. Bélanger and Benjamin Mimee
Int. J. Mol. Sci. 2023, 24(11), 9440; https://doi.org/10.3390/ijms24119440 - 29 May 2023
Cited by 5 | Viewed by 2439
Abstract
The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI [...] Read more.
The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI 88788) has led to the emergence of virulence. Currently, the underlying mechanisms responsible for resistance breakdown remain unknown. In this study, we combined a single nematode transcriptomic profiling approach with long-read sequencing to reannotate the SCN genome. This resulted in the annotation of 1932 novel transcripts and 281 novel gene features. Using a transcript-level quantification approach, we identified eight novel effector candidates overexpressed in PI 88788 virulent nematodes in the late infection stage. Among these were the novel gene Hg-CPZ-1 and a pioneer effector transcript generated through the alternative splicing of the non-effector gene Hetgly21698. While our results demonstrate that alternative splicing in effectors does occur, we found limited evidence of direct involvement in the breakdown of resistance. However, our analysis highlighted a distinct pattern of effector upregulation in response to PI 88788 resistance indicative of a possible adaptation process by SCN to host resistance. Full article
(This article belongs to the Special Issue Plant–Nematode Interactions)
Show Figures

Figure 1

11 pages, 427 KiB  
Article
Evaluation Soybean Cultivars for Reaction to Heterodera glycines Populations HG Types 7 and 1.3.4.7 in Northeast China
by Jingsheng Chen, Yuanyuan Zhou, Yanfeng Hu, Di Zhao, Changjun Zhou, Rujie Shi, Miao Sun, Li Zhang, Guowei Chen, Haiyan Li, Lijie Chen and Guosheng Xiao
Life 2023, 13(1), 248; https://doi.org/10.3390/life13010248 - 16 Jan 2023
Cited by 3 | Viewed by 2463
Abstract
Soybean cyst nematode Heterodera glycines (SCN) is a major threat to global soybean production. Effective management of this disease is dependent on the development of resistant cultivars. Two SCN HG Types, 7 and 1.3.4.7. were previously identified as prevalent H. glycines populations in [...] Read more.
Soybean cyst nematode Heterodera glycines (SCN) is a major threat to global soybean production. Effective management of this disease is dependent on the development of resistant cultivars. Two SCN HG Types, 7 and 1.3.4.7. were previously identified as prevalent H. glycines populations in Northeast China. In order to evaluate soybean cultivars resistant to local SCN populations, 110 domestic commercial soybeans from different regions of Northeast China were assessed in the greenhouse to determine their potential as novel sources of resistance. The results suggested that cultivars responded differently to the two HG types. Of the 110 soybean cultivars evaluated, 24 accessions were classified as resistant or moderately resistant to HG Type 7, and five cultivars were classified as resistant or moderately resistant to HG Type 1.3.4.7. Among the tested cultivars, Kangxian 12 and Qingdou 13 had resistance response to both HG types 7 and 1.3.4.7. Thus, these broad-based SCN cultivars will be the valuable materials in the SCN resistance breeding program. Full article
(This article belongs to the Special Issue Plant–Nematode Interaction)
Show Figures

Figure 1

15 pages, 2480 KiB  
Article
Transmissible Effects of a Biochar Amendment to an Upper Soil Zone Upon an Associated Lower Zone, Including Attenuation of Soybean Cyst Nematode (Heterodera glycines)
by Nguyen Van Sinh, Doan Thi Truc Linh, Nguyen Thi Kim Phuong, Karl Ritz and Koki Toyota
Agronomy 2023, 13(1), 53; https://doi.org/10.3390/agronomy13010053 - 23 Dec 2022
Cited by 2 | Viewed by 2197
Abstract
Mung bean residues stimulate the hatching of soybean cyst nematode (SCN). In our previous study, combined incorporation of mung bean residues and biochar into soil can be effective in suppression of the soybean cyst nematode (SCN), Heterodera glycines, in the upper layer soil. [...] Read more.
Mung bean residues stimulate the hatching of soybean cyst nematode (SCN). In our previous study, combined incorporation of mung bean residues and biochar into soil can be effective in suppression of the soybean cyst nematode (SCN), Heterodera glycines, in the upper layer soil. However, there are no data available as to whether such effects are transmissible, and could for example be manifest in subsoil zones where such incorporation is confined to topsoils, via water-based pathways. We evaluated the effects of leachate passage from a biochar-amended soil in an upper soil zone to a lower zone in a microcosm-based system, upon a range of physicochemical properties and density of SCN. Disturbed soil was filled in a total of 9 cylindrical cores with two layers. The upper layer (0–15 cm) was amended with biochar at rates equivalent to 0, 0.3% or 1.8%, with bulk density set at of 1.1 g cm−3. The lower layer (15–25 cm) without biochar amendment was compacted to 1.2 g cm−3. Mung beans were grown for two weeks and incorporated into the upper layer. Water was surface-applied to the cores 4, 6, and 8 weeks after mung bean incorporation. After 16 weeks, the upper and lower layer soils were separately collected and assayed. The presence of biochar in the upper layer reduced the abundance of free-living nematodes, mainly bacterivorous, but increased that of a predator genus Ecumenicus in this zone. In the lower layer of soil under a biochar-amended upper layer, available P and soluble cations were increased as were abundances of total nematodes including Ecumenicus, resulting in greater maturity index, basal and structure indices. Notably, SCN density was decreased in lower zones by more than 90% compared to zero-biochar controls. This demonstrates that the effects of biochar upon soil properties, including impacts on biota and plant pathogens, are transmissible. Full article
(This article belongs to the Special Issue Effects of Nematodes on Crops)
Show Figures

Figure 1

16 pages, 20718 KiB  
Article
Gma-miR408 Enhances Soybean Cyst Nematode Susceptibility by Suppressing Reactive Oxygen Species Accumulation
by Yaxing Feng, Nawei Qi, Piao Lei, Yuanyuan Wang, Yuanhu Xuan, Xiaoyu Liu, Haiyan Fan, Lijie Chen, Yuxi Duan and Xiaofeng Zhu
Int. J. Mol. Sci. 2022, 23(22), 14022; https://doi.org/10.3390/ijms232214022 - 14 Nov 2022
Cited by 13 | Viewed by 2716
Abstract
Soybean cyst nematode (SCN, Heterodera glycine) is a serious damaging disease in soybean worldwide, thus resulting in severe yield losses. MicroRNA408 (miR408) is an ancient and highly conserved miRNA involved in regulating plant growth, development, biotic and abiotic stress response. [...] Read more.
Soybean cyst nematode (SCN, Heterodera glycine) is a serious damaging disease in soybean worldwide, thus resulting in severe yield losses. MicroRNA408 (miR408) is an ancient and highly conserved miRNA involved in regulating plant growth, development, biotic and abiotic stress response. Here, we analyzed the evolution of miR408 in plants and verified four miR408 members in Glycine max. In the current research, highly upregulated gma-miR408 expressing was detected during nematode migration and syncytium formation response to soybean cyst nematode infection. Overexpressing and silencing miR408 vectors were transformed to soybean to confirm its potential role in plant and nematode interaction. Significant variations were observed in the MAPK signaling pathway with low OXI1, PR1, and wounding of the overexpressing lines. Overexpressing miR408 could negatively regulate soybean resistance to SCN by suppressing reactive oxygen species accumulation. Conversely, silencing miR408 positively regulates soybean resistance to SCN. Overall, gma-miR408 enhances soybean cyst nematode susceptibility by suppressing reactive oxygen species accumulation. Full article
(This article belongs to the Special Issue Plant–Nematode Interactions)
Show Figures

Figure 1

21 pages, 3631 KiB  
Article
Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode
by Naoufal Lakhssassi, Dounya Knizia, Abdelhalim El Baze, Aicha Lakhssassi, Jonas Meksem and Khalid Meksem
Int. J. Mol. Sci. 2022, 23(19), 11278; https://doi.org/10.3390/ijms231911278 - 24 Sep 2022
Cited by 7 | Viewed by 2493
Abstract
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the [...] Read more.
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the soybean gene underlying soybean cyst nematode (SCN) resistance at the Rhg4 locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms. Full article
(This article belongs to the Special Issue Advances in Research for Legume Genomics, Genetics, and Breeding)
Show Figures

Figure 1

Back to TopTop